/* Pass manager for Fortran front end.
Copyright (C) 2010-2018 Free Software Foundation, Inc.
Contributed by Thomas König.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "options.h"
#include "gfortran.h"
#include "dependency.h"
#include "constructor.h"
#include "intrinsic.h"
/* Forward declarations. */
static void strip_function_call (gfc_expr *);
static void optimize_namespace (gfc_namespace *);
static void optimize_assignment (gfc_code *);
static bool optimize_op (gfc_expr *);
static bool optimize_comparison (gfc_expr *, gfc_intrinsic_op);
static bool optimize_trim (gfc_expr *);
static bool optimize_lexical_comparison (gfc_expr *);
static void optimize_minmaxloc (gfc_expr **);
static bool is_empty_string (gfc_expr *e);
static void doloop_warn (gfc_namespace *);
static int do_intent (gfc_expr **);
static int do_subscript (gfc_expr **);
static void optimize_reduction (gfc_namespace *);
static int callback_reduction (gfc_expr **, int *, void *);
static void realloc_strings (gfc_namespace *);
static gfc_expr *create_var (gfc_expr *, const char *vname=NULL);
static int matmul_to_var_expr (gfc_expr **, int *, void *);
static int matmul_to_var_code (gfc_code **, int *, void *);
static int inline_matmul_assign (gfc_code **, int *, void *);
static gfc_code * create_do_loop (gfc_expr *, gfc_expr *, gfc_expr *,
locus *, gfc_namespace *,
char *vname=NULL);
static gfc_expr* check_conjg_transpose_variable (gfc_expr *, bool *,
bool *);
static bool has_dimen_vector_ref (gfc_expr *);
static int matmul_temp_args (gfc_code **, int *,void *data);
static int index_interchange (gfc_code **, int*, void *);
static bool is_fe_temp (gfc_expr *e);
#ifdef CHECKING_P
static void check_locus (gfc_namespace *);
#endif
/* How deep we are inside an argument list. */
static int count_arglist;
/* Vector of gfc_expr ** we operate on. */
static vec expr_array;
/* Pointer to the gfc_code we currently work on - to be able to insert
a block before the statement. */
static gfc_code **current_code;
/* Pointer to the block to be inserted, and the statement we are
changing within the block. */
static gfc_code *inserted_block, **changed_statement;
/* The namespace we are currently dealing with. */
static gfc_namespace *current_ns;
/* If we are within any forall loop. */
static int forall_level;
/* Keep track of whether we are within an OMP workshare. */
static bool in_omp_workshare;
/* Keep track of whether we are within a WHERE statement. */
static bool in_where;
/* Keep track of iterators for array constructors. */
static int iterator_level;
/* Keep track of DO loop levels. */
typedef struct {
gfc_code *c;
int branch_level;
bool seen_goto;
} do_t;
static vec doloop_list;
static int doloop_level;
/* Keep track of if and select case levels. */
static int if_level;
static int select_level;
/* Vector of gfc_expr * to keep track of DO loops. */
struct my_struct *evec;
/* Keep track of association lists. */
static bool in_assoc_list;
/* Counter for temporary variables. */
static int var_num = 1;
/* What sort of matrix we are dealing with when inlining MATMUL. */
enum matrix_case { none=0, A2B2, A2B1, A1B2, A2B2T, A2TB2 };
/* Keep track of the number of expressions we have inserted so far
using create_var. */
int n_vars;
/* Entry point - run all passes for a namespace. */
void
gfc_run_passes (gfc_namespace *ns)
{
/* Warn about dubious DO loops where the index might
change. */
doloop_level = 0;
if_level = 0;
select_level = 0;
doloop_warn (ns);
doloop_list.release ();
int w, e;
#ifdef CHECKING_P
check_locus (ns);
#endif
gfc_get_errors (&w, &e);
if (e > 0)
return;
if (flag_frontend_optimize || flag_frontend_loop_interchange)
optimize_namespace (ns);
if (flag_frontend_optimize)
{
optimize_reduction (ns);
if (flag_dump_fortran_optimized)
gfc_dump_parse_tree (ns, stdout);
expr_array.release ();
}
if (flag_realloc_lhs)
realloc_strings (ns);
}
#ifdef CHECKING_P
/* Callback function: Warn if there is no location information in a
statement. */
static int
check_locus_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
current_code = c;
if (c && *c && (((*c)->loc.nextc == NULL) || ((*c)->loc.lb == NULL)))
gfc_warning_internal (0, "No location in statement");
return 0;
}
/* Callback function: Warn if there is no location information in an
expression. */
static int
check_locus_expr (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if (e && *e && (((*e)->where.nextc == NULL || (*e)->where.lb == NULL)))
gfc_warning_internal (0, "No location in expression near %L",
&((*current_code)->loc));
return 0;
}
/* Run check for missing location information. */
static void
check_locus (gfc_namespace *ns)
{
gfc_code_walker (&ns->code, check_locus_code, check_locus_expr, NULL);
for (ns = ns->contained; ns; ns = ns->sibling)
{
if (ns->code == NULL || ns->code->op != EXEC_BLOCK)
check_locus (ns);
}
}
#endif
/* Callback for each gfc_code node invoked from check_realloc_strings.
For an allocatable LHS string which also appears as a variable on
the RHS, replace
a = a(x:y)
with
tmp = a(x:y)
a = tmp
*/
static int
realloc_string_callback (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_expr *expr1, *expr2;
gfc_code *co = *c;
gfc_expr *n;
gfc_ref *ref;
bool found_substr;
if (co->op != EXEC_ASSIGN)
return 0;
expr1 = co->expr1;
if (expr1->ts.type != BT_CHARACTER
|| !gfc_expr_attr(expr1).allocatable
|| !expr1->ts.deferred)
return 0;
if (is_fe_temp (expr1))
return 0;
expr2 = gfc_discard_nops (co->expr2);
if (expr2->expr_type == EXPR_VARIABLE)
{
found_substr = false;
for (ref = expr2->ref; ref; ref = ref->next)
{
if (ref->type == REF_SUBSTRING)
{
found_substr = true;
break;
}
}
if (!found_substr)
return 0;
}
else if (expr2->expr_type != EXPR_ARRAY
&& (expr2->expr_type != EXPR_OP
|| expr2->value.op.op != INTRINSIC_CONCAT))
return 0;
if (!gfc_check_dependency (expr1, expr2, true))
return 0;
/* gfc_check_dependency doesn't always pick up identical expressions.
However, eliminating the above sends the compiler into an infinite
loop on valid expressions. Without this check, the gimplifier emits
an ICE for a = a, where a is deferred character length. */
if (!gfc_dep_compare_expr (expr1, expr2))
return 0;
current_code = c;
inserted_block = NULL;
changed_statement = NULL;
n = create_var (expr2, "realloc_string");
co->expr2 = n;
return 0;
}
/* Callback for each gfc_code node invoked through gfc_code_walker
from optimize_namespace. */
static int
optimize_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_exec_op op;
op = (*c)->op;
if (op == EXEC_CALL || op == EXEC_COMPCALL || op == EXEC_ASSIGN_CALL
|| op == EXEC_CALL_PPC)
count_arglist = 1;
else
count_arglist = 0;
current_code = c;
inserted_block = NULL;
changed_statement = NULL;
if (op == EXEC_ASSIGN)
optimize_assignment (*c);
return 0;
}
/* Callback for each gfc_expr node invoked through gfc_code_walker
from optimize_namespace. */
static int
optimize_expr (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
bool function_expr;
if ((*e)->expr_type == EXPR_FUNCTION)
{
count_arglist ++;
function_expr = true;
}
else
function_expr = false;
if (optimize_trim (*e))
gfc_simplify_expr (*e, 0);
if (optimize_lexical_comparison (*e))
gfc_simplify_expr (*e, 0);
if ((*e)->expr_type == EXPR_OP && optimize_op (*e))
gfc_simplify_expr (*e, 0);
if ((*e)->expr_type == EXPR_FUNCTION && (*e)->value.function.isym)
switch ((*e)->value.function.isym->id)
{
case GFC_ISYM_MINLOC:
case GFC_ISYM_MAXLOC:
optimize_minmaxloc (e);
break;
default:
break;
}
if (function_expr)
count_arglist --;
return 0;
}
/* Auxiliary function to handle the arguments to reduction intrnisics. If the
function is a scalar, just copy it; otherwise returns the new element, the
old one can be freed. */
static gfc_expr *
copy_walk_reduction_arg (gfc_constructor *c, gfc_expr *fn)
{
gfc_expr *fcn, *e = c->expr;
fcn = gfc_copy_expr (e);
if (c->iterator)
{
gfc_constructor_base newbase;
gfc_expr *new_expr;
gfc_constructor *new_c;
newbase = NULL;
new_expr = gfc_get_expr ();
new_expr->expr_type = EXPR_ARRAY;
new_expr->ts = e->ts;
new_expr->where = e->where;
new_expr->rank = 1;
new_c = gfc_constructor_append_expr (&newbase, fcn, &(e->where));
new_c->iterator = c->iterator;
new_expr->value.constructor = newbase;
c->iterator = NULL;
fcn = new_expr;
}
if (fcn->rank != 0)
{
gfc_isym_id id = fn->value.function.isym->id;
if (id == GFC_ISYM_SUM || id == GFC_ISYM_PRODUCT)
fcn = gfc_build_intrinsic_call (current_ns, id,
fn->value.function.isym->name,
fn->where, 3, fcn, NULL, NULL);
else if (id == GFC_ISYM_ANY || id == GFC_ISYM_ALL)
fcn = gfc_build_intrinsic_call (current_ns, id,
fn->value.function.isym->name,
fn->where, 2, fcn, NULL);
else
gfc_internal_error ("Illegal id in copy_walk_reduction_arg");
fcn->symtree->n.sym->attr.access = ACCESS_PRIVATE;
}
return fcn;
}
/* Callback function for optimzation of reductions to scalars. Transform ANY
([f1,f2,f3, ...]) to f1 .or. f2 .or. f3 .or. ..., with ANY, SUM and PRODUCT
correspondingly. Handly only the simple cases without MASK and DIM. */
static int
callback_reduction (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_expr *fn, *arg;
gfc_intrinsic_op op;
gfc_isym_id id;
gfc_actual_arglist *a;
gfc_actual_arglist *dim;
gfc_constructor *c;
gfc_expr *res, *new_expr;
gfc_actual_arglist *mask;
fn = *e;
if (fn->rank != 0 || fn->expr_type != EXPR_FUNCTION
|| fn->value.function.isym == NULL)
return 0;
id = fn->value.function.isym->id;
if (id != GFC_ISYM_SUM && id != GFC_ISYM_PRODUCT
&& id != GFC_ISYM_ANY && id != GFC_ISYM_ALL)
return 0;
a = fn->value.function.actual;
/* Don't handle MASK or DIM. */
dim = a->next;
if (dim->expr != NULL)
return 0;
if (id == GFC_ISYM_SUM || id == GFC_ISYM_PRODUCT)
{
mask = dim->next;
if ( mask->expr != NULL)
return 0;
}
arg = a->expr;
if (arg->expr_type != EXPR_ARRAY)
return 0;
switch (id)
{
case GFC_ISYM_SUM:
op = INTRINSIC_PLUS;
break;
case GFC_ISYM_PRODUCT:
op = INTRINSIC_TIMES;
break;
case GFC_ISYM_ANY:
op = INTRINSIC_OR;
break;
case GFC_ISYM_ALL:
op = INTRINSIC_AND;
break;
default:
return 0;
}
c = gfc_constructor_first (arg->value.constructor);
/* Don't do any simplififcation if we have
- no element in the constructor or
- only have a single element in the array which contains an
iterator. */
if (c == NULL)
return 0;
res = copy_walk_reduction_arg (c, fn);
c = gfc_constructor_next (c);
while (c)
{
new_expr = gfc_get_expr ();
new_expr->ts = fn->ts;
new_expr->expr_type = EXPR_OP;
new_expr->rank = fn->rank;
new_expr->where = fn->where;
new_expr->value.op.op = op;
new_expr->value.op.op1 = res;
new_expr->value.op.op2 = copy_walk_reduction_arg (c, fn);
res = new_expr;
c = gfc_constructor_next (c);
}
gfc_simplify_expr (res, 0);
*e = res;
gfc_free_expr (fn);
return 0;
}
/* Callback function for common function elimination, called from cfe_expr_0.
Put all eligible function expressions into expr_array. */
static int
cfe_register_funcs (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if ((*e)->expr_type != EXPR_FUNCTION)
return 0;
/* We don't do character functions with unknown charlens. */
if ((*e)->ts.type == BT_CHARACTER
&& ((*e)->ts.u.cl == NULL || (*e)->ts.u.cl->length == NULL
|| (*e)->ts.u.cl->length->expr_type != EXPR_CONSTANT))
return 0;
/* We don't do function elimination within FORALL statements, it can
lead to wrong-code in certain circumstances. */
if (forall_level > 0)
return 0;
/* Function elimination inside an iterator could lead to functions which
depend on iterator variables being moved outside. FIXME: We should check
if the functions do indeed depend on the iterator variable. */
if (iterator_level > 0)
return 0;
/* If we don't know the shape at compile time, we create an allocatable
temporary variable to hold the intermediate result, but only if
allocation on assignment is active. */
if ((*e)->rank > 0 && (*e)->shape == NULL && !flag_realloc_lhs)
return 0;
/* Skip the test for pure functions if -faggressive-function-elimination
is specified. */
if ((*e)->value.function.esym)
{
/* Don't create an array temporary for elemental functions. */
if ((*e)->value.function.esym->attr.elemental && (*e)->rank > 0)
return 0;
/* Only eliminate potentially impure functions if the
user specifically requested it. */
if (!flag_aggressive_function_elimination
&& !(*e)->value.function.esym->attr.pure
&& !(*e)->value.function.esym->attr.implicit_pure)
return 0;
}
if ((*e)->value.function.isym)
{
/* Conversions are handled on the fly by the middle end,
transpose during trans-* stages and TRANSFER by the middle end. */
if ((*e)->value.function.isym->id == GFC_ISYM_CONVERSION
|| (*e)->value.function.isym->id == GFC_ISYM_TRANSFER
|| gfc_inline_intrinsic_function_p (*e))
return 0;
/* Don't create an array temporary for elemental functions,
as this would be wasteful of memory.
FIXME: Create a scalar temporary during scalarization. */
if ((*e)->value.function.isym->elemental && (*e)->rank > 0)
return 0;
if (!(*e)->value.function.isym->pure)
return 0;
}
expr_array.safe_push (e);
return 0;
}
/* Auxiliary function to check if an expression is a temporary created by
create var. */
static bool
is_fe_temp (gfc_expr *e)
{
if (e->expr_type != EXPR_VARIABLE)
return false;
return e->symtree->n.sym->attr.fe_temp;
}
/* Determine the length of a string, if it can be evaluated as a constant
expression. Return a newly allocated gfc_expr or NULL on failure.
If the user specified a substring which is potentially longer than
the string itself, the string will be padded with spaces, which
is harmless. */
static gfc_expr *
constant_string_length (gfc_expr *e)
{
gfc_expr *length;
gfc_ref *ref;
gfc_expr *res;
mpz_t value;
if (e->ts.u.cl)
{
length = e->ts.u.cl->length;
if (length && length->expr_type == EXPR_CONSTANT)
return gfc_copy_expr(length);
}
/* Return length of substring, if constant. */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_SUBSTRING
&& gfc_dep_difference (ref->u.ss.end, ref->u.ss.start, &value))
{
res = gfc_get_constant_expr (BT_INTEGER, gfc_charlen_int_kind,
&e->where);
mpz_add_ui (res->value.integer, value, 1);
mpz_clear (value);
return res;
}
}
/* Return length of char symbol, if constant. */
if (e->symtree && e->symtree->n.sym->ts.u.cl
&& e->symtree->n.sym->ts.u.cl->length
&& e->symtree->n.sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
return gfc_copy_expr (e->symtree->n.sym->ts.u.cl->length);
return NULL;
}
/* Insert a block at the current position unless it has already
been inserted; in this case use the one already there. */
static gfc_namespace*
insert_block ()
{
gfc_namespace *ns;
/* If the block hasn't already been created, do so. */
if (inserted_block == NULL)
{
inserted_block = XCNEW (gfc_code);
inserted_block->op = EXEC_BLOCK;
inserted_block->loc = (*current_code)->loc;
ns = gfc_build_block_ns (current_ns);
inserted_block->ext.block.ns = ns;
inserted_block->ext.block.assoc = NULL;
ns->code = *current_code;
/* If the statement has a label, make sure it is transferred to
the newly created block. */
if ((*current_code)->here)
{
inserted_block->here = (*current_code)->here;
(*current_code)->here = NULL;
}
inserted_block->next = (*current_code)->next;
changed_statement = &(inserted_block->ext.block.ns->code);
(*current_code)->next = NULL;
/* Insert the BLOCK at the right position. */
*current_code = inserted_block;
ns->parent = current_ns;
}
else
ns = inserted_block->ext.block.ns;
return ns;
}
/* Returns a new expression (a variable) to be used in place of the old one,
with an optional assignment statement before the current statement to set
the value of the variable. Creates a new BLOCK for the statement if that
hasn't already been done and puts the statement, plus the newly created
variables, in that block. Special cases: If the expression is constant or
a temporary which has already been created, just copy it. */
static gfc_expr*
create_var (gfc_expr * e, const char *vname)
{
char name[GFC_MAX_SYMBOL_LEN +1];
gfc_symtree *symtree;
gfc_symbol *symbol;
gfc_expr *result;
gfc_code *n;
gfc_namespace *ns;
int i;
bool deferred;
if (e->expr_type == EXPR_CONSTANT || is_fe_temp (e))
return gfc_copy_expr (e);
/* Creation of an array of unknown size requires realloc on assignment.
If that is not possible, just return NULL. */
if (flag_realloc_lhs == 0 && e->rank > 0 && e->shape == NULL)
return NULL;
ns = insert_block ();
if (vname)
snprintf (name, GFC_MAX_SYMBOL_LEN, "__var_%d_%s", var_num++, vname);
else
snprintf (name, GFC_MAX_SYMBOL_LEN, "__var_%d", var_num++);
if (gfc_get_sym_tree (name, ns, &symtree, false) != 0)
gcc_unreachable ();
symbol = symtree->n.sym;
symbol->ts = e->ts;
if (e->rank > 0)
{
symbol->as = gfc_get_array_spec ();
symbol->as->rank = e->rank;
if (e->shape == NULL)
{
/* We don't know the shape at compile time, so we use an
allocatable. */
symbol->as->type = AS_DEFERRED;
symbol->attr.allocatable = 1;
}
else
{
symbol->as->type = AS_EXPLICIT;
/* Copy the shape. */
for (i=0; irank; i++)
{
gfc_expr *p, *q;
p = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
&(e->where));
mpz_set_si (p->value.integer, 1);
symbol->as->lower[i] = p;
q = gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
&(e->where));
mpz_set (q->value.integer, e->shape[i]);
symbol->as->upper[i] = q;
}
}
}
deferred = 0;
if (e->ts.type == BT_CHARACTER)
{
gfc_expr *length;
symbol->ts.u.cl = gfc_new_charlen (ns, NULL);
length = constant_string_length (e);
if (length)
symbol->ts.u.cl->length = length;
else
{
symbol->attr.allocatable = 1;
symbol->ts.u.cl->length = NULL;
symbol->ts.deferred = 1;
deferred = 1;
}
}
symbol->attr.flavor = FL_VARIABLE;
symbol->attr.referenced = 1;
symbol->attr.dimension = e->rank > 0;
symbol->attr.fe_temp = 1;
gfc_commit_symbol (symbol);
result = gfc_get_expr ();
result->expr_type = EXPR_VARIABLE;
result->ts = symbol->ts;
result->ts.deferred = deferred;
result->rank = e->rank;
result->shape = gfc_copy_shape (e->shape, e->rank);
result->symtree = symtree;
result->where = e->where;
if (e->rank > 0)
{
result->ref = gfc_get_ref ();
result->ref->type = REF_ARRAY;
result->ref->u.ar.type = AR_FULL;
result->ref->u.ar.where = e->where;
result->ref->u.ar.dimen = e->rank;
result->ref->u.ar.as = symbol->ts.type == BT_CLASS
? CLASS_DATA (symbol)->as : symbol->as;
if (warn_array_temporaries)
gfc_warning (OPT_Warray_temporaries,
"Creating array temporary at %L", &(e->where));
}
/* Generate the new assignment. */
n = XCNEW (gfc_code);
n->op = EXEC_ASSIGN;
n->loc = (*current_code)->loc;
n->next = *changed_statement;
n->expr1 = gfc_copy_expr (result);
n->expr2 = e;
*changed_statement = n;
n_vars ++;
return result;
}
/* Warn about function elimination. */
static void
do_warn_function_elimination (gfc_expr *e)
{
if (e->expr_type != EXPR_FUNCTION)
return;
if (e->value.function.esym)
gfc_warning (OPT_Wfunction_elimination,
"Removing call to function %qs at %L",
e->value.function.esym->name, &(e->where));
else if (e->value.function.isym)
gfc_warning (OPT_Wfunction_elimination,
"Removing call to function %qs at %L",
e->value.function.isym->name, &(e->where));
}
/* Callback function for the code walker for doing common function
elimination. This builds up the list of functions in the expression
and goes through them to detect duplicates, which it then replaces
by variables. */
static int
cfe_expr_0 (gfc_expr **e, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
int i,j;
gfc_expr *newvar;
gfc_expr **ei, **ej;
/* Don't do this optimization within OMP workshare or ASSOC lists. */
if (in_omp_workshare || in_assoc_list)
{
*walk_subtrees = 0;
return 0;
}
expr_array.release ();
gfc_expr_walker (e, cfe_register_funcs, NULL);
/* Walk through all the functions. */
FOR_EACH_VEC_ELT_FROM (expr_array, i, ei, 1)
{
/* Skip if the function has been replaced by a variable already. */
if ((*ei)->expr_type == EXPR_VARIABLE)
continue;
newvar = NULL;
for (j=0; j0)
b = sum(foo(a) + foo(a))
END WHERE
with
WHERE (a > 0)
tmp = foo(a)
b = sum(tmp + tmp)
END WHERE
*/
if ((*c)->op == EXEC_WHERE)
{
*walk_subtrees = 0;
return 0;
}
return 0;
}
/* Dummy function for expression call back, for use when we
really don't want to do any walking. */
static int
dummy_expr_callback (gfc_expr **e ATTRIBUTE_UNUSED, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
*walk_subtrees = 0;
return 0;
}
/* Dummy function for code callback, for use when we really
don't want to do anything. */
int
gfc_dummy_code_callback (gfc_code **e ATTRIBUTE_UNUSED,
int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
return 0;
}
/* Code callback function for converting
do while(a)
end do
into the equivalent
do
if (.not. a) exit
end do
This is because common function elimination would otherwise place the
temporary variables outside the loop. */
static int
convert_do_while (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_code *co = *c;
gfc_code *c_if1, *c_if2, *c_exit;
gfc_code *loopblock;
gfc_expr *e_not, *e_cond;
if (co->op != EXEC_DO_WHILE)
return 0;
if (co->expr1 == NULL || co->expr1->expr_type == EXPR_CONSTANT)
return 0;
e_cond = co->expr1;
/* Generate the condition of the if statement, which is .not. the original
statement. */
e_not = gfc_get_expr ();
e_not->ts = e_cond->ts;
e_not->where = e_cond->where;
e_not->expr_type = EXPR_OP;
e_not->value.op.op = INTRINSIC_NOT;
e_not->value.op.op1 = e_cond;
/* Generate the EXIT statement. */
c_exit = XCNEW (gfc_code);
c_exit->op = EXEC_EXIT;
c_exit->ext.which_construct = co;
c_exit->loc = co->loc;
/* Generate the IF statement. */
c_if2 = XCNEW (gfc_code);
c_if2->op = EXEC_IF;
c_if2->expr1 = e_not;
c_if2->next = c_exit;
c_if2->loc = co->loc;
/* ... plus the one to chain it to. */
c_if1 = XCNEW (gfc_code);
c_if1->op = EXEC_IF;
c_if1->block = c_if2;
c_if1->loc = co->loc;
/* Make the DO WHILE loop into a DO block by replacing the condition
with a true constant. */
co->expr1 = gfc_get_logical_expr (gfc_default_integer_kind, &co->loc, true);
/* Hang the generated if statement into the loop body. */
loopblock = co->block->next;
co->block->next = c_if1;
c_if1->next = loopblock;
return 0;
}
/* Code callback function for converting
if (a) then
...
else if (b) then
end if
into
if (a) then
else
if (b) then
end if
end if
because otherwise common function elimination would place the BLOCKs
into the wrong place. */
static int
convert_elseif (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_code *co = *c;
gfc_code *c_if1, *c_if2, *else_stmt;
if (co->op != EXEC_IF)
return 0;
/* This loop starts out with the first ELSE statement. */
else_stmt = co->block->block;
while (else_stmt != NULL)
{
gfc_code *next_else;
/* If there is no condition, we're done. */
if (else_stmt->expr1 == NULL)
break;
next_else = else_stmt->block;
/* Generate the new IF statement. */
c_if2 = XCNEW (gfc_code);
c_if2->op = EXEC_IF;
c_if2->expr1 = else_stmt->expr1;
c_if2->next = else_stmt->next;
c_if2->loc = else_stmt->loc;
c_if2->block = next_else;
/* ... plus the one to chain it to. */
c_if1 = XCNEW (gfc_code);
c_if1->op = EXEC_IF;
c_if1->block = c_if2;
c_if1->loc = else_stmt->loc;
/* Insert the new IF after the ELSE. */
else_stmt->expr1 = NULL;
else_stmt->next = c_if1;
else_stmt->block = NULL;
else_stmt = next_else;
}
/* Don't walk subtrees. */
return 0;
}
/* Callback function to var_in_expr - return true if expr1 and
expr2 are identical variables. */
static int
var_in_expr_callback (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
gfc_expr *expr1 = (gfc_expr *) data;
gfc_expr *expr2 = *e;
if (expr2->expr_type != EXPR_VARIABLE)
return 0;
return expr1->symtree->n.sym == expr2->symtree->n.sym;
}
/* Return true if expr1 is found in expr2. */
static bool
var_in_expr (gfc_expr *expr1, gfc_expr *expr2)
{
gcc_assert (expr1->expr_type == EXPR_VARIABLE);
return gfc_expr_walker (&expr2, var_in_expr_callback, (void *) expr1);
}
struct do_stack
{
struct do_stack *prev;
gfc_iterator *iter;
gfc_code *code;
} *stack_top;
/* Recursively traverse the block of a WRITE or READ statement, and maybe
optimize by replacing do loops with their analog array slices. For
example:
write (*,*) (a(i), i=1,4)
is replaced with
write (*,*) a(1:4:1) . */
static bool
traverse_io_block (gfc_code *code, bool *has_reached, gfc_code *prev)
{
gfc_code *curr;
gfc_expr *new_e, *expr, *start;
gfc_ref *ref;
struct do_stack ds_push;
int i, future_rank = 0;
gfc_iterator *iters[GFC_MAX_DIMENSIONS];
gfc_expr *e;
/* Find the first transfer/do statement. */
for (curr = code; curr; curr = curr->next)
{
if (curr->op == EXEC_DO || curr->op == EXEC_TRANSFER)
break;
}
/* Ensure it is the only transfer/do statement because cases like
write (*,*) (a(i), b(i), i=1,4)
cannot be optimized. */
if (!curr || curr->next)
return false;
if (curr->op == EXEC_DO)
{
if (curr->ext.iterator->var->ref)
return false;
ds_push.prev = stack_top;
ds_push.iter = curr->ext.iterator;
ds_push.code = curr;
stack_top = &ds_push;
if (traverse_io_block (curr->block->next, has_reached, prev))
{
if (curr != stack_top->code && !*has_reached)
{
curr->block->next = NULL;
gfc_free_statements (curr);
}
else
*has_reached = true;
return true;
}
return false;
}
gcc_assert (curr->op == EXEC_TRANSFER);
e = curr->expr1;
ref = e->ref;
if (!ref || ref->type != REF_ARRAY || ref->u.ar.codimen != 0 || ref->next)
return false;
/* Find the iterators belonging to each variable and check conditions. */
for (i = 0; i < ref->u.ar.dimen; i++)
{
if (!ref->u.ar.start[i] || ref->u.ar.start[i]->ref
|| ref->u.ar.dimen_type[i] != DIMEN_ELEMENT)
return false;
start = ref->u.ar.start[i];
gfc_simplify_expr (start, 0);
switch (start->expr_type)
{
case EXPR_VARIABLE:
/* write (*,*) (a(i), i=a%b,1) not handled yet. */
if (start->ref)
return false;
/* Check for (a(k), i=1,4) or ((a(j, i), i=1,4), j=1,4). */
if (!stack_top || !stack_top->iter
|| stack_top->iter->var->symtree != start->symtree)
{
/* Check for (a(i,i), i=1,3). */
int j;
for (j=0; jvar->symtree == start->symtree)
return false;
iters[i] = NULL;
}
else
{
iters[i] = stack_top->iter;
stack_top = stack_top->prev;
future_rank++;
}
break;
case EXPR_CONSTANT:
iters[i] = NULL;
break;
case EXPR_OP:
switch (start->value.op.op)
{
case INTRINSIC_PLUS:
case INTRINSIC_TIMES:
if (start->value.op.op1->expr_type != EXPR_VARIABLE)
std::swap (start->value.op.op1, start->value.op.op2);
gcc_fallthrough ();
case INTRINSIC_MINUS:
if ((start->value.op.op1->expr_type!= EXPR_VARIABLE
&& start->value.op.op2->expr_type != EXPR_CONSTANT)
|| start->value.op.op1->ref)
return false;
if (!stack_top || !stack_top->iter
|| stack_top->iter->var->symtree
!= start->value.op.op1->symtree)
return false;
iters[i] = stack_top->iter;
stack_top = stack_top->prev;
break;
default:
return false;
}
future_rank++;
break;
default:
return false;
}
}
/* Check for cases like ((a(i, j), i=1, j), j=1, 2). */
for (int i = 1; i < ref->u.ar.dimen; i++)
{
if (iters[i])
{
gfc_expr *var = iters[i]->var;
for (int j = i - 1; j < i; j++)
{
if (iters[j]
&& (var_in_expr (var, iters[j]->start)
|| var_in_expr (var, iters[j]->end)
|| var_in_expr (var, iters[j]->step)))
return false;
}
}
}
/* Create new expr. */
new_e = gfc_copy_expr (curr->expr1);
new_e->expr_type = EXPR_VARIABLE;
new_e->rank = future_rank;
if (curr->expr1->shape)
new_e->shape = gfc_get_shape (new_e->rank);
/* Assign new starts, ends and strides if necessary. */
for (i = 0; i < ref->u.ar.dimen; i++)
{
if (!iters[i])
continue;
start = ref->u.ar.start[i];
switch (start->expr_type)
{
case EXPR_CONSTANT:
gfc_internal_error ("bad expression");
break;
case EXPR_VARIABLE:
new_e->ref->u.ar.dimen_type[i] = DIMEN_RANGE;
new_e->ref->u.ar.type = AR_SECTION;
gfc_free_expr (new_e->ref->u.ar.start[i]);
new_e->ref->u.ar.start[i] = gfc_copy_expr (iters[i]->start);
new_e->ref->u.ar.end[i] = gfc_copy_expr (iters[i]->end);
new_e->ref->u.ar.stride[i] = gfc_copy_expr (iters[i]->step);
break;
case EXPR_OP:
new_e->ref->u.ar.dimen_type[i] = DIMEN_RANGE;
new_e->ref->u.ar.type = AR_SECTION;
gfc_free_expr (new_e->ref->u.ar.start[i]);
expr = gfc_copy_expr (start);
expr->value.op.op1 = gfc_copy_expr (iters[i]->start);
new_e->ref->u.ar.start[i] = expr;
gfc_simplify_expr (new_e->ref->u.ar.start[i], 0);
expr = gfc_copy_expr (start);
expr->value.op.op1 = gfc_copy_expr (iters[i]->end);
new_e->ref->u.ar.end[i] = expr;
gfc_simplify_expr (new_e->ref->u.ar.end[i], 0);
switch (start->value.op.op)
{
case INTRINSIC_MINUS:
case INTRINSIC_PLUS:
new_e->ref->u.ar.stride[i] = gfc_copy_expr (iters[i]->step);
break;
case INTRINSIC_TIMES:
expr = gfc_copy_expr (start);
expr->value.op.op1 = gfc_copy_expr (iters[i]->step);
new_e->ref->u.ar.stride[i] = expr;
gfc_simplify_expr (new_e->ref->u.ar.stride[i], 0);
break;
default:
gfc_internal_error ("bad op");
}
break;
default:
gfc_internal_error ("bad expression");
}
}
curr->expr1 = new_e;
/* Insert modified statement. Check whether the statement needs to be
inserted at the lowest level. */
if (!stack_top->iter)
{
if (prev)
{
curr->next = prev->next->next;
prev->next = curr;
}
else
{
curr->next = stack_top->code->block->next->next->next;
stack_top->code->block->next = curr;
}
}
else
stack_top->code->block->next = curr;
return true;
}
/* Function for the gfc_code_walker. If code is a READ or WRITE statement, it
tries to optimize its block. */
static int
simplify_io_impl_do (gfc_code **code, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
gfc_code **curr, *prev = NULL;
struct do_stack write, first;
bool b = false;
*walk_subtrees = 1;
if (!(*code)->block
|| ((*code)->block->op != EXEC_WRITE
&& (*code)->block->op != EXEC_READ))
return 0;
*walk_subtrees = 0;
write.prev = NULL;
write.iter = NULL;
write.code = *code;
for (curr = &(*code)->block; *curr; curr = &(*curr)->next)
{
if ((*curr)->op == EXEC_DO)
{
first.prev = &write;
first.iter = (*curr)->ext.iterator;
first.code = *curr;
stack_top = &first;
traverse_io_block ((*curr)->block->next, &b, prev);
stack_top = NULL;
}
prev = *curr;
}
return 0;
}
/* Optimize a namespace, including all contained namespaces.
flag_frontend_optimize and flag_fronend_loop_interchange are
handled separately. */
static void
optimize_namespace (gfc_namespace *ns)
{
gfc_namespace *saved_ns = gfc_current_ns;
current_ns = ns;
gfc_current_ns = ns;
forall_level = 0;
iterator_level = 0;
in_assoc_list = false;
in_omp_workshare = false;
if (flag_frontend_optimize)
{
gfc_code_walker (&ns->code, simplify_io_impl_do, dummy_expr_callback, NULL);
gfc_code_walker (&ns->code, convert_do_while, dummy_expr_callback, NULL);
gfc_code_walker (&ns->code, convert_elseif, dummy_expr_callback, NULL);
gfc_code_walker (&ns->code, cfe_code, cfe_expr_0, NULL);
gfc_code_walker (&ns->code, optimize_code, optimize_expr, NULL);
if (flag_inline_matmul_limit != 0)
{
bool found;
do
{
found = false;
gfc_code_walker (&ns->code, matmul_to_var_code, matmul_to_var_expr,
(void *) &found);
}
while (found);
gfc_code_walker (&ns->code, matmul_temp_args, dummy_expr_callback,
NULL);
gfc_code_walker (&ns->code, inline_matmul_assign, dummy_expr_callback,
NULL);
}
}
if (flag_frontend_loop_interchange)
gfc_code_walker (&ns->code, index_interchange, dummy_expr_callback,
NULL);
/* BLOCKs are handled in the expression walker below. */
for (ns = ns->contained; ns; ns = ns->sibling)
{
if (ns->code == NULL || ns->code->op != EXEC_BLOCK)
optimize_namespace (ns);
}
gfc_current_ns = saved_ns;
}
/* Handle dependencies for allocatable strings which potentially redefine
themselves in an assignment. */
static void
realloc_strings (gfc_namespace *ns)
{
current_ns = ns;
gfc_code_walker (&ns->code, realloc_string_callback, dummy_expr_callback, NULL);
for (ns = ns->contained; ns; ns = ns->sibling)
{
if (ns->code == NULL || ns->code->op != EXEC_BLOCK)
realloc_strings (ns);
}
}
static void
optimize_reduction (gfc_namespace *ns)
{
current_ns = ns;
gfc_code_walker (&ns->code, gfc_dummy_code_callback,
callback_reduction, NULL);
/* BLOCKs are handled in the expression walker below. */
for (ns = ns->contained; ns; ns = ns->sibling)
{
if (ns->code == NULL || ns->code->op != EXEC_BLOCK)
optimize_reduction (ns);
}
}
/* Replace code like
a = matmul(b,c) + d
with
a = matmul(b,c) ; a = a + d
where the array function is not elemental and not allocatable
and does not depend on the left-hand side.
*/
static bool
optimize_binop_array_assignment (gfc_code *c, gfc_expr **rhs, bool seen_op)
{
gfc_expr *e;
if (!*rhs)
return false;
e = *rhs;
if (e->expr_type == EXPR_OP)
{
switch (e->value.op.op)
{
/* Unary operators and exponentiation: Only look at a single
operand. */
case INTRINSIC_NOT:
case INTRINSIC_UPLUS:
case INTRINSIC_UMINUS:
case INTRINSIC_PARENTHESES:
case INTRINSIC_POWER:
if (optimize_binop_array_assignment (c, &e->value.op.op1, seen_op))
return true;
break;
case INTRINSIC_CONCAT:
/* Do not do string concatenations. */
break;
default:
/* Binary operators. */
if (optimize_binop_array_assignment (c, &e->value.op.op1, true))
return true;
if (optimize_binop_array_assignment (c, &e->value.op.op2, true))
return true;
break;
}
}
else if (seen_op && e->expr_type == EXPR_FUNCTION && e->rank > 0
&& ! (e->value.function.esym
&& (e->value.function.esym->attr.elemental
|| e->value.function.esym->attr.allocatable
|| e->value.function.esym->ts.type != c->expr1->ts.type
|| e->value.function.esym->ts.kind != c->expr1->ts.kind))
&& ! (e->value.function.isym
&& (e->value.function.isym->elemental
|| e->ts.type != c->expr1->ts.type
|| e->ts.kind != c->expr1->ts.kind))
&& ! gfc_inline_intrinsic_function_p (e))
{
gfc_code *n;
gfc_expr *new_expr;
/* Insert a new assignment statement after the current one. */
n = XCNEW (gfc_code);
n->op = EXEC_ASSIGN;
n->loc = c->loc;
n->next = c->next;
c->next = n;
n->expr1 = gfc_copy_expr (c->expr1);
n->expr2 = c->expr2;
new_expr = gfc_copy_expr (c->expr1);
c->expr2 = e;
*rhs = new_expr;
return true;
}
/* Nothing to optimize. */
return false;
}
/* Remove unneeded TRIMs at the end of expressions. */
static bool
remove_trim (gfc_expr *rhs)
{
bool ret;
ret = false;
if (!rhs)
return ret;
/* Check for a // b // trim(c). Looping is probably not
necessary because the parser usually generates
(// (// a b ) trim(c) ) , but better safe than sorry. */
while (rhs->expr_type == EXPR_OP
&& rhs->value.op.op == INTRINSIC_CONCAT)
rhs = rhs->value.op.op2;
while (rhs->expr_type == EXPR_FUNCTION && rhs->value.function.isym
&& rhs->value.function.isym->id == GFC_ISYM_TRIM)
{
strip_function_call (rhs);
/* Recursive call to catch silly stuff like trim ( a // trim(b)). */
remove_trim (rhs);
ret = true;
}
return ret;
}
/* Optimizations for an assignment. */
static void
optimize_assignment (gfc_code * c)
{
gfc_expr *lhs, *rhs;
lhs = c->expr1;
rhs = c->expr2;
if (lhs->ts.type == BT_CHARACTER && !lhs->ts.deferred)
{
/* Optimize a = trim(b) to a = b. */
remove_trim (rhs);
/* Replace a = ' ' by a = '' to optimize away a memcpy. */
if (is_empty_string (rhs))
rhs->value.character.length = 0;
}
if (lhs->rank > 0 && gfc_check_dependency (lhs, rhs, true) == 0)
optimize_binop_array_assignment (c, &rhs, false);
}
/* Remove an unneeded function call, modifying the expression.
This replaces the function call with the value of its
first argument. The rest of the argument list is freed. */
static void
strip_function_call (gfc_expr *e)
{
gfc_expr *e1;
gfc_actual_arglist *a;
a = e->value.function.actual;
/* We should have at least one argument. */
gcc_assert (a->expr != NULL);
e1 = a->expr;
/* Free the remaining arglist, if any. */
if (a->next)
gfc_free_actual_arglist (a->next);
/* Graft the argument expression onto the original function. */
*e = *e1;
free (e1);
}
/* Optimization of lexical comparison functions. */
static bool
optimize_lexical_comparison (gfc_expr *e)
{
if (e->expr_type != EXPR_FUNCTION || e->value.function.isym == NULL)
return false;
switch (e->value.function.isym->id)
{
case GFC_ISYM_LLE:
return optimize_comparison (e, INTRINSIC_LE);
case GFC_ISYM_LGE:
return optimize_comparison (e, INTRINSIC_GE);
case GFC_ISYM_LGT:
return optimize_comparison (e, INTRINSIC_GT);
case GFC_ISYM_LLT:
return optimize_comparison (e, INTRINSIC_LT);
default:
break;
}
return false;
}
/* Combine stuff like [a]>b into [a>b], for easier optimization later. Do not
do CHARACTER because of possible pessimization involving character
lengths. */
static bool
combine_array_constructor (gfc_expr *e)
{
gfc_expr *op1, *op2;
gfc_expr *scalar;
gfc_expr *new_expr;
gfc_constructor *c, *new_c;
gfc_constructor_base oldbase, newbase;
bool scalar_first;
int n_elem;
bool all_const;
/* Array constructors have rank one. */
if (e->rank != 1)
return false;
/* Don't try to combine association lists, this makes no sense
and leads to an ICE. */
if (in_assoc_list)
return false;
/* With FORALL, the BLOCKS created by create_var will cause an ICE. */
if (forall_level > 0)
return false;
/* Inside an iterator, things can get hairy; we are likely to create
an invalid temporary variable. */
if (iterator_level > 0)
return false;
/* WHERE also doesn't work. */
if (in_where > 0)
return false;
op1 = e->value.op.op1;
op2 = e->value.op.op2;
if (!op1 || !op2)
return false;
if (op1->expr_type == EXPR_ARRAY && op2->rank == 0)
scalar_first = false;
else if (op2->expr_type == EXPR_ARRAY && op1->rank == 0)
{
scalar_first = true;
op1 = e->value.op.op2;
op2 = e->value.op.op1;
}
else
return false;
if (op2->ts.type == BT_CHARACTER)
return false;
/* This might be an expanded constructor with very many constant values. If
we perform the operation here, we might end up with a long compile time
and actually longer execution time, so a length bound is in order here.
If the constructor constains something which is not a constant, it did
not come from an expansion, so leave it alone. */
#define CONSTR_LEN_MAX 4
oldbase = op1->value.constructor;
n_elem = 0;
all_const = true;
for (c = gfc_constructor_first (oldbase); c; c = gfc_constructor_next(c))
{
if (c->expr->expr_type != EXPR_CONSTANT)
{
all_const = false;
break;
}
n_elem += 1;
}
if (all_const && n_elem > CONSTR_LEN_MAX)
return false;
#undef CONSTR_LEN_MAX
newbase = NULL;
e->expr_type = EXPR_ARRAY;
scalar = create_var (gfc_copy_expr (op2), "constr");
for (c = gfc_constructor_first (oldbase); c;
c = gfc_constructor_next (c))
{
new_expr = gfc_get_expr ();
new_expr->ts = e->ts;
new_expr->expr_type = EXPR_OP;
new_expr->rank = c->expr->rank;
new_expr->where = c->expr->where;
new_expr->value.op.op = e->value.op.op;
if (scalar_first)
{
new_expr->value.op.op1 = gfc_copy_expr (scalar);
new_expr->value.op.op2 = gfc_copy_expr (c->expr);
}
else
{
new_expr->value.op.op1 = gfc_copy_expr (c->expr);
new_expr->value.op.op2 = gfc_copy_expr (scalar);
}
new_c = gfc_constructor_append_expr (&newbase, new_expr, &(e->where));
new_c->iterator = c->iterator;
c->iterator = NULL;
}
gfc_free_expr (op1);
gfc_free_expr (op2);
gfc_free_expr (scalar);
e->value.constructor = newbase;
return true;
}
/* Recursive optimization of operators. */
static bool
optimize_op (gfc_expr *e)
{
bool changed;
gfc_intrinsic_op op = e->value.op.op;
changed = false;
/* Only use new-style comparisons. */
switch(op)
{
case INTRINSIC_EQ_OS:
op = INTRINSIC_EQ;
break;
case INTRINSIC_GE_OS:
op = INTRINSIC_GE;
break;
case INTRINSIC_LE_OS:
op = INTRINSIC_LE;
break;
case INTRINSIC_NE_OS:
op = INTRINSIC_NE;
break;
case INTRINSIC_GT_OS:
op = INTRINSIC_GT;
break;
case INTRINSIC_LT_OS:
op = INTRINSIC_LT;
break;
default:
break;
}
switch (op)
{
case INTRINSIC_EQ:
case INTRINSIC_GE:
case INTRINSIC_LE:
case INTRINSIC_NE:
case INTRINSIC_GT:
case INTRINSIC_LT:
changed = optimize_comparison (e, op);
gcc_fallthrough ();
/* Look at array constructors. */
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
return combine_array_constructor (e) || changed;
default:
break;
}
return false;
}
/* Return true if a constant string contains only blanks. */
static bool
is_empty_string (gfc_expr *e)
{
int i;
if (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_CONSTANT)
return false;
for (i=0; i < e->value.character.length; i++)
{
if (e->value.character.string[i] != ' ')
return false;
}
return true;
}
/* Insert a call to the intrinsic len_trim. Use a different name for
the symbol tree so we don't run into trouble when the user has
renamed len_trim for some reason. */
static gfc_expr*
get_len_trim_call (gfc_expr *str, int kind)
{
gfc_expr *fcn;
gfc_actual_arglist *actual_arglist, *next;
fcn = gfc_get_expr ();
fcn->expr_type = EXPR_FUNCTION;
fcn->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LEN_TRIM);
actual_arglist = gfc_get_actual_arglist ();
actual_arglist->expr = str;
next = gfc_get_actual_arglist ();
next->expr = gfc_get_int_expr (gfc_default_integer_kind, NULL, kind);
actual_arglist->next = next;
fcn->value.function.actual = actual_arglist;
fcn->where = str->where;
fcn->ts.type = BT_INTEGER;
fcn->ts.kind = gfc_charlen_int_kind;
gfc_get_sym_tree ("__internal_len_trim", current_ns, &fcn->symtree, false);
fcn->symtree->n.sym->ts = fcn->ts;
fcn->symtree->n.sym->attr.flavor = FL_PROCEDURE;
fcn->symtree->n.sym->attr.function = 1;
fcn->symtree->n.sym->attr.elemental = 1;
fcn->symtree->n.sym->attr.referenced = 1;
fcn->symtree->n.sym->attr.access = ACCESS_PRIVATE;
gfc_commit_symbol (fcn->symtree->n.sym);
return fcn;
}
/* Optimize expressions for equality. */
static bool
optimize_comparison (gfc_expr *e, gfc_intrinsic_op op)
{
gfc_expr *op1, *op2;
bool change;
int eq;
bool result;
gfc_actual_arglist *firstarg, *secondarg;
if (e->expr_type == EXPR_OP)
{
firstarg = NULL;
secondarg = NULL;
op1 = e->value.op.op1;
op2 = e->value.op.op2;
}
else if (e->expr_type == EXPR_FUNCTION)
{
/* One of the lexical comparison functions. */
firstarg = e->value.function.actual;
secondarg = firstarg->next;
op1 = firstarg->expr;
op2 = secondarg->expr;
}
else
gcc_unreachable ();
/* Strip off unneeded TRIM calls from string comparisons. */
change = remove_trim (op1);
if (remove_trim (op2))
change = true;
/* An expression of type EXPR_CONSTANT is only valid for scalars. */
/* TODO: A scalar constant may be acceptable in some cases (the scalarizer
handles them well). However, there are also cases that need a non-scalar
argument. For example the any intrinsic. See PR 45380. */
if (e->rank > 0)
return change;
/* Replace a == '' with len_trim(a) == 0 and a /= '' with
len_trim(a) != 0 */
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
&& (op == INTRINSIC_EQ || op == INTRINSIC_NE))
{
bool empty_op1, empty_op2;
empty_op1 = is_empty_string (op1);
empty_op2 = is_empty_string (op2);
if (empty_op1 || empty_op2)
{
gfc_expr *fcn;
gfc_expr *zero;
gfc_expr *str;
/* This can only happen when an error for comparing
characters of different kinds has already been issued. */
if (empty_op1 && empty_op2)
return false;
zero = gfc_get_int_expr (gfc_charlen_int_kind, &e->where, 0);
str = empty_op1 ? op2 : op1;
fcn = get_len_trim_call (str, gfc_charlen_int_kind);
if (empty_op1)
gfc_free_expr (op1);
else
gfc_free_expr (op2);
op1 = fcn;
op2 = zero;
e->value.op.op1 = fcn;
e->value.op.op2 = zero;
}
}
/* Don't compare REAL or COMPLEX expressions when honoring NaNs. */
if (flag_finite_math_only
|| (op1->ts.type != BT_REAL && op2->ts.type != BT_REAL
&& op1->ts.type != BT_COMPLEX && op2->ts.type != BT_COMPLEX))
{
eq = gfc_dep_compare_expr (op1, op2);
if (eq <= -2)
{
/* Replace A // B < A // C with B < C, and A // B < C // B
with A < C. */
if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
&& op1->expr_type == EXPR_OP
&& op1->value.op.op == INTRINSIC_CONCAT
&& op2->expr_type == EXPR_OP
&& op2->value.op.op == INTRINSIC_CONCAT)
{
gfc_expr *op1_left = op1->value.op.op1;
gfc_expr *op2_left = op2->value.op.op1;
gfc_expr *op1_right = op1->value.op.op2;
gfc_expr *op2_right = op2->value.op.op2;
if (gfc_dep_compare_expr (op1_left, op2_left) == 0)
{
/* Watch out for 'A ' // x vs. 'A' // x. */
if (op1_left->expr_type == EXPR_CONSTANT
&& op2_left->expr_type == EXPR_CONSTANT
&& op1_left->value.character.length
!= op2_left->value.character.length)
return change;
else
{
free (op1_left);
free (op2_left);
if (firstarg)
{
firstarg->expr = op1_right;
secondarg->expr = op2_right;
}
else
{
e->value.op.op1 = op1_right;
e->value.op.op2 = op2_right;
}
optimize_comparison (e, op);
return true;
}
}
if (gfc_dep_compare_expr (op1_right, op2_right) == 0)
{
free (op1_right);
free (op2_right);
if (firstarg)
{
firstarg->expr = op1_left;
secondarg->expr = op2_left;
}
else
{
e->value.op.op1 = op1_left;
e->value.op.op2 = op2_left;
}
optimize_comparison (e, op);
return true;
}
}
}
else
{
/* eq can only be -1, 0 or 1 at this point. */
switch (op)
{
case INTRINSIC_EQ:
result = eq == 0;
break;
case INTRINSIC_GE:
result = eq >= 0;
break;
case INTRINSIC_LE:
result = eq <= 0;
break;
case INTRINSIC_NE:
result = eq != 0;
break;
case INTRINSIC_GT:
result = eq > 0;
break;
case INTRINSIC_LT:
result = eq < 0;
break;
default:
gfc_internal_error ("illegal OP in optimize_comparison");
break;
}
/* Replace the expression by a constant expression. The typespec
and where remains the way it is. */
free (op1);
free (op2);
e->expr_type = EXPR_CONSTANT;
e->value.logical = result;
return true;
}
}
return change;
}
/* Optimize a trim function by replacing it with an equivalent substring
involving a call to len_trim. This only works for expressions where
variables are trimmed. Return true if anything was modified. */
static bool
optimize_trim (gfc_expr *e)
{
gfc_expr *a;
gfc_ref *ref;
gfc_expr *fcn;
gfc_ref **rr = NULL;
/* Don't do this optimization within an argument list, because
otherwise aliasing issues may occur. */
if (count_arglist != 1)
return false;
if (e->ts.type != BT_CHARACTER || e->expr_type != EXPR_FUNCTION
|| e->value.function.isym == NULL
|| e->value.function.isym->id != GFC_ISYM_TRIM)
return false;
a = e->value.function.actual->expr;
if (a->expr_type != EXPR_VARIABLE)
return false;
/* This would pessimize the idiom a = trim(a) for reallocatable strings. */
if (a->symtree->n.sym->attr.allocatable)
return false;
/* Follow all references to find the correct place to put the newly
created reference. FIXME: Also handle substring references and
array references. Array references cause strange regressions at
the moment. */
if (a->ref)
{
for (rr = &(a->ref); *rr; rr = &((*rr)->next))
{
if ((*rr)->type == REF_SUBSTRING || (*rr)->type == REF_ARRAY)
return false;
}
}
strip_function_call (e);
if (e->ref == NULL)
rr = &(e->ref);
/* Create the reference. */
ref = gfc_get_ref ();
ref->type = REF_SUBSTRING;
/* Set the start of the reference. */
ref->u.ss.start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
/* Build the function call to len_trim(x, gfc_default_integer_kind). */
fcn = get_len_trim_call (gfc_copy_expr (e), gfc_charlen_int_kind);
/* Set the end of the reference to the call to len_trim. */
ref->u.ss.end = fcn;
gcc_assert (rr != NULL && *rr == NULL);
*rr = ref;
return true;
}
/* Optimize minloc(b), where b is rank 1 array, into
(/ minloc(b, dim=1) /), and similarly for maxloc,
as the latter forms are expanded inline. */
static void
optimize_minmaxloc (gfc_expr **e)
{
gfc_expr *fn = *e;
gfc_actual_arglist *a;
char *name, *p;
if (fn->rank != 1
|| fn->value.function.actual == NULL
|| fn->value.function.actual->expr == NULL
|| fn->value.function.actual->expr->rank != 1)
return;
*e = gfc_get_array_expr (fn->ts.type, fn->ts.kind, &fn->where);
(*e)->shape = fn->shape;
fn->rank = 0;
fn->shape = NULL;
gfc_constructor_append_expr (&(*e)->value.constructor, fn, &fn->where);
name = XALLOCAVEC (char, strlen (fn->value.function.name) + 1);
strcpy (name, fn->value.function.name);
p = strstr (name, "loc0");
p[3] = '1';
fn->value.function.name = gfc_get_string ("%s", name);
if (fn->value.function.actual->next)
{
a = fn->value.function.actual->next;
gcc_assert (a->expr == NULL);
}
else
{
a = gfc_get_actual_arglist ();
fn->value.function.actual->next = a;
}
a->expr = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
&fn->where);
mpz_set_ui (a->expr->value.integer, 1);
}
/* Callback function for code checking that we do not pass a DO variable to an
INTENT(OUT) or INTENT(INOUT) dummy variable. */
static int
doloop_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_code *co;
int i;
gfc_formal_arglist *f;
gfc_actual_arglist *a;
gfc_code *cl;
do_t loop, *lp;
bool seen_goto;
co = *c;
/* If the doloop_list grew, we have to truncate it here. */
if ((unsigned) doloop_level < doloop_list.length())
doloop_list.truncate (doloop_level);
seen_goto = false;
switch (co->op)
{
case EXEC_DO:
if (co->ext.iterator && co->ext.iterator->var)
loop.c = co;
else
loop.c = NULL;
loop.branch_level = if_level + select_level;
loop.seen_goto = false;
doloop_list.safe_push (loop);
break;
/* If anything could transfer control away from a suspicious
subscript, make sure to set seen_goto in the current DO loop
(if any). */
case EXEC_GOTO:
case EXEC_EXIT:
case EXEC_STOP:
case EXEC_ERROR_STOP:
case EXEC_CYCLE:
seen_goto = true;
break;
case EXEC_OPEN:
if (co->ext.open->err)
seen_goto = true;
break;
case EXEC_CLOSE:
if (co->ext.close->err)
seen_goto = true;
break;
case EXEC_BACKSPACE:
case EXEC_ENDFILE:
case EXEC_REWIND:
case EXEC_FLUSH:
if (co->ext.filepos->err)
seen_goto = true;
break;
case EXEC_INQUIRE:
if (co->ext.filepos->err)
seen_goto = true;
break;
case EXEC_READ:
case EXEC_WRITE:
if (co->ext.dt->err || co->ext.dt->end || co->ext.dt->eor)
seen_goto = true;
break;
case EXEC_WAIT:
if (co->ext.wait->err || co->ext.wait->end || co->ext.wait->eor)
loop.seen_goto = true;
break;
case EXEC_CALL:
if (co->resolved_sym == NULL)
break;
f = gfc_sym_get_dummy_args (co->resolved_sym);
/* Withot a formal arglist, there is only unknown INTENT,
which we don't check for. */
if (f == NULL)
break;
a = co->ext.actual;
while (a && f)
{
FOR_EACH_VEC_ELT (doloop_list, i, lp)
{
gfc_symbol *do_sym;
cl = lp->c;
if (cl == NULL)
break;
do_sym = cl->ext.iterator->var->symtree->n.sym;
if (a->expr && a->expr->symtree
&& a->expr->symtree->n.sym == do_sym)
{
if (f->sym->attr.intent == INTENT_OUT)
gfc_error_now ("Variable %qs at %L set to undefined "
"value inside loop beginning at %L as "
"INTENT(OUT) argument to subroutine %qs",
do_sym->name, &a->expr->where,
&(doloop_list[i].c->loc),
co->symtree->n.sym->name);
else if (f->sym->attr.intent == INTENT_INOUT)
gfc_error_now ("Variable %qs at %L not definable inside "
"loop beginning at %L as INTENT(INOUT) "
"argument to subroutine %qs",
do_sym->name, &a->expr->where,
&(doloop_list[i].c->loc),
co->symtree->n.sym->name);
}
}
a = a->next;
f = f->next;
}
break;
default:
break;
}
if (seen_goto && doloop_level > 0)
doloop_list[doloop_level-1].seen_goto = true;
return 0;
}
/* Callback function to warn about different things within DO loops. */
static int
do_function (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
do_t *last;
if (doloop_list.length () == 0)
return 0;
if ((*e)->expr_type == EXPR_FUNCTION)
do_intent (e);
last = &doloop_list.last();
if (last->seen_goto && !warn_do_subscript)
return 0;
if ((*e)->expr_type == EXPR_VARIABLE)
do_subscript (e);
return 0;
}
typedef struct
{
gfc_symbol *sym;
mpz_t val;
} insert_index_t;
/* Callback function - if the expression is the variable in data->sym,
replace it with a constant from data->val. */
static int
callback_insert_index (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
insert_index_t *d;
gfc_expr *ex, *n;
ex = (*e);
if (ex->expr_type != EXPR_VARIABLE)
return 0;
d = (insert_index_t *) data;
if (ex->symtree->n.sym != d->sym)
return 0;
n = gfc_get_constant_expr (BT_INTEGER, ex->ts.kind, &ex->where);
mpz_set (n->value.integer, d->val);
gfc_free_expr (ex);
*e = n;
return 0;
}
/* In the expression e, replace occurrences of the variable sym with
val. If this results in a constant expression, return true and
return the value in ret. Return false if the expression already
is a constant. Caller has to clear ret in that case. */
static bool
insert_index (gfc_expr *e, gfc_symbol *sym, mpz_t val, mpz_t ret)
{
gfc_expr *n;
insert_index_t data;
bool rc;
if (e->expr_type == EXPR_CONSTANT)
return false;
n = gfc_copy_expr (e);
data.sym = sym;
mpz_init_set (data.val, val);
gfc_expr_walker (&n, callback_insert_index, (void *) &data);
gfc_simplify_expr (n, 0);
if (n->expr_type == EXPR_CONSTANT)
{
rc = true;
mpz_init_set (ret, n->value.integer);
}
else
rc = false;
mpz_clear (data.val);
gfc_free_expr (n);
return rc;
}
/* Check array subscripts for possible out-of-bounds accesses in DO
loops with constant bounds. */
static int
do_subscript (gfc_expr **e)
{
gfc_expr *v;
gfc_array_ref *ar;
gfc_ref *ref;
int i,j;
gfc_code *dl;
do_t *lp;
v = *e;
/* Constants are already checked. */
if (v->expr_type == EXPR_CONSTANT)
return 0;
/* Wrong warnings will be generated in an associate list. */
if (in_assoc_list)
return 0;
for (ref = v->ref; ref; ref = ref->next)
{
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT)
{
ar = & ref->u.ar;
FOR_EACH_VEC_ELT (doloop_list, j, lp)
{
gfc_symbol *do_sym;
mpz_t do_start, do_step, do_end;
bool have_do_start, have_do_end;
bool error_not_proven;
int warn;
dl = lp->c;
if (dl == NULL)
break;
/* If we are within a branch, or a goto or equivalent
was seen in the DO loop before, then we cannot prove that
this expression is actually evaluated. Don't do anything
unless we want to see it all. */
error_not_proven = lp->seen_goto
|| lp->branch_level < if_level + select_level;
if (error_not_proven && !warn_do_subscript)
break;
if (error_not_proven)
warn = OPT_Wdo_subscript;
else
warn = 0;
do_sym = dl->ext.iterator->var->symtree->n.sym;
if (do_sym->ts.type != BT_INTEGER)
continue;
/* If we do not know about the stepsize, the loop may be zero trip.
Do not warn in this case. */
if (dl->ext.iterator->step->expr_type == EXPR_CONSTANT)
mpz_init_set (do_step, dl->ext.iterator->step->value.integer);
else
continue;
if (dl->ext.iterator->start->expr_type == EXPR_CONSTANT)
{
have_do_start = true;
mpz_init_set (do_start, dl->ext.iterator->start->value.integer);
}
else
have_do_start = false;
if (dl->ext.iterator->end->expr_type == EXPR_CONSTANT)
{
have_do_end = true;
mpz_init_set (do_end, dl->ext.iterator->end->value.integer);
}
else
have_do_end = false;
if (!have_do_start && !have_do_end)
return 0;
/* May have to correct the end value if the step does not equal
one. */
if (have_do_start && have_do_end && mpz_cmp_ui (do_step, 1) != 0)
{
mpz_t diff, rem;
mpz_init (diff);
mpz_init (rem);
mpz_sub (diff, do_end, do_start);
mpz_tdiv_r (rem, diff, do_step);
mpz_sub (do_end, do_end, rem);
mpz_clear (diff);
mpz_clear (rem);
}
for (i = 0; i< ar->dimen; i++)
{
mpz_t val;
if (ar->dimen_type[i] == DIMEN_ELEMENT && have_do_start
&& insert_index (ar->start[i], do_sym, do_start, val))
{
if (ar->as->lower[i]
&& ar->as->lower[i]->expr_type == EXPR_CONSTANT
&& mpz_cmp (val, ar->as->lower[i]->value.integer) < 0)
gfc_warning (warn, "Array reference at %L out of bounds "
"(%ld < %ld) in loop beginning at %L",
&ar->start[i]->where, mpz_get_si (val),
mpz_get_si (ar->as->lower[i]->value.integer),
&doloop_list[j].c->loc);
if (ar->as->upper[i]
&& ar->as->upper[i]->expr_type == EXPR_CONSTANT
&& mpz_cmp (val, ar->as->upper[i]->value.integer) > 0)
gfc_warning (warn, "Array reference at %L out of bounds "
"(%ld > %ld) in loop beginning at %L",
&ar->start[i]->where, mpz_get_si (val),
mpz_get_si (ar->as->upper[i]->value.integer),
&doloop_list[j].c->loc);
mpz_clear (val);
}
if (ar->dimen_type[i] == DIMEN_ELEMENT && have_do_end
&& insert_index (ar->start[i], do_sym, do_end, val))
{
if (ar->as->lower[i]
&& ar->as->lower[i]->expr_type == EXPR_CONSTANT
&& mpz_cmp (val, ar->as->lower[i]->value.integer) < 0)
gfc_warning (warn, "Array reference at %L out of bounds "
"(%ld < %ld) in loop beginning at %L",
&ar->start[i]->where, mpz_get_si (val),
mpz_get_si (ar->as->lower[i]->value.integer),
&doloop_list[j].c->loc);
if (ar->as->upper[i]
&& ar->as->upper[i]->expr_type == EXPR_CONSTANT
&& mpz_cmp (val, ar->as->upper[i]->value.integer) > 0)
gfc_warning (warn, "Array reference at %L out of bounds "
"(%ld > %ld) in loop beginning at %L",
&ar->start[i]->where, mpz_get_si (val),
mpz_get_si (ar->as->upper[i]->value.integer),
&doloop_list[j].c->loc);
mpz_clear (val);
}
}
}
}
}
return 0;
}
/* Function for functions checking that we do not pass a DO variable
to an INTENT(OUT) or INTENT(INOUT) dummy variable. */
static int
do_intent (gfc_expr **e)
{
gfc_formal_arglist *f;
gfc_actual_arglist *a;
gfc_expr *expr;
gfc_code *dl;
do_t *lp;
int i;
expr = *e;
if (expr->expr_type != EXPR_FUNCTION)
return 0;
/* Intrinsic functions don't modify their arguments. */
if (expr->value.function.isym)
return 0;
f = gfc_sym_get_dummy_args (expr->symtree->n.sym);
/* Without a formal arglist, there is only unknown INTENT,
which we don't check for. */
if (f == NULL)
return 0;
a = expr->value.function.actual;
while (a && f)
{
FOR_EACH_VEC_ELT (doloop_list, i, lp)
{
gfc_symbol *do_sym;
dl = lp->c;
if (dl == NULL)
break;
do_sym = dl->ext.iterator->var->symtree->n.sym;
if (a->expr && a->expr->symtree
&& a->expr->symtree->n.sym == do_sym)
{
if (f->sym->attr.intent == INTENT_OUT)
gfc_error_now ("Variable %qs at %L set to undefined value "
"inside loop beginning at %L as INTENT(OUT) "
"argument to function %qs", do_sym->name,
&a->expr->where, &doloop_list[i].c->loc,
expr->symtree->n.sym->name);
else if (f->sym->attr.intent == INTENT_INOUT)
gfc_error_now ("Variable %qs at %L not definable inside loop"
" beginning at %L as INTENT(INOUT) argument to"
" function %qs", do_sym->name,
&a->expr->where, &doloop_list[i].c->loc,
expr->symtree->n.sym->name);
}
}
a = a->next;
f = f->next;
}
return 0;
}
static void
doloop_warn (gfc_namespace *ns)
{
gfc_code_walker (&ns->code, doloop_code, do_function, NULL);
}
/* This selction deals with inlining calls to MATMUL. */
/* Replace calls to matmul outside of straight assignments with a temporary
variable so that later inlining will work. */
static int
matmul_to_var_expr (gfc_expr **ep, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
gfc_expr *e, *n;
bool *found = (bool *) data;
e = *ep;
if (e->expr_type != EXPR_FUNCTION
|| e->value.function.isym == NULL
|| e->value.function.isym->id != GFC_ISYM_MATMUL)
return 0;
if (forall_level > 0 || iterator_level > 0 || in_omp_workshare
|| in_where || in_assoc_list)
return 0;
/* Check if this is already in the form c = matmul(a,b). */
if ((*current_code)->expr2 == e)
return 0;
n = create_var (e, "matmul");
/* If create_var is unable to create a variable (for example if
-fno-realloc-lhs is in force with a variable that does not have bounds
known at compile-time), just return. */
if (n == NULL)
return 0;
*ep = n;
*found = true;
return 0;
}
/* Set current_code and associated variables so that matmul_to_var_expr can
work. */
static int
matmul_to_var_code (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if (current_code != c)
{
current_code = c;
inserted_block = NULL;
changed_statement = NULL;
}
return 0;
}
/* Take a statement of the shape c = matmul(a,b) and create temporaries
for a and b if there is a dependency between the arguments and the
result variable or if a or b are the result of calculations that cannot
be handled by the inliner. */
static int
matmul_temp_args (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_expr *expr1, *expr2;
gfc_code *co;
gfc_actual_arglist *a, *b;
bool a_tmp, b_tmp;
gfc_expr *matrix_a, *matrix_b;
bool conjg_a, conjg_b, transpose_a, transpose_b;
co = *c;
if (co->op != EXEC_ASSIGN)
return 0;
if (forall_level > 0 || iterator_level > 0 || in_omp_workshare
|| in_where)
return 0;
/* This has some duplication with inline_matmul_assign. This
is because the creation of temporary variables could still fail,
and inline_matmul_assign still needs to be able to handle these
cases. */
expr1 = co->expr1;
expr2 = co->expr2;
if (expr2->expr_type != EXPR_FUNCTION
|| expr2->value.function.isym == NULL
|| expr2->value.function.isym->id != GFC_ISYM_MATMUL)
return 0;
a_tmp = false;
a = expr2->value.function.actual;
matrix_a = check_conjg_transpose_variable (a->expr, &conjg_a, &transpose_a);
if (matrix_a != NULL)
{
if (matrix_a->expr_type == EXPR_VARIABLE
&& (gfc_check_dependency (matrix_a, expr1, true)
|| has_dimen_vector_ref (matrix_a)))
a_tmp = true;
}
else
a_tmp = true;
b_tmp = false;
b = a->next;
matrix_b = check_conjg_transpose_variable (b->expr, &conjg_b, &transpose_b);
if (matrix_b != NULL)
{
if (matrix_b->expr_type == EXPR_VARIABLE
&& (gfc_check_dependency (matrix_b, expr1, true)
|| has_dimen_vector_ref (matrix_b)))
b_tmp = true;
}
else
b_tmp = true;
if (!a_tmp && !b_tmp)
return 0;
current_code = c;
inserted_block = NULL;
changed_statement = NULL;
if (a_tmp)
{
gfc_expr *at;
at = create_var (a->expr,"mma");
if (at)
a->expr = at;
}
if (b_tmp)
{
gfc_expr *bt;
bt = create_var (b->expr,"mmb");
if (bt)
b->expr = bt;
}
return 0;
}
/* Auxiliary function to build and simplify an array inquiry function.
dim is zero-based. */
static gfc_expr *
get_array_inq_function (gfc_isym_id id, gfc_expr *e, int dim)
{
gfc_expr *fcn;
gfc_expr *dim_arg, *kind;
const char *name;
gfc_expr *ec;
switch (id)
{
case GFC_ISYM_LBOUND:
name = "_gfortran_lbound";
break;
case GFC_ISYM_UBOUND:
name = "_gfortran_ubound";
break;
case GFC_ISYM_SIZE:
name = "_gfortran_size";
break;
default:
gcc_unreachable ();
}
dim_arg = gfc_get_int_expr (gfc_default_integer_kind, &e->where, dim);
kind = gfc_get_int_expr (gfc_default_integer_kind, &e->where,
gfc_index_integer_kind);
ec = gfc_copy_expr (e);
fcn = gfc_build_intrinsic_call (current_ns, id, name, e->where, 3,
ec, dim_arg, kind);
gfc_simplify_expr (fcn, 0);
return fcn;
}
/* Builds a logical expression. */
static gfc_expr*
build_logical_expr (gfc_intrinsic_op op, gfc_expr *e1, gfc_expr *e2)
{
gfc_typespec ts;
gfc_expr *res;
ts.type = BT_LOGICAL;
ts.kind = gfc_default_logical_kind;
res = gfc_get_expr ();
res->where = e1->where;
res->expr_type = EXPR_OP;
res->value.op.op = op;
res->value.op.op1 = e1;
res->value.op.op2 = e2;
res->ts = ts;
return res;
}
/* Return an operation of one two gfc_expr (one if e2 is NULL). This assumes
compatible typespecs. */
static gfc_expr *
get_operand (gfc_intrinsic_op op, gfc_expr *e1, gfc_expr *e2)
{
gfc_expr *res;
res = gfc_get_expr ();
res->ts = e1->ts;
res->where = e1->where;
res->expr_type = EXPR_OP;
res->value.op.op = op;
res->value.op.op1 = e1;
res->value.op.op2 = e2;
gfc_simplify_expr (res, 0);
return res;
}
/* Generate the IF statement for a runtime check if we want to do inlining or
not - putting in the code for both branches and putting it into the syntax
tree is the caller's responsibility. For fixed array sizes, this should be
removed by DCE. Only called for rank-two matrices A and B. */
static gfc_code *
inline_limit_check (gfc_expr *a, gfc_expr *b, enum matrix_case m_case)
{
gfc_expr *inline_limit;
gfc_code *if_1, *if_2, *else_2;
gfc_expr *b2, *a2, *a1, *m1, *m2;
gfc_typespec ts;
gfc_expr *cond;
gcc_assert (m_case == A2B2 || m_case == A2B2T || m_case == A2TB2);
/* Calculation is done in real to avoid integer overflow. */
inline_limit = gfc_get_constant_expr (BT_REAL, gfc_default_real_kind,
&a->where);
mpfr_set_si (inline_limit->value.real, flag_inline_matmul_limit,
GFC_RND_MODE);
mpfr_pow_ui (inline_limit->value.real, inline_limit->value.real, 3,
GFC_RND_MODE);
a1 = get_array_inq_function (GFC_ISYM_SIZE, a, 1);
a2 = get_array_inq_function (GFC_ISYM_SIZE, a, 2);
b2 = get_array_inq_function (GFC_ISYM_SIZE, b, 2);
gfc_clear_ts (&ts);
ts.type = BT_REAL;
ts.kind = gfc_default_real_kind;
gfc_convert_type_warn (a1, &ts, 2, 0);
gfc_convert_type_warn (a2, &ts, 2, 0);
gfc_convert_type_warn (b2, &ts, 2, 0);
m1 = get_operand (INTRINSIC_TIMES, a1, a2);
m2 = get_operand (INTRINSIC_TIMES, m1, b2);
cond = build_logical_expr (INTRINSIC_LE, m2, inline_limit);
gfc_simplify_expr (cond, 0);
else_2 = XCNEW (gfc_code);
else_2->op = EXEC_IF;
else_2->loc = a->where;
if_2 = XCNEW (gfc_code);
if_2->op = EXEC_IF;
if_2->expr1 = cond;
if_2->loc = a->where;
if_2->block = else_2;
if_1 = XCNEW (gfc_code);
if_1->op = EXEC_IF;
if_1->block = if_2;
if_1->loc = a->where;
return if_1;
}
/* Insert code to issue a runtime error if the expressions are not equal. */
static gfc_code *
runtime_error_ne (gfc_expr *e1, gfc_expr *e2, const char *msg)
{
gfc_expr *cond;
gfc_code *if_1, *if_2;
gfc_code *c;
gfc_actual_arglist *a1, *a2, *a3;
gcc_assert (e1->where.lb);
/* Build the call to runtime_error. */
c = XCNEW (gfc_code);
c->op = EXEC_CALL;
c->loc = e1->where;
/* Get a null-terminated message string. */
a1 = gfc_get_actual_arglist ();
a1->expr = gfc_get_character_expr (gfc_default_character_kind, &e1->where,
msg, strlen(msg)+1);
c->ext.actual = a1;
/* Pass the value of the first expression. */
a2 = gfc_get_actual_arglist ();
a2->expr = gfc_copy_expr (e1);
a1->next = a2;
/* Pass the value of the second expression. */
a3 = gfc_get_actual_arglist ();
a3->expr = gfc_copy_expr (e2);
a2->next = a3;
gfc_check_fe_runtime_error (c->ext.actual);
gfc_resolve_fe_runtime_error (c);
if_2 = XCNEW (gfc_code);
if_2->op = EXEC_IF;
if_2->loc = e1->where;
if_2->next = c;
if_1 = XCNEW (gfc_code);
if_1->op = EXEC_IF;
if_1->block = if_2;
if_1->loc = e1->where;
cond = build_logical_expr (INTRINSIC_NE, e1, e2);
gfc_simplify_expr (cond, 0);
if_2->expr1 = cond;
return if_1;
}
/* Handle matrix reallocation. Caller is responsible to insert into
the code tree.
For the two-dimensional case, build
if (allocated(c)) then
if (size(c,1) /= size(a,1) .or. size(c,2) /= size(b,2)) then
deallocate(c)
allocate (c(size(a,1), size(b,2)))
end if
else
allocate (c(size(a,1),size(b,2)))
end if
and for the other cases correspondingly.
*/
static gfc_code *
matmul_lhs_realloc (gfc_expr *c, gfc_expr *a, gfc_expr *b,
enum matrix_case m_case)
{
gfc_expr *allocated, *alloc_expr;
gfc_code *if_alloc_1, *if_alloc_2, *if_size_1, *if_size_2;
gfc_code *else_alloc;
gfc_code *deallocate, *allocate1, *allocate_else;
gfc_array_ref *ar;
gfc_expr *cond, *ne1, *ne2;
if (warn_realloc_lhs)
gfc_warning (OPT_Wrealloc_lhs,
"Code for reallocating the allocatable array at %L will "
"be added", &c->where);
alloc_expr = gfc_copy_expr (c);
ar = gfc_find_array_ref (alloc_expr);
gcc_assert (ar && ar->type == AR_FULL);
/* c comes in as a full ref. Change it into a copy and make it into an
element ref so it has the right form for for ALLOCATE. In the same
switch statement, also generate the size comparison for the secod IF
statement. */
ar->type = AR_ELEMENT;
switch (m_case)
{
case A2B2:
ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 1);
ar->start[1] = get_array_inq_function (GFC_ISYM_SIZE, b, 2);
ne1 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 1),
get_array_inq_function (GFC_ISYM_SIZE, a, 1));
ne2 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 2),
get_array_inq_function (GFC_ISYM_SIZE, b, 2));
cond = build_logical_expr (INTRINSIC_OR, ne1, ne2);
break;
case A2B2T:
ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 1);
ar->start[1] = get_array_inq_function (GFC_ISYM_SIZE, b, 1);
ne1 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 1),
get_array_inq_function (GFC_ISYM_SIZE, a, 1));
ne2 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 2),
get_array_inq_function (GFC_ISYM_SIZE, b, 1));
cond = build_logical_expr (INTRINSIC_OR, ne1, ne2);
break;
case A2TB2:
ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 2);
ar->start[1] = get_array_inq_function (GFC_ISYM_SIZE, b, 2);
ne1 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 1),
get_array_inq_function (GFC_ISYM_SIZE, a, 2));
ne2 = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 2),
get_array_inq_function (GFC_ISYM_SIZE, b, 2));
cond = build_logical_expr (INTRINSIC_OR, ne1, ne2);
break;
case A2B1:
ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, a, 1);
cond = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 1),
get_array_inq_function (GFC_ISYM_SIZE, a, 2));
break;
case A1B2:
ar->start[0] = get_array_inq_function (GFC_ISYM_SIZE, b, 2);
cond = build_logical_expr (INTRINSIC_NE,
get_array_inq_function (GFC_ISYM_SIZE, c, 1),
get_array_inq_function (GFC_ISYM_SIZE, b, 2));
break;
default:
gcc_unreachable();
}
gfc_simplify_expr (cond, 0);
/* We need two identical allocate statements in two
branches of the IF statement. */
allocate1 = XCNEW (gfc_code);
allocate1->op = EXEC_ALLOCATE;
allocate1->ext.alloc.list = gfc_get_alloc ();
allocate1->loc = c->where;
allocate1->ext.alloc.list->expr = gfc_copy_expr (alloc_expr);
allocate_else = XCNEW (gfc_code);
allocate_else->op = EXEC_ALLOCATE;
allocate_else->ext.alloc.list = gfc_get_alloc ();
allocate_else->loc = c->where;
allocate_else->ext.alloc.list->expr = alloc_expr;
allocated = gfc_build_intrinsic_call (current_ns, GFC_ISYM_ALLOCATED,
"_gfortran_allocated", c->where,
1, gfc_copy_expr (c));
deallocate = XCNEW (gfc_code);
deallocate->op = EXEC_DEALLOCATE;
deallocate->ext.alloc.list = gfc_get_alloc ();
deallocate->ext.alloc.list->expr = gfc_copy_expr (c);
deallocate->next = allocate1;
deallocate->loc = c->where;
if_size_2 = XCNEW (gfc_code);
if_size_2->op = EXEC_IF;
if_size_2->expr1 = cond;
if_size_2->loc = c->where;
if_size_2->next = deallocate;
if_size_1 = XCNEW (gfc_code);
if_size_1->op = EXEC_IF;
if_size_1->block = if_size_2;
if_size_1->loc = c->where;
else_alloc = XCNEW (gfc_code);
else_alloc->op = EXEC_IF;
else_alloc->loc = c->where;
else_alloc->next = allocate_else;
if_alloc_2 = XCNEW (gfc_code);
if_alloc_2->op = EXEC_IF;
if_alloc_2->expr1 = allocated;
if_alloc_2->loc = c->where;
if_alloc_2->next = if_size_1;
if_alloc_2->block = else_alloc;
if_alloc_1 = XCNEW (gfc_code);
if_alloc_1->op = EXEC_IF;
if_alloc_1->block = if_alloc_2;
if_alloc_1->loc = c->where;
return if_alloc_1;
}
/* Callback function for has_function_or_op. */
static int
is_function_or_op (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
if ((*e) == 0)
return 0;
else
return (*e)->expr_type == EXPR_FUNCTION
|| (*e)->expr_type == EXPR_OP;
}
/* Returns true if the expression contains a function. */
static bool
has_function_or_op (gfc_expr **e)
{
if (e == NULL)
return false;
else
return gfc_expr_walker (e, is_function_or_op, NULL);
}
/* Freeze (assign to a temporary variable) a single expression. */
static void
freeze_expr (gfc_expr **ep)
{
gfc_expr *ne;
if (has_function_or_op (ep))
{
ne = create_var (*ep, "freeze");
*ep = ne;
}
}
/* Go through an expression's references and assign them to temporary
variables if they contain functions. This is usually done prior to
front-end scalarization to avoid multiple invocations of functions. */
static void
freeze_references (gfc_expr *e)
{
gfc_ref *r;
gfc_array_ref *ar;
int i;
for (r=e->ref; r; r=r->next)
{
if (r->type == REF_SUBSTRING)
{
if (r->u.ss.start != NULL)
freeze_expr (&r->u.ss.start);
if (r->u.ss.end != NULL)
freeze_expr (&r->u.ss.end);
}
else if (r->type == REF_ARRAY)
{
ar = &r->u.ar;
switch (ar->type)
{
case AR_FULL:
break;
case AR_SECTION:
for (i=0; idimen; i++)
{
if (ar->dimen_type[i] == DIMEN_RANGE)
{
freeze_expr (&ar->start[i]);
freeze_expr (&ar->end[i]);
freeze_expr (&ar->stride[i]);
}
else if (ar->dimen_type[i] == DIMEN_ELEMENT)
{
freeze_expr (&ar->start[i]);
}
}
break;
case AR_ELEMENT:
for (i=0; idimen; i++)
freeze_expr (&ar->start[i]);
break;
default:
break;
}
}
}
}
/* Convert to gfc_index_integer_kind if needed, just do a copy otherwise. */
static gfc_expr *
convert_to_index_kind (gfc_expr *e)
{
gfc_expr *res;
gcc_assert (e != NULL);
res = gfc_copy_expr (e);
gcc_assert (e->ts.type == BT_INTEGER);
if (res->ts.kind != gfc_index_integer_kind)
{
gfc_typespec ts;
gfc_clear_ts (&ts);
ts.type = BT_INTEGER;
ts.kind = gfc_index_integer_kind;
gfc_convert_type_warn (e, &ts, 2, 0);
}
return res;
}
/* Function to create a DO loop including creation of the
iteration variable. gfc_expr are copied.*/
static gfc_code *
create_do_loop (gfc_expr *start, gfc_expr *end, gfc_expr *step, locus *where,
gfc_namespace *ns, char *vname)
{
char name[GFC_MAX_SYMBOL_LEN +1];
gfc_symtree *symtree;
gfc_symbol *symbol;
gfc_expr *i;
gfc_code *n, *n2;
/* Create an expression for the iteration variable. */
if (vname)
sprintf (name, "__var_%d_do_%s", var_num++, vname);
else
sprintf (name, "__var_%d_do", var_num++);
if (gfc_get_sym_tree (name, ns, &symtree, false) != 0)
gcc_unreachable ();
/* Create the loop variable. */
symbol = symtree->n.sym;
symbol->ts.type = BT_INTEGER;
symbol->ts.kind = gfc_index_integer_kind;
symbol->attr.flavor = FL_VARIABLE;
symbol->attr.referenced = 1;
symbol->attr.dimension = 0;
symbol->attr.fe_temp = 1;
gfc_commit_symbol (symbol);
i = gfc_get_expr ();
i->expr_type = EXPR_VARIABLE;
i->ts = symbol->ts;
i->rank = 0;
i->where = *where;
i->symtree = symtree;
/* ... and the nested DO statements. */
n = XCNEW (gfc_code);
n->op = EXEC_DO;
n->loc = *where;
n->ext.iterator = gfc_get_iterator ();
n->ext.iterator->var = i;
n->ext.iterator->start = convert_to_index_kind (start);
n->ext.iterator->end = convert_to_index_kind (end);
if (step)
n->ext.iterator->step = convert_to_index_kind (step);
else
n->ext.iterator->step = gfc_get_int_expr (gfc_index_integer_kind,
where, 1);
n2 = XCNEW (gfc_code);
n2->op = EXEC_DO;
n2->loc = *where;
n2->next = NULL;
n->block = n2;
return n;
}
/* Get the upper bound of the DO loops for matmul along a dimension. This
is one-based. */
static gfc_expr*
get_size_m1 (gfc_expr *e, int dimen)
{
mpz_t size;
gfc_expr *res;
if (gfc_array_dimen_size (e, dimen - 1, &size))
{
res = gfc_get_constant_expr (BT_INTEGER,
gfc_index_integer_kind, &e->where);
mpz_sub_ui (res->value.integer, size, 1);
mpz_clear (size);
}
else
{
res = get_operand (INTRINSIC_MINUS,
get_array_inq_function (GFC_ISYM_SIZE, e, dimen),
gfc_get_int_expr (gfc_index_integer_kind,
&e->where, 1));
gfc_simplify_expr (res, 0);
}
return res;
}
/* Function to return a scalarized expression. It is assumed that indices are
zero based to make generation of DO loops easier. A zero as index will
access the first element along a dimension. Single element references will
be skipped. A NULL as an expression will be replaced by a full reference.
This assumes that the index loops have gfc_index_integer_kind, and that all
references have been frozen. */
static gfc_expr*
scalarized_expr (gfc_expr *e_in, gfc_expr **index, int count_index)
{
gfc_array_ref *ar;
int i;
int rank;
gfc_expr *e;
int i_index;
bool was_fullref;
e = gfc_copy_expr(e_in);
rank = e->rank;
ar = gfc_find_array_ref (e);
/* We scalarize count_index variables, reducing the rank by count_index. */
e->rank = rank - count_index;
was_fullref = ar->type == AR_FULL;
if (e->rank == 0)
ar->type = AR_ELEMENT;
else
ar->type = AR_SECTION;
/* Loop over the indices. For each index, create the expression
index * stride + lbound(e, dim). */
i_index = 0;
for (i=0; i < ar->dimen; i++)
{
if (was_fullref || ar->dimen_type[i] == DIMEN_RANGE)
{
if (index[i_index] != NULL)
{
gfc_expr *lbound, *nindex;
gfc_expr *loopvar;
loopvar = gfc_copy_expr (index[i_index]);
if (ar->stride[i])
{
gfc_expr *tmp;
tmp = gfc_copy_expr(ar->stride[i]);
if (tmp->ts.kind != gfc_index_integer_kind)
{
gfc_typespec ts;
gfc_clear_ts (&ts);
ts.type = BT_INTEGER;
ts.kind = gfc_index_integer_kind;
gfc_convert_type (tmp, &ts, 2);
}
nindex = get_operand (INTRINSIC_TIMES, loopvar, tmp);
}
else
nindex = loopvar;
/* Calculate the lower bound of the expression. */
if (ar->start[i])
{
lbound = gfc_copy_expr (ar->start[i]);
if (lbound->ts.kind != gfc_index_integer_kind)
{
gfc_typespec ts;
gfc_clear_ts (&ts);
ts.type = BT_INTEGER;
ts.kind = gfc_index_integer_kind;
gfc_convert_type (lbound, &ts, 2);
}
}
else
{
gfc_expr *lbound_e;
gfc_ref *ref;
lbound_e = gfc_copy_expr (e_in);
for (ref = lbound_e->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY
&& (ref->u.ar.type == AR_FULL
|| ref->u.ar.type == AR_SECTION))
break;
if (ref->next)
{
gfc_free_ref_list (ref->next);
ref->next = NULL;
}
if (!was_fullref)
{
/* Look at full individual sections, like a(:). The first index
is the lbound of a full ref. */
int j;
gfc_array_ref *ar;
int to;
ar = &ref->u.ar;
/* For assumed size, we need to keep around the final
reference in order not to get an error on resolution
below, and we cannot use AR_FULL. */
if (ar->as->type == AS_ASSUMED_SIZE)
{
ar->type = AR_SECTION;
to = ar->dimen - 1;
}
else
{
to = ar->dimen;
ar->type = AR_FULL;
}
for (j = 0; j < to; j++)
{
gfc_free_expr (ar->start[j]);
ar->start[j] = NULL;
gfc_free_expr (ar->end[j]);
ar->end[j] = NULL;
gfc_free_expr (ar->stride[j]);
ar->stride[j] = NULL;
}
/* We have to get rid of the shape, if there is one. Do
so by freeing it and calling gfc_resolve to rebuild
it, if necessary. */
if (lbound_e->shape)
gfc_free_shape (&(lbound_e->shape), lbound_e->rank);
lbound_e->rank = ar->dimen;
gfc_resolve_expr (lbound_e);
}
lbound = get_array_inq_function (GFC_ISYM_LBOUND, lbound_e,
i + 1);
gfc_free_expr (lbound_e);
}
ar->dimen_type[i] = DIMEN_ELEMENT;
gfc_free_expr (ar->start[i]);
ar->start[i] = get_operand (INTRINSIC_PLUS, nindex, lbound);
gfc_free_expr (ar->end[i]);
ar->end[i] = NULL;
gfc_free_expr (ar->stride[i]);
ar->stride[i] = NULL;
gfc_simplify_expr (ar->start[i], 0);
}
else if (was_fullref)
{
gfc_internal_error ("Scalarization using DIMEN_RANGE unimplemented");
}
i_index ++;
}
}
return e;
}
/* Helper function to check for a dimen vector as subscript. */
static bool
has_dimen_vector_ref (gfc_expr *e)
{
gfc_array_ref *ar;
int i;
ar = gfc_find_array_ref (e);
gcc_assert (ar);
if (ar->type == AR_FULL)
return false;
for (i=0; idimen; i++)
if (ar->dimen_type[i] == DIMEN_VECTOR)
return true;
return false;
}
/* If handed an expression of the form
TRANSPOSE(CONJG(A))
check if A can be handled by matmul and return if there is an uneven number
of CONJG calls. Return a pointer to the array when everything is OK, NULL
otherwise. The caller has to check for the correct rank. */
static gfc_expr*
check_conjg_transpose_variable (gfc_expr *e, bool *conjg, bool *transpose)
{
*conjg = false;
*transpose = false;
do
{
if (e->expr_type == EXPR_VARIABLE)
{
gcc_assert (e->rank == 1 || e->rank == 2);
return e;
}
else if (e->expr_type == EXPR_FUNCTION)
{
if (e->value.function.isym == NULL)
return NULL;
if (e->value.function.isym->id == GFC_ISYM_CONJG)
*conjg = !*conjg;
else if (e->value.function.isym->id == GFC_ISYM_TRANSPOSE)
*transpose = !*transpose;
else return NULL;
}
else
return NULL;
e = e->value.function.actual->expr;
}
while(1);
return NULL;
}
/* Inline assignments of the form c = matmul(a,b).
Handle only the cases currently where b and c are rank-two arrays.
This basically translates the code to
BLOCK
integer i,j,k
c = 0
do j=0, size(b,2)-1
do k=0, size(a, 2)-1
do i=0, size(a, 1)-1
c(i * stride(c,1) + lbound(c,1), j * stride(c,2) + lbound(c,2)) =
c(i * stride(c,1) + lbound(c,1), j * stride(c,2) + lbound(c,2)) +
a(i * stride(a,1) + lbound(a,1), k * stride(a,2) + lbound(a,2)) *
b(k * stride(b,1) + lbound(b,1), j * stride(b,2) + lbound(b,2))
end do
end do
end do
END BLOCK
*/
static int
inline_matmul_assign (gfc_code **c, int *walk_subtrees,
void *data ATTRIBUTE_UNUSED)
{
gfc_code *co = *c;
gfc_expr *expr1, *expr2;
gfc_expr *matrix_a, *matrix_b;
gfc_actual_arglist *a, *b;
gfc_code *do_1, *do_2, *do_3, *assign_zero, *assign_matmul;
gfc_expr *zero_e;
gfc_expr *u1, *u2, *u3;
gfc_expr *list[2];
gfc_expr *ascalar, *bscalar, *cscalar;
gfc_expr *mult;
gfc_expr *var_1, *var_2, *var_3;
gfc_expr *zero;
gfc_namespace *ns;
gfc_intrinsic_op op_times, op_plus;
enum matrix_case m_case;
int i;
gfc_code *if_limit = NULL;
gfc_code **next_code_point;
bool conjg_a, conjg_b, transpose_a, transpose_b;
if (co->op != EXEC_ASSIGN)
return 0;
if (in_where || in_assoc_list)
return 0;
/* The BLOCKS generated for the temporary variables and FORALL don't
mix. */
if (forall_level > 0)
return 0;
/* For now don't do anything in OpenMP workshare, it confuses
its translation, which expects only the allowed statements in there.
We should figure out how to parallelize this eventually. */
if (in_omp_workshare)
return 0;
expr1 = co->expr1;
expr2 = co->expr2;
if (expr2->expr_type != EXPR_FUNCTION
|| expr2->value.function.isym == NULL
|| expr2->value.function.isym->id != GFC_ISYM_MATMUL)
return 0;
current_code = c;
inserted_block = NULL;
changed_statement = NULL;
a = expr2->value.function.actual;
matrix_a = check_conjg_transpose_variable (a->expr, &conjg_a, &transpose_a);
if (matrix_a == NULL)
return 0;
b = a->next;
matrix_b = check_conjg_transpose_variable (b->expr, &conjg_b, &transpose_b);
if (matrix_b == NULL)
return 0;
if (has_dimen_vector_ref (expr1) || has_dimen_vector_ref (matrix_a)
|| has_dimen_vector_ref (matrix_b))
return 0;
/* We do not handle data dependencies yet. */
if (gfc_check_dependency (expr1, matrix_a, true)
|| gfc_check_dependency (expr1, matrix_b, true))
return 0;
m_case = none;
if (matrix_a->rank == 2)
{
if (transpose_a)
{
if (matrix_b->rank == 2 && !transpose_b)
m_case = A2TB2;
}
else
{
if (matrix_b->rank == 1)
m_case = A2B1;
else /* matrix_b->rank == 2 */
{
if (transpose_b)
m_case = A2B2T;
else
m_case = A2B2;
}
}
}
else /* matrix_a->rank == 1 */
{
if (matrix_b->rank == 2)
{
if (!transpose_b)
m_case = A1B2;
}
}
if (m_case == none)
return 0;
ns = insert_block ();
/* Assign the type of the zero expression for initializing the resulting
array, and the expression (+ and * for real, integer and complex;
.and. and .or for logical. */
switch(expr1->ts.type)
{
case BT_INTEGER:
zero_e = gfc_get_int_expr (expr1->ts.kind, &expr1->where, 0);
op_times = INTRINSIC_TIMES;
op_plus = INTRINSIC_PLUS;
break;
case BT_LOGICAL:
op_times = INTRINSIC_AND;
op_plus = INTRINSIC_OR;
zero_e = gfc_get_logical_expr (expr1->ts.kind, &expr1->where,
0);
break;
case BT_REAL:
zero_e = gfc_get_constant_expr (BT_REAL, expr1->ts.kind,
&expr1->where);
mpfr_set_si (zero_e->value.real, 0, GFC_RND_MODE);
op_times = INTRINSIC_TIMES;
op_plus = INTRINSIC_PLUS;
break;
case BT_COMPLEX:
zero_e = gfc_get_constant_expr (BT_COMPLEX, expr1->ts.kind,
&expr1->where);
mpc_set_si_si (zero_e->value.complex, 0, 0, GFC_RND_MODE);
op_times = INTRINSIC_TIMES;
op_plus = INTRINSIC_PLUS;
break;
default:
gcc_unreachable();
}
current_code = &ns->code;
/* Freeze the references, keeping track of how many temporary variables were
created. */
n_vars = 0;
freeze_references (matrix_a);
freeze_references (matrix_b);
freeze_references (expr1);
if (n_vars == 0)
next_code_point = current_code;
else
{
next_code_point = &ns->code;
for (i=0; inext;
}
/* Take care of the inline flag. If the limit check evaluates to a
constant, dead code elimination will eliminate the unneeded branch. */
if (m_case == A2B2 && flag_inline_matmul_limit > 0)
{
if_limit = inline_limit_check (matrix_a, matrix_b, m_case);
/* Insert the original statement into the else branch. */
if_limit->block->block->next = co;
co->next = NULL;
/* ... and the new ones go into the original one. */
*next_code_point = if_limit;
next_code_point = &if_limit->block->next;
}
assign_zero = XCNEW (gfc_code);
assign_zero->op = EXEC_ASSIGN;
assign_zero->loc = co->loc;
assign_zero->expr1 = gfc_copy_expr (expr1);
assign_zero->expr2 = zero_e;
/* Handle the reallocation, if needed. */
if (flag_realloc_lhs && gfc_is_reallocatable_lhs (expr1))
{
gfc_code *lhs_alloc;
/* Only need to check a single dimension for the A2B2 case for
bounds checking, the rest will be allocated. Also check this
for A2B1. */
if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && (m_case == A2B2 || m_case == A2B1))
{
gfc_code *test;
gfc_expr *a2, *b1;
a2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 2);
b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1);
test = runtime_error_ne (b1, a2, "Dimension of array B incorrect "
"in MATMUL intrinsic: Is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
lhs_alloc = matmul_lhs_realloc (expr1, matrix_a, matrix_b, m_case);
*next_code_point = lhs_alloc;
next_code_point = &lhs_alloc->next;
}
else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
gfc_code *test;
gfc_expr *a2, *b1, *c1, *c2, *a1, *b2;
if (m_case == A2B2 || m_case == A2B1)
{
a2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 2);
b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1);
test = runtime_error_ne (b1, a2, "Dimension of array B incorrect "
"in MATMUL intrinsic: Is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
c1 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 1);
a1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 1);
if (m_case == A2B2)
test = runtime_error_ne (c1, a1, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 1: "
"is %ld, should be %ld");
else if (m_case == A2B1)
test = runtime_error_ne (c1, a1, "Incorrect extent in return array in "
"MATMUL intrinsic: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
else if (m_case == A1B2)
{
a1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 1);
b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1);
test = runtime_error_ne (b1, a1, "Dimension of array B incorrect "
"in MATMUL intrinsic: Is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
c1 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 1);
b2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 2);
test = runtime_error_ne (c1, b2, "Incorrect extent in return array in "
"MATMUL intrinsic: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
if (m_case == A2B2)
{
c2 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 2);
b2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 2);
test = runtime_error_ne (c2, b2, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 2: is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
if (m_case == A2B2T)
{
c1 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 1);
a1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 1);
test = runtime_error_ne (c1, a1, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 1: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
c2 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 2);
b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1);
test = runtime_error_ne (c2, b1, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 2: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
a2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 2);
b2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 2);
test = runtime_error_ne (b2, a2, "Incorrect extent in argument B in "
"MATMUL intrnisic for dimension 2: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
if (m_case == A2TB2)
{
c1 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 1);
a2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 2);
test = runtime_error_ne (c1, a2, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 1: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
c2 = get_array_inq_function (GFC_ISYM_SIZE, expr1, 2);
b2 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 2);
test = runtime_error_ne (c2, b2, "Incorrect extent in return array in "
"MATMUL intrinsic for dimension 2: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
a1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_a, 1);
b1 = get_array_inq_function (GFC_ISYM_SIZE, matrix_b, 1);
test = runtime_error_ne (b1, a1, "Incorrect extent in argument B in "
"MATMUL intrnisic for dimension 2: "
"is %ld, should be %ld");
*next_code_point = test;
next_code_point = &test->next;
}
}
*next_code_point = assign_zero;
zero = gfc_get_int_expr (gfc_index_integer_kind, &co->loc, 0);
assign_matmul = XCNEW (gfc_code);
assign_matmul->op = EXEC_ASSIGN;
assign_matmul->loc = co->loc;
/* Get the bounds for the loops, create them and create the scalarized
expressions. */
switch (m_case)
{
case A2B2:
inline_limit_check (matrix_a, matrix_b, m_case);
u1 = get_size_m1 (matrix_b, 2);
u2 = get_size_m1 (matrix_a, 2);
u3 = get_size_m1 (matrix_a, 1);
do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns);
do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns);
do_3 = create_do_loop (gfc_copy_expr (zero), u3, NULL, &co->loc, ns);
do_1->block->next = do_2;
do_2->block->next = do_3;
do_3->block->next = assign_matmul;
var_1 = do_1->ext.iterator->var;
var_2 = do_2->ext.iterator->var;
var_3 = do_3->ext.iterator->var;
list[0] = var_3;
list[1] = var_1;
cscalar = scalarized_expr (co->expr1, list, 2);
list[0] = var_3;
list[1] = var_2;
ascalar = scalarized_expr (matrix_a, list, 2);
list[0] = var_2;
list[1] = var_1;
bscalar = scalarized_expr (matrix_b, list, 2);
break;
case A2B2T:
inline_limit_check (matrix_a, matrix_b, m_case);
u1 = get_size_m1 (matrix_b, 1);
u2 = get_size_m1 (matrix_a, 2);
u3 = get_size_m1 (matrix_a, 1);
do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns);
do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns);
do_3 = create_do_loop (gfc_copy_expr (zero), u3, NULL, &co->loc, ns);
do_1->block->next = do_2;
do_2->block->next = do_3;
do_3->block->next = assign_matmul;
var_1 = do_1->ext.iterator->var;
var_2 = do_2->ext.iterator->var;
var_3 = do_3->ext.iterator->var;
list[0] = var_3;
list[1] = var_1;
cscalar = scalarized_expr (co->expr1, list, 2);
list[0] = var_3;
list[1] = var_2;
ascalar = scalarized_expr (matrix_a, list, 2);
list[0] = var_1;
list[1] = var_2;
bscalar = scalarized_expr (matrix_b, list, 2);
break;
case A2TB2:
inline_limit_check (matrix_a, matrix_b, m_case);
u1 = get_size_m1 (matrix_a, 2);
u2 = get_size_m1 (matrix_b, 2);
u3 = get_size_m1 (matrix_a, 1);
do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns);
do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns);
do_3 = create_do_loop (gfc_copy_expr (zero), u3, NULL, &co->loc, ns);
do_1->block->next = do_2;
do_2->block->next = do_3;
do_3->block->next = assign_matmul;
var_1 = do_1->ext.iterator->var;
var_2 = do_2->ext.iterator->var;
var_3 = do_3->ext.iterator->var;
list[0] = var_1;
list[1] = var_2;
cscalar = scalarized_expr (co->expr1, list, 2);
list[0] = var_3;
list[1] = var_1;
ascalar = scalarized_expr (matrix_a, list, 2);
list[0] = var_3;
list[1] = var_2;
bscalar = scalarized_expr (matrix_b, list, 2);
break;
case A2B1:
u1 = get_size_m1 (matrix_b, 1);
u2 = get_size_m1 (matrix_a, 1);
do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns);
do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns);
do_1->block->next = do_2;
do_2->block->next = assign_matmul;
var_1 = do_1->ext.iterator->var;
var_2 = do_2->ext.iterator->var;
list[0] = var_2;
cscalar = scalarized_expr (co->expr1, list, 1);
list[0] = var_2;
list[1] = var_1;
ascalar = scalarized_expr (matrix_a, list, 2);
list[0] = var_1;
bscalar = scalarized_expr (matrix_b, list, 1);
break;
case A1B2:
u1 = get_size_m1 (matrix_b, 2);
u2 = get_size_m1 (matrix_a, 1);
do_1 = create_do_loop (gfc_copy_expr (zero), u1, NULL, &co->loc, ns);
do_2 = create_do_loop (gfc_copy_expr (zero), u2, NULL, &co->loc, ns);
do_1->block->next = do_2;
do_2->block->next = assign_matmul;
var_1 = do_1->ext.iterator->var;
var_2 = do_2->ext.iterator->var;
list[0] = var_1;
cscalar = scalarized_expr (co->expr1, list, 1);
list[0] = var_2;
ascalar = scalarized_expr (matrix_a, list, 1);
list[0] = var_2;
list[1] = var_1;
bscalar = scalarized_expr (matrix_b, list, 2);
break;
default:
gcc_unreachable();
}
/* Build the conjg call around the variables. Set the typespec manually
because gfc_build_intrinsic_call sometimes gets this wrong. */
if (conjg_a)
{
gfc_typespec ts;
ts = matrix_a->ts;
ascalar = gfc_build_intrinsic_call (ns, GFC_ISYM_CONJG, "conjg",
matrix_a->where, 1, ascalar);
ascalar->ts = ts;
}
if (conjg_b)
{
gfc_typespec ts;
ts = matrix_b->ts;
bscalar = gfc_build_intrinsic_call (ns, GFC_ISYM_CONJG, "conjg",
matrix_b->where, 1, bscalar);
bscalar->ts = ts;
}
/* First loop comes after the zero assignment. */
assign_zero->next = do_1;
/* Build the assignment expression in the loop. */
assign_matmul->expr1 = gfc_copy_expr (cscalar);
mult = get_operand (op_times, ascalar, bscalar);
assign_matmul->expr2 = get_operand (op_plus, cscalar, mult);
/* If we don't want to keep the original statement around in
the else branch, we can free it. */
if (if_limit == NULL)
gfc_free_statements(co);
else
co->next = NULL;
gfc_free_expr (zero);
*walk_subtrees = 0;
return 0;
}
/* Code for index interchange for loops which are grouped together in DO
CONCURRENT or FORALL statements. This is currently only applied if the
iterations are grouped together in a single statement.
For this transformation, it is assumed that memory access in strides is
expensive, and that loops which access later indices (which access memory
in bigger strides) should be moved to the first loops.
For this, a loop over all the statements is executed, counting the times
that the loop iteration values are accessed in each index. The loop
indices are then sorted to minimize access to later indices from inner
loops. */
/* Type for holding index information. */
typedef struct {
gfc_symbol *sym;
gfc_forall_iterator *fa;
int num;
int n[GFC_MAX_DIMENSIONS];
} ind_type;
/* Callback function to determine if an expression is the
corresponding variable. */
static int
has_var (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED, void *data)
{
gfc_expr *expr = *e;
gfc_symbol *sym;
if (expr->expr_type != EXPR_VARIABLE)
return 0;
sym = (gfc_symbol *) data;
return sym == expr->symtree->n.sym;
}
/* Callback function to calculate the cost of a certain index. */
static int
index_cost (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data)
{
ind_type *ind;
gfc_expr *expr;
gfc_array_ref *ar;
gfc_ref *ref;
int i,j;
expr = *e;
if (expr->expr_type != EXPR_VARIABLE)
return 0;
ar = NULL;
for (ref = expr->ref; ref; ref = ref->next)
{
if (ref->type == REF_ARRAY)
{
ar = &ref->u.ar;
break;
}
}
if (ar == NULL || ar->type != AR_ELEMENT)
return 0;
ind = (ind_type *) data;
for (i = 0; i < ar->dimen; i++)
{
for (j=0; ind[j].sym != NULL; j++)
{
if (gfc_expr_walker (&ar->start[i], has_var, (void *) (ind[j].sym)))
ind[j].n[i]++;
}
}
return 0;
}
/* Callback function for qsort, to sort the loop indices. */
static int
loop_comp (const void *e1, const void *e2)
{
const ind_type *i1 = (const ind_type *) e1;
const ind_type *i2 = (const ind_type *) e2;
int i;
for (i=GFC_MAX_DIMENSIONS-1; i >= 0; i--)
{
if (i1->n[i] != i2->n[i])
return i1->n[i] - i2->n[i];
}
/* All other things being equal, let's not change the ordering. */
return i2->num - i1->num;
}
/* Main function to do the index interchange. */
static int
index_interchange (gfc_code **c, int *walk_subtrees ATTRIBUTE_UNUSED,
void *data ATTRIBUTE_UNUSED)
{
gfc_code *co;
co = *c;
int n_iter;
gfc_forall_iterator *fa;
ind_type *ind;
int i, j;
if (co->op != EXEC_FORALL && co->op != EXEC_DO_CONCURRENT)
return 0;
n_iter = 0;
for (fa = co->ext.forall_iterator; fa; fa = fa->next)
n_iter ++;
/* Nothing to reorder. */
if (n_iter < 2)
return 0;
ind = XALLOCAVEC (ind_type, n_iter + 1);
i = 0;
for (fa = co->ext.forall_iterator; fa; fa = fa->next)
{
ind[i].sym = fa->var->symtree->n.sym;
ind[i].fa = fa;
for (j=0; jext.forall_iterator = fa = ind[0].fa;
for (i=1; inext = ind[i].fa;
fa = fa->next;
}
fa->next = NULL;
if (flag_warn_frontend_loop_interchange)
{
for (i=1; i ind[i].num)
{
gfc_warning (OPT_Wfrontend_loop_interchange,
"Interchanging loops at %L", &co->loc);
break;
}
}
}
return 0;
}
#define WALK_SUBEXPR(NODE) \
do \
{ \
result = gfc_expr_walker (&(NODE), exprfn, data); \
if (result) \
return result; \
} \
while (0)
#define WALK_SUBEXPR_TAIL(NODE) e = &(NODE); continue
/* Walk expression *E, calling EXPRFN on each expression in it. */
int
gfc_expr_walker (gfc_expr **e, walk_expr_fn_t exprfn, void *data)
{
while (*e)
{
int walk_subtrees = 1;
gfc_actual_arglist *a;
gfc_ref *r;
gfc_constructor *c;
int result = exprfn (e, &walk_subtrees, data);
if (result)
return result;
if (walk_subtrees)
switch ((*e)->expr_type)
{
case EXPR_OP:
WALK_SUBEXPR ((*e)->value.op.op1);
WALK_SUBEXPR_TAIL ((*e)->value.op.op2);
break;
case EXPR_FUNCTION:
for (a = (*e)->value.function.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXPR_COMPCALL:
case EXPR_PPC:
WALK_SUBEXPR ((*e)->value.compcall.base_object);
for (a = (*e)->value.compcall.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXPR_STRUCTURE:
case EXPR_ARRAY:
for (c = gfc_constructor_first ((*e)->value.constructor); c;
c = gfc_constructor_next (c))
{
if (c->iterator == NULL)
WALK_SUBEXPR (c->expr);
else
{
iterator_level ++;
WALK_SUBEXPR (c->expr);
iterator_level --;
WALK_SUBEXPR (c->iterator->var);
WALK_SUBEXPR (c->iterator->start);
WALK_SUBEXPR (c->iterator->end);
WALK_SUBEXPR (c->iterator->step);
}
}
if ((*e)->expr_type != EXPR_ARRAY)
break;
/* Fall through to the variable case in order to walk the
reference. */
gcc_fallthrough ();
case EXPR_SUBSTRING:
case EXPR_VARIABLE:
for (r = (*e)->ref; r; r = r->next)
{
gfc_array_ref *ar;
int i;
switch (r->type)
{
case REF_ARRAY:
ar = &r->u.ar;
if (ar->type == AR_SECTION || ar->type == AR_ELEMENT)
{
for (i=0; i< ar->dimen; i++)
{
WALK_SUBEXPR (ar->start[i]);
WALK_SUBEXPR (ar->end[i]);
WALK_SUBEXPR (ar->stride[i]);
}
}
break;
case REF_SUBSTRING:
WALK_SUBEXPR (r->u.ss.start);
WALK_SUBEXPR (r->u.ss.end);
break;
case REF_COMPONENT:
break;
}
}
default:
break;
}
return 0;
}
return 0;
}
#define WALK_SUBCODE(NODE) \
do \
{ \
result = gfc_code_walker (&(NODE), codefn, exprfn, data); \
if (result) \
return result; \
} \
while (0)
/* Walk code *C, calling CODEFN on each gfc_code node in it and calling EXPRFN
on each expression in it. If any of the hooks returns non-zero, that
value is immediately returned. If the hook sets *WALK_SUBTREES to 0,
no subcodes or subexpressions are traversed. */
int
gfc_code_walker (gfc_code **c, walk_code_fn_t codefn, walk_expr_fn_t exprfn,
void *data)
{
for (; *c; c = &(*c)->next)
{
int walk_subtrees = 1;
int result = codefn (c, &walk_subtrees, data);
if (result)
return result;
if (walk_subtrees)
{
gfc_code *b;
gfc_actual_arglist *a;
gfc_code *co;
gfc_association_list *alist;
bool saved_in_omp_workshare;
bool saved_in_where;
/* There might be statement insertions before the current code,
which must not affect the expression walker. */
co = *c;
saved_in_omp_workshare = in_omp_workshare;
saved_in_where = in_where;
switch (co->op)
{
case EXEC_BLOCK:
WALK_SUBCODE (co->ext.block.ns->code);
if (co->ext.block.assoc)
{
bool saved_in_assoc_list = in_assoc_list;
in_assoc_list = true;
for (alist = co->ext.block.assoc; alist; alist = alist->next)
WALK_SUBEXPR (alist->target);
in_assoc_list = saved_in_assoc_list;
}
break;
case EXEC_DO:
doloop_level ++;
WALK_SUBEXPR (co->ext.iterator->var);
WALK_SUBEXPR (co->ext.iterator->start);
WALK_SUBEXPR (co->ext.iterator->end);
WALK_SUBEXPR (co->ext.iterator->step);
break;
case EXEC_IF:
if_level ++;
break;
case EXEC_WHERE:
in_where = true;
break;
case EXEC_CALL:
case EXEC_ASSIGN_CALL:
for (a = co->ext.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXEC_CALL_PPC:
WALK_SUBEXPR (co->expr1);
for (a = co->ext.actual; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
case EXEC_SELECT:
WALK_SUBEXPR (co->expr1);
select_level ++;
for (b = co->block; b; b = b->block)
{
gfc_case *cp;
for (cp = b->ext.block.case_list; cp; cp = cp->next)
{
WALK_SUBEXPR (cp->low);
WALK_SUBEXPR (cp->high);
}
WALK_SUBCODE (b->next);
}
continue;
case EXEC_ALLOCATE:
case EXEC_DEALLOCATE:
{
gfc_alloc *a;
for (a = co->ext.alloc.list; a; a = a->next)
WALK_SUBEXPR (a->expr);
break;
}
case EXEC_FORALL:
case EXEC_DO_CONCURRENT:
{
gfc_forall_iterator *fa;
for (fa = co->ext.forall_iterator; fa; fa = fa->next)
{
WALK_SUBEXPR (fa->var);
WALK_SUBEXPR (fa->start);
WALK_SUBEXPR (fa->end);
WALK_SUBEXPR (fa->stride);
}
if (co->op == EXEC_FORALL)
forall_level ++;
break;
}
case EXEC_OPEN:
WALK_SUBEXPR (co->ext.open->unit);
WALK_SUBEXPR (co->ext.open->file);
WALK_SUBEXPR (co->ext.open->status);
WALK_SUBEXPR (co->ext.open->access);
WALK_SUBEXPR (co->ext.open->form);
WALK_SUBEXPR (co->ext.open->recl);
WALK_SUBEXPR (co->ext.open->blank);
WALK_SUBEXPR (co->ext.open->position);
WALK_SUBEXPR (co->ext.open->action);
WALK_SUBEXPR (co->ext.open->delim);
WALK_SUBEXPR (co->ext.open->pad);
WALK_SUBEXPR (co->ext.open->iostat);
WALK_SUBEXPR (co->ext.open->iomsg);
WALK_SUBEXPR (co->ext.open->convert);
WALK_SUBEXPR (co->ext.open->decimal);
WALK_SUBEXPR (co->ext.open->encoding);
WALK_SUBEXPR (co->ext.open->round);
WALK_SUBEXPR (co->ext.open->sign);
WALK_SUBEXPR (co->ext.open->asynchronous);
WALK_SUBEXPR (co->ext.open->id);
WALK_SUBEXPR (co->ext.open->newunit);
WALK_SUBEXPR (co->ext.open->share);
WALK_SUBEXPR (co->ext.open->cc);
break;
case EXEC_CLOSE:
WALK_SUBEXPR (co->ext.close->unit);
WALK_SUBEXPR (co->ext.close->status);
WALK_SUBEXPR (co->ext.close->iostat);
WALK_SUBEXPR (co->ext.close->iomsg);
break;
case EXEC_BACKSPACE:
case EXEC_ENDFILE:
case EXEC_REWIND:
case EXEC_FLUSH:
WALK_SUBEXPR (co->ext.filepos->unit);
WALK_SUBEXPR (co->ext.filepos->iostat);
WALK_SUBEXPR (co->ext.filepos->iomsg);
break;
case EXEC_INQUIRE:
WALK_SUBEXPR (co->ext.inquire->unit);
WALK_SUBEXPR (co->ext.inquire->file);
WALK_SUBEXPR (co->ext.inquire->iomsg);
WALK_SUBEXPR (co->ext.inquire->iostat);
WALK_SUBEXPR (co->ext.inquire->exist);
WALK_SUBEXPR (co->ext.inquire->opened);
WALK_SUBEXPR (co->ext.inquire->number);
WALK_SUBEXPR (co->ext.inquire->named);
WALK_SUBEXPR (co->ext.inquire->name);
WALK_SUBEXPR (co->ext.inquire->access);
WALK_SUBEXPR (co->ext.inquire->sequential);
WALK_SUBEXPR (co->ext.inquire->direct);
WALK_SUBEXPR (co->ext.inquire->form);
WALK_SUBEXPR (co->ext.inquire->formatted);
WALK_SUBEXPR (co->ext.inquire->unformatted);
WALK_SUBEXPR (co->ext.inquire->recl);
WALK_SUBEXPR (co->ext.inquire->nextrec);
WALK_SUBEXPR (co->ext.inquire->blank);
WALK_SUBEXPR (co->ext.inquire->position);
WALK_SUBEXPR (co->ext.inquire->action);
WALK_SUBEXPR (co->ext.inquire->read);
WALK_SUBEXPR (co->ext.inquire->write);
WALK_SUBEXPR (co->ext.inquire->readwrite);
WALK_SUBEXPR (co->ext.inquire->delim);
WALK_SUBEXPR (co->ext.inquire->encoding);
WALK_SUBEXPR (co->ext.inquire->pad);
WALK_SUBEXPR (co->ext.inquire->iolength);
WALK_SUBEXPR (co->ext.inquire->convert);
WALK_SUBEXPR (co->ext.inquire->strm_pos);
WALK_SUBEXPR (co->ext.inquire->asynchronous);
WALK_SUBEXPR (co->ext.inquire->decimal);
WALK_SUBEXPR (co->ext.inquire->pending);
WALK_SUBEXPR (co->ext.inquire->id);
WALK_SUBEXPR (co->ext.inquire->sign);
WALK_SUBEXPR (co->ext.inquire->size);
WALK_SUBEXPR (co->ext.inquire->round);
break;
case EXEC_WAIT:
WALK_SUBEXPR (co->ext.wait->unit);
WALK_SUBEXPR (co->ext.wait->iostat);
WALK_SUBEXPR (co->ext.wait->iomsg);
WALK_SUBEXPR (co->ext.wait->id);
break;
case EXEC_READ:
case EXEC_WRITE:
WALK_SUBEXPR (co->ext.dt->io_unit);
WALK_SUBEXPR (co->ext.dt->format_expr);
WALK_SUBEXPR (co->ext.dt->rec);
WALK_SUBEXPR (co->ext.dt->advance);
WALK_SUBEXPR (co->ext.dt->iostat);
WALK_SUBEXPR (co->ext.dt->size);
WALK_SUBEXPR (co->ext.dt->iomsg);
WALK_SUBEXPR (co->ext.dt->id);
WALK_SUBEXPR (co->ext.dt->pos);
WALK_SUBEXPR (co->ext.dt->asynchronous);
WALK_SUBEXPR (co->ext.dt->blank);
WALK_SUBEXPR (co->ext.dt->decimal);
WALK_SUBEXPR (co->ext.dt->delim);
WALK_SUBEXPR (co->ext.dt->pad);
WALK_SUBEXPR (co->ext.dt->round);
WALK_SUBEXPR (co->ext.dt->sign);
WALK_SUBEXPR (co->ext.dt->extra_comma);
break;
case EXEC_OMP_PARALLEL:
case EXEC_OMP_PARALLEL_DO:
case EXEC_OMP_PARALLEL_DO_SIMD:
case EXEC_OMP_PARALLEL_SECTIONS:
in_omp_workshare = false;
/* This goto serves as a shortcut to avoid code
duplication or a larger if or switch statement. */
goto check_omp_clauses;
case EXEC_OMP_WORKSHARE:
case EXEC_OMP_PARALLEL_WORKSHARE:
in_omp_workshare = true;
/* Fall through */
case EXEC_OMP_CRITICAL:
case EXEC_OMP_DISTRIBUTE:
case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
case EXEC_OMP_DISTRIBUTE_SIMD:
case EXEC_OMP_DO:
case EXEC_OMP_DO_SIMD:
case EXEC_OMP_ORDERED:
case EXEC_OMP_SECTIONS:
case EXEC_OMP_SINGLE:
case EXEC_OMP_END_SINGLE:
case EXEC_OMP_SIMD:
case EXEC_OMP_TASKLOOP:
case EXEC_OMP_TASKLOOP_SIMD:
case EXEC_OMP_TARGET:
case EXEC_OMP_TARGET_DATA:
case EXEC_OMP_TARGET_ENTER_DATA:
case EXEC_OMP_TARGET_EXIT_DATA:
case EXEC_OMP_TARGET_PARALLEL:
case EXEC_OMP_TARGET_PARALLEL_DO:
case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
case EXEC_OMP_TARGET_SIMD:
case EXEC_OMP_TARGET_TEAMS:
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
case EXEC_OMP_TARGET_UPDATE:
case EXEC_OMP_TASK:
case EXEC_OMP_TEAMS:
case EXEC_OMP_TEAMS_DISTRIBUTE:
case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
/* Come to this label only from the
EXEC_OMP_PARALLEL_* cases above. */
check_omp_clauses:
if (co->ext.omp_clauses)
{
gfc_omp_namelist *n;
static int list_types[]
= { OMP_LIST_ALIGNED, OMP_LIST_LINEAR, OMP_LIST_DEPEND,
OMP_LIST_MAP, OMP_LIST_TO, OMP_LIST_FROM };
size_t idx;
WALK_SUBEXPR (co->ext.omp_clauses->if_expr);
WALK_SUBEXPR (co->ext.omp_clauses->final_expr);
WALK_SUBEXPR (co->ext.omp_clauses->num_threads);
WALK_SUBEXPR (co->ext.omp_clauses->chunk_size);
WALK_SUBEXPR (co->ext.omp_clauses->safelen_expr);
WALK_SUBEXPR (co->ext.omp_clauses->simdlen_expr);
WALK_SUBEXPR (co->ext.omp_clauses->num_teams);
WALK_SUBEXPR (co->ext.omp_clauses->device);
WALK_SUBEXPR (co->ext.omp_clauses->thread_limit);
WALK_SUBEXPR (co->ext.omp_clauses->dist_chunk_size);
WALK_SUBEXPR (co->ext.omp_clauses->grainsize);
WALK_SUBEXPR (co->ext.omp_clauses->hint);
WALK_SUBEXPR (co->ext.omp_clauses->num_tasks);
WALK_SUBEXPR (co->ext.omp_clauses->priority);
for (idx = 0; idx < OMP_IF_LAST; idx++)
WALK_SUBEXPR (co->ext.omp_clauses->if_exprs[idx]);
for (idx = 0;
idx < sizeof (list_types) / sizeof (list_types[0]);
idx++)
for (n = co->ext.omp_clauses->lists[list_types[idx]];
n; n = n->next)
WALK_SUBEXPR (n->expr);
}
break;
default:
break;
}
WALK_SUBEXPR (co->expr1);
WALK_SUBEXPR (co->expr2);
WALK_SUBEXPR (co->expr3);
WALK_SUBEXPR (co->expr4);
for (b = co->block; b; b = b->block)
{
WALK_SUBEXPR (b->expr1);
WALK_SUBEXPR (b->expr2);
WALK_SUBCODE (b->next);
}
if (co->op == EXEC_FORALL)
forall_level --;
if (co->op == EXEC_DO)
doloop_level --;
if (co->op == EXEC_IF)
if_level --;
if (co->op == EXEC_SELECT)
select_level --;
in_omp_workshare = saved_in_omp_workshare;
in_where = saved_in_where;
}
}
return 0;
}