/* Deal with interfaces.
Copyright (C) 2000-2018 Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
/* Deal with interfaces. An explicit interface is represented as a
singly linked list of formal argument structures attached to the
relevant symbols. For an implicit interface, the arguments don't
point to symbols. Explicit interfaces point to namespaces that
contain the symbols within that interface.
Implicit interfaces are linked together in a singly linked list
along the next_if member of symbol nodes. Since a particular
symbol can only have a single explicit interface, the symbol cannot
be part of multiple lists and a single next-member suffices.
This is not the case for general classes, though. An operator
definition is independent of just about all other uses and has it's
own head pointer.
Nameless interfaces:
Nameless interfaces create symbols with explicit interfaces within
the current namespace. They are otherwise unlinked.
Generic interfaces:
The generic name points to a linked list of symbols. Each symbol
has an explicit interface. Each explicit interface has its own
namespace containing the arguments. Module procedures are symbols in
which the interface is added later when the module procedure is parsed.
User operators:
User-defined operators are stored in a their own set of symtrees
separate from regular symbols. The symtrees point to gfc_user_op
structures which in turn head up a list of relevant interfaces.
Extended intrinsics and assignment:
The head of these interface lists are stored in the containing namespace.
Implicit interfaces:
An implicit interface is represented as a singly linked list of
formal argument list structures that don't point to any symbol
nodes -- they just contain types.
When a subprogram is defined, the program unit's name points to an
interface as usual, but the link to the namespace is NULL and the
formal argument list points to symbols within the same namespace as
the program unit name. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "options.h"
#include "gfortran.h"
#include "match.h"
#include "arith.h"
/* The current_interface structure holds information about the
interface currently being parsed. This structure is saved and
restored during recursive interfaces. */
gfc_interface_info current_interface;
/* Free a singly linked list of gfc_interface structures. */
void
gfc_free_interface (gfc_interface *intr)
{
gfc_interface *next;
for (; intr; intr = next)
{
next = intr->next;
free (intr);
}
}
/* Change the operators unary plus and minus into binary plus and
minus respectively, leaving the rest unchanged. */
static gfc_intrinsic_op
fold_unary_intrinsic (gfc_intrinsic_op op)
{
switch (op)
{
case INTRINSIC_UPLUS:
op = INTRINSIC_PLUS;
break;
case INTRINSIC_UMINUS:
op = INTRINSIC_MINUS;
break;
default:
break;
}
return op;
}
/* Return the operator depending on the DTIO moded string. Note that
these are not operators in the normal sense and so have been placed
beyond GFC_INTRINSIC_END in gfortran.h:enum gfc_intrinsic_op. */
static gfc_intrinsic_op
dtio_op (char* mode)
{
if (strncmp (mode, "formatted", 9) == 0)
return INTRINSIC_FORMATTED;
if (strncmp (mode, "unformatted", 9) == 0)
return INTRINSIC_UNFORMATTED;
return INTRINSIC_NONE;
}
/* Match a generic specification. Depending on which type of
interface is found, the 'name' or 'op' pointers may be set.
This subroutine doesn't return MATCH_NO. */
match
gfc_match_generic_spec (interface_type *type,
char *name,
gfc_intrinsic_op *op)
{
char buffer[GFC_MAX_SYMBOL_LEN + 1];
match m;
gfc_intrinsic_op i;
if (gfc_match (" assignment ( = )") == MATCH_YES)
{
*type = INTERFACE_INTRINSIC_OP;
*op = INTRINSIC_ASSIGN;
return MATCH_YES;
}
if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
{ /* Operator i/f */
*type = INTERFACE_INTRINSIC_OP;
*op = fold_unary_intrinsic (i);
return MATCH_YES;
}
*op = INTRINSIC_NONE;
if (gfc_match (" operator ( ") == MATCH_YES)
{
m = gfc_match_defined_op_name (buffer, 1);
if (m == MATCH_NO)
goto syntax;
if (m != MATCH_YES)
return MATCH_ERROR;
m = gfc_match_char (')');
if (m == MATCH_NO)
goto syntax;
if (m != MATCH_YES)
return MATCH_ERROR;
strcpy (name, buffer);
*type = INTERFACE_USER_OP;
return MATCH_YES;
}
if (gfc_match (" read ( %n )", buffer) == MATCH_YES)
{
*op = dtio_op (buffer);
if (*op == INTRINSIC_FORMATTED)
{
strcpy (name, gfc_code2string (dtio_procs, DTIO_RF));
*type = INTERFACE_DTIO;
}
if (*op == INTRINSIC_UNFORMATTED)
{
strcpy (name, gfc_code2string (dtio_procs, DTIO_RUF));
*type = INTERFACE_DTIO;
}
if (*op != INTRINSIC_NONE)
return MATCH_YES;
}
if (gfc_match (" write ( %n )", buffer) == MATCH_YES)
{
*op = dtio_op (buffer);
if (*op == INTRINSIC_FORMATTED)
{
strcpy (name, gfc_code2string (dtio_procs, DTIO_WF));
*type = INTERFACE_DTIO;
}
if (*op == INTRINSIC_UNFORMATTED)
{
strcpy (name, gfc_code2string (dtio_procs, DTIO_WUF));
*type = INTERFACE_DTIO;
}
if (*op != INTRINSIC_NONE)
return MATCH_YES;
}
if (gfc_match_name (buffer) == MATCH_YES)
{
strcpy (name, buffer);
*type = INTERFACE_GENERIC;
return MATCH_YES;
}
*type = INTERFACE_NAMELESS;
return MATCH_YES;
syntax:
gfc_error ("Syntax error in generic specification at %C");
return MATCH_ERROR;
}
/* Match one of the five F95 forms of an interface statement. The
matcher for the abstract interface follows. */
match
gfc_match_interface (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
interface_type type;
gfc_symbol *sym;
gfc_intrinsic_op op;
match m;
m = gfc_match_space ();
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
return MATCH_ERROR;
/* If we're not looking at the end of the statement now, or if this
is not a nameless interface but we did not see a space, punt. */
if (gfc_match_eos () != MATCH_YES
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
{
gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
"at %C");
return MATCH_ERROR;
}
current_interface.type = type;
switch (type)
{
case INTERFACE_DTIO:
case INTERFACE_GENERIC:
if (gfc_get_symbol (name, NULL, &sym))
return MATCH_ERROR;
if (!sym->attr.generic
&& !gfc_add_generic (&sym->attr, sym->name, NULL))
return MATCH_ERROR;
if (sym->attr.dummy)
{
gfc_error ("Dummy procedure %qs at %C cannot have a "
"generic interface", sym->name);
return MATCH_ERROR;
}
current_interface.sym = gfc_new_block = sym;
break;
case INTERFACE_USER_OP:
current_interface.uop = gfc_get_uop (name);
break;
case INTERFACE_INTRINSIC_OP:
current_interface.op = op;
break;
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
break;
}
return MATCH_YES;
}
/* Match a F2003 abstract interface. */
match
gfc_match_abstract_interface (void)
{
match m;
if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
return MATCH_ERROR;
m = gfc_match_eos ();
if (m != MATCH_YES)
{
gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
return MATCH_ERROR;
}
current_interface.type = INTERFACE_ABSTRACT;
return m;
}
/* Match the different sort of generic-specs that can be present after
the END INTERFACE itself. */
match
gfc_match_end_interface (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
interface_type type;
gfc_intrinsic_op op;
match m;
m = gfc_match_space ();
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
return MATCH_ERROR;
/* If we're not looking at the end of the statement now, or if this
is not a nameless interface but we did not see a space, punt. */
if (gfc_match_eos () != MATCH_YES
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
{
gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
"statement at %C");
return MATCH_ERROR;
}
m = MATCH_YES;
switch (current_interface.type)
{
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
if (type != INTERFACE_NAMELESS)
{
gfc_error ("Expected a nameless interface at %C");
m = MATCH_ERROR;
}
break;
case INTERFACE_INTRINSIC_OP:
if (type != current_interface.type || op != current_interface.op)
{
if (current_interface.op == INTRINSIC_ASSIGN)
{
m = MATCH_ERROR;
gfc_error ("Expected % at %C");
}
else
{
const char *s1, *s2;
s1 = gfc_op2string (current_interface.op);
s2 = gfc_op2string (op);
/* The following if-statements are used to enforce C1202
from F2003. */
if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
|| (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
break;
if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
|| (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
break;
if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
|| (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
break;
if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
|| (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
break;
if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
|| (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
break;
if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
|| (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
break;
m = MATCH_ERROR;
if (strcmp(s2, "none") == 0)
gfc_error ("Expecting % "
"at %C", s1);
else
gfc_error ("Expecting % at %C, "
"but got %qs", s1, s2);
}
}
break;
case INTERFACE_USER_OP:
/* Comparing the symbol node names is OK because only use-associated
symbols can be renamed. */
if (type != current_interface.type
|| strcmp (current_interface.uop->name, name) != 0)
{
gfc_error ("Expecting % at %C",
current_interface.uop->name);
m = MATCH_ERROR;
}
break;
case INTERFACE_DTIO:
case INTERFACE_GENERIC:
if (type != current_interface.type
|| strcmp (current_interface.sym->name, name) != 0)
{
gfc_error ("Expecting % at %C",
current_interface.sym->name);
m = MATCH_ERROR;
}
break;
}
return m;
}
/* Return whether the component was defined anonymously. */
static bool
is_anonymous_component (gfc_component *cmp)
{
/* Only UNION and MAP components are anonymous. In the case of a MAP,
the derived type symbol is FL_STRUCT and the component name looks like mM*.
This is the only case in which the second character of a component name is
uppercase. */
return cmp->ts.type == BT_UNION
|| (cmp->ts.type == BT_DERIVED
&& cmp->ts.u.derived->attr.flavor == FL_STRUCT
&& cmp->name[0] && cmp->name[1] && ISUPPER (cmp->name[1]));
}
/* Return whether the derived type was defined anonymously. */
static bool
is_anonymous_dt (gfc_symbol *derived)
{
/* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE
types can be anonymous. For anonymous MAP/STRUCTURE, we have FL_STRUCT
and the type name looks like XX*. This is the only case in which the
second character of a type name is uppercase. */
return derived->attr.flavor == FL_UNION
|| (derived->attr.flavor == FL_STRUCT
&& derived->name[0] && derived->name[1] && ISUPPER (derived->name[1]));
}
/* Compare components according to 4.4.2 of the Fortran standard. */
static bool
compare_components (gfc_component *cmp1, gfc_component *cmp2,
gfc_symbol *derived1, gfc_symbol *derived2)
{
/* Compare names, but not for anonymous components such as UNION or MAP. */
if (!is_anonymous_component (cmp1) && !is_anonymous_component (cmp2)
&& strcmp (cmp1->name, cmp2->name) != 0)
return false;
if (cmp1->attr.access != cmp2->attr.access)
return false;
if (cmp1->attr.pointer != cmp2->attr.pointer)
return false;
if (cmp1->attr.dimension != cmp2->attr.dimension)
return false;
if (cmp1->attr.allocatable != cmp2->attr.allocatable)
return false;
if (cmp1->attr.dimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0)
return false;
if (cmp1->ts.type == BT_CHARACTER && cmp2->ts.type == BT_CHARACTER)
{
gfc_charlen *l1 = cmp1->ts.u.cl;
gfc_charlen *l2 = cmp2->ts.u.cl;
if (l1 && l2 && l1->length && l2->length
&& l1->length->expr_type == EXPR_CONSTANT
&& l2->length->expr_type == EXPR_CONSTANT
&& gfc_dep_compare_expr (l1->length, l2->length) != 0)
return false;
}
/* Make sure that link lists do not put this function into an
endless recursive loop! */
if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
&& !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)
&& !gfc_compare_types (&cmp1->ts, &cmp2->ts))
return false;
else if ( (cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
&& !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
return false;
else if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
&& (cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
return false;
return true;
}
/* Compare two union types by comparing the components of their maps.
Because unions and maps are anonymous their types get special internal
names; therefore the usual derived type comparison will fail on them.
Returns nonzero if equal, as with gfc_compare_derived_types. Also as with
gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate
definitions' than 'equivalent structure'. */
static bool
compare_union_types (gfc_symbol *un1, gfc_symbol *un2)
{
gfc_component *map1, *map2, *cmp1, *cmp2;
gfc_symbol *map1_t, *map2_t;
if (un1->attr.flavor != FL_UNION || un2->attr.flavor != FL_UNION)
return false;
if (un1->attr.zero_comp != un2->attr.zero_comp)
return false;
if (un1->attr.zero_comp)
return true;
map1 = un1->components;
map2 = un2->components;
/* In terms of 'equality' here we are worried about types which are
declared the same in two places, not types that represent equivalent
structures. (This is common because of FORTRAN's weird scoping rules.)
Though two unions with their maps in different orders could be equivalent,
we will say they are not equal for the purposes of this test; therefore
we compare the maps sequentially. */
for (;;)
{
map1_t = map1->ts.u.derived;
map2_t = map2->ts.u.derived;
cmp1 = map1_t->components;
cmp2 = map2_t->components;
/* Protect against null components. */
if (map1_t->attr.zero_comp != map2_t->attr.zero_comp)
return false;
if (map1_t->attr.zero_comp)
return true;
for (;;)
{
/* No two fields will ever point to the same map type unless they are
the same component, because one map field is created with its type
declaration. Therefore don't worry about recursion here. */
/* TODO: worry about recursion into parent types of the unions? */
if (!compare_components (cmp1, cmp2, map1_t, map2_t))
return false;
cmp1 = cmp1->next;
cmp2 = cmp2->next;
if (cmp1 == NULL && cmp2 == NULL)
break;
if (cmp1 == NULL || cmp2 == NULL)
return false;
}
map1 = map1->next;
map2 = map2->next;
if (map1 == NULL && map2 == NULL)
break;
if (map1 == NULL || map2 == NULL)
return false;
}
return true;
}
/* Compare two derived types using the criteria in 4.4.2 of the standard,
recursing through gfc_compare_types for the components. */
bool
gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
{
gfc_component *cmp1, *cmp2;
if (derived1 == derived2)
return true;
if (!derived1 || !derived2)
gfc_internal_error ("gfc_compare_derived_types: invalid derived type");
/* Compare UNION types specially. */
if (derived1->attr.flavor == FL_UNION || derived2->attr.flavor == FL_UNION)
return compare_union_types (derived1, derived2);
/* Special case for comparing derived types across namespaces. If the
true names and module names are the same and the module name is
nonnull, then they are equal. */
if (strcmp (derived1->name, derived2->name) == 0
&& derived1->module != NULL && derived2->module != NULL
&& strcmp (derived1->module, derived2->module) == 0)
return true;
/* Compare type via the rules of the standard. Both types must have
the SEQUENCE or BIND(C) attribute to be equal. STRUCTUREs are special
because they can be anonymous; therefore two structures with different
names may be equal. */
/* Compare names, but not for anonymous types such as UNION or MAP. */
if (!is_anonymous_dt (derived1) && !is_anonymous_dt (derived2)
&& strcmp (derived1->name, derived2->name) != 0)
return false;
if (derived1->component_access == ACCESS_PRIVATE
|| derived2->component_access == ACCESS_PRIVATE)
return false;
if (!(derived1->attr.sequence && derived2->attr.sequence)
&& !(derived1->attr.is_bind_c && derived2->attr.is_bind_c)
&& !(derived1->attr.pdt_type && derived2->attr.pdt_type))
return false;
/* Protect against null components. */
if (derived1->attr.zero_comp != derived2->attr.zero_comp)
return false;
if (derived1->attr.zero_comp)
return true;
cmp1 = derived1->components;
cmp2 = derived2->components;
/* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
simple test can speed things up. Otherwise, lots of things have to
match. */
for (;;)
{
if (!compare_components (cmp1, cmp2, derived1, derived2))
return false;
cmp1 = cmp1->next;
cmp2 = cmp2->next;
if (cmp1 == NULL && cmp2 == NULL)
break;
if (cmp1 == NULL || cmp2 == NULL)
return false;
}
return true;
}
/* Compare two typespecs, recursively if necessary. */
bool
gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
{
/* See if one of the typespecs is a BT_VOID, which is what is being used
to allow the funcs like c_f_pointer to accept any pointer type.
TODO: Possibly should narrow this to just the one typespec coming in
that is for the formal arg, but oh well. */
if (ts1->type == BT_VOID || ts2->type == BT_VOID)
return true;
/* Special case for our C interop types. There should be a better
way of doing this... */
if (((ts1->type == BT_INTEGER && ts2->type == BT_DERIVED)
|| (ts1->type == BT_DERIVED && ts2->type == BT_INTEGER))
&& ts1->u.derived && ts2->u.derived
&& ts1->u.derived == ts2->u.derived)
return true;
/* The _data component is not always present, therefore check for its
presence before assuming, that its derived->attr is available.
When the _data component is not present, then nevertheless the
unlimited_polymorphic flag may be set in the derived type's attr. */
if (ts1->type == BT_CLASS && ts1->u.derived->components
&& ((ts1->u.derived->attr.is_class
&& ts1->u.derived->components->ts.u.derived->attr
.unlimited_polymorphic)
|| ts1->u.derived->attr.unlimited_polymorphic))
return true;
/* F2003: C717 */
if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
&& ts2->u.derived->components
&& ((ts2->u.derived->attr.is_class
&& ts2->u.derived->components->ts.u.derived->attr
.unlimited_polymorphic)
|| ts2->u.derived->attr.unlimited_polymorphic)
&& (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
return true;
if (ts1->type != ts2->type
&& ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
|| (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
return false;
if (ts1->type == BT_UNION)
return compare_union_types (ts1->u.derived, ts2->u.derived);
if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
return (ts1->kind == ts2->kind);
/* Compare derived types. */
return gfc_type_compatible (ts1, ts2);
}
static bool
compare_type (gfc_symbol *s1, gfc_symbol *s2)
{
if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
return true;
return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
}
static bool
compare_type_characteristics (gfc_symbol *s1, gfc_symbol *s2)
{
/* TYPE and CLASS of the same declared type are type compatible,
but have different characteristics. */
if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
|| (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
return false;
return compare_type (s1, s2);
}
static bool
compare_rank (gfc_symbol *s1, gfc_symbol *s2)
{
gfc_array_spec *as1, *as2;
int r1, r2;
if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
return true;
as1 = (s1->ts.type == BT_CLASS
&& !s1->ts.u.derived->attr.unlimited_polymorphic)
? CLASS_DATA (s1)->as : s1->as;
as2 = (s2->ts.type == BT_CLASS
&& !s2->ts.u.derived->attr.unlimited_polymorphic)
? CLASS_DATA (s2)->as : s2->as;
r1 = as1 ? as1->rank : 0;
r2 = as2 ? as2->rank : 0;
if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
return false; /* Ranks differ. */
return true;
}
/* Given two symbols that are formal arguments, compare their ranks
and types. Returns true if they have the same rank and type,
false otherwise. */
static bool
compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
{
return compare_type (s1, s2) && compare_rank (s1, s2);
}
/* Given two symbols that are formal arguments, compare their types
and rank and their formal interfaces if they are both dummy
procedures. Returns true if the same, false if different. */
static bool
compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
{
if (s1 == NULL || s2 == NULL)
return (s1 == s2);
if (s1 == s2)
return true;
if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
return compare_type_rank (s1, s2);
if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
return false;
/* At this point, both symbols are procedures. It can happen that
external procedures are compared, where one is identified by usage
to be a function or subroutine but the other is not. Check TKR
nonetheless for these cases. */
if (s1->attr.function == 0 && s1->attr.subroutine == 0)
return s1->attr.external ? compare_type_rank (s1, s2) : false;
if (s2->attr.function == 0 && s2->attr.subroutine == 0)
return s2->attr.external ? compare_type_rank (s1, s2) : false;
/* Now the type of procedure has been identified. */
if (s1->attr.function != s2->attr.function
|| s1->attr.subroutine != s2->attr.subroutine)
return false;
if (s1->attr.function && !compare_type_rank (s1, s2))
return false;
/* Originally, gfortran recursed here to check the interfaces of passed
procedures. This is explicitly not required by the standard. */
return true;
}
/* Given a formal argument list and a keyword name, search the list
for that keyword. Returns the correct symbol node if found, NULL
if not found. */
static gfc_symbol *
find_keyword_arg (const char *name, gfc_formal_arglist *f)
{
for (; f; f = f->next)
if (strcmp (f->sym->name, name) == 0)
return f->sym;
return NULL;
}
/******** Interface checking subroutines **********/
/* Given an operator interface and the operator, make sure that all
interfaces for that operator are legal. */
bool
gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
locus opwhere)
{
gfc_formal_arglist *formal;
sym_intent i1, i2;
bt t1, t2;
int args, r1, r2, k1, k2;
gcc_assert (sym);
args = 0;
t1 = t2 = BT_UNKNOWN;
i1 = i2 = INTENT_UNKNOWN;
r1 = r2 = -1;
k1 = k2 = -1;
for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
{
gfc_symbol *fsym = formal->sym;
if (fsym == NULL)
{
gfc_error ("Alternate return cannot appear in operator "
"interface at %L", &sym->declared_at);
return false;
}
if (args == 0)
{
t1 = fsym->ts.type;
i1 = fsym->attr.intent;
r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
k1 = fsym->ts.kind;
}
if (args == 1)
{
t2 = fsym->ts.type;
i2 = fsym->attr.intent;
r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
k2 = fsym->ts.kind;
}
args++;
}
/* Only +, - and .not. can be unary operators.
.not. cannot be a binary operator. */
if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
&& op != INTRINSIC_MINUS
&& op != INTRINSIC_NOT)
|| (args == 2 && op == INTRINSIC_NOT))
{
if (op == INTRINSIC_ASSIGN)
gfc_error ("Assignment operator interface at %L must have "
"two arguments", &sym->declared_at);
else
gfc_error ("Operator interface at %L has the wrong number of arguments",
&sym->declared_at);
return false;
}
/* Check that intrinsics are mapped to functions, except
INTRINSIC_ASSIGN which should map to a subroutine. */
if (op == INTRINSIC_ASSIGN)
{
gfc_formal_arglist *dummy_args;
if (!sym->attr.subroutine)
{
gfc_error ("Assignment operator interface at %L must be "
"a SUBROUTINE", &sym->declared_at);
return false;
}
/* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
- First argument an array with different rank than second,
- First argument is a scalar and second an array,
- Types and kinds do not conform, or
- First argument is of derived type. */
dummy_args = gfc_sym_get_dummy_args (sym);
if (dummy_args->sym->ts.type != BT_DERIVED
&& dummy_args->sym->ts.type != BT_CLASS
&& (r2 == 0 || r1 == r2)
&& (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
|| (gfc_numeric_ts (&dummy_args->sym->ts)
&& gfc_numeric_ts (&dummy_args->next->sym->ts))))
{
gfc_error ("Assignment operator interface at %L must not redefine "
"an INTRINSIC type assignment", &sym->declared_at);
return false;
}
}
else
{
if (!sym->attr.function)
{
gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
&sym->declared_at);
return false;
}
}
/* Check intents on operator interfaces. */
if (op == INTRINSIC_ASSIGN)
{
if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
{
gfc_error ("First argument of defined assignment at %L must be "
"INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
return false;
}
if (i2 != INTENT_IN)
{
gfc_error ("Second argument of defined assignment at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
}
else
{
if (i1 != INTENT_IN)
{
gfc_error ("First argument of operator interface at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
if (args == 2 && i2 != INTENT_IN)
{
gfc_error ("Second argument of operator interface at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
}
/* From now on, all we have to do is check that the operator definition
doesn't conflict with an intrinsic operator. The rules for this
game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
as well as 12.3.2.1.1 of Fortran 2003:
"If the operator is an intrinsic-operator (R310), the number of
function arguments shall be consistent with the intrinsic uses of
that operator, and the types, kind type parameters, or ranks of the
dummy arguments shall differ from those required for the intrinsic
operation (7.1.2)." */
#define IS_NUMERIC_TYPE(t) \
((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
/* Unary ops are easy, do them first. */
if (op == INTRINSIC_NOT)
{
if (t1 == BT_LOGICAL)
goto bad_repl;
else
return true;
}
if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
{
if (IS_NUMERIC_TYPE (t1))
goto bad_repl;
else
return true;
}
/* Character intrinsic operators have same character kind, thus
operator definitions with operands of different character kinds
are always safe. */
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
return true;
/* Intrinsic operators always perform on arguments of same rank,
so different ranks is also always safe. (rank == 0) is an exception
to that, because all intrinsic operators are elemental. */
if (r1 != r2 && r1 != 0 && r2 != 0)
return true;
switch (op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
/* Fall through. */
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
case INTRINSIC_POWER:
if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
goto bad_repl;
break;
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
if ((t1 == BT_INTEGER || t1 == BT_REAL)
&& (t2 == BT_INTEGER || t2 == BT_REAL))
goto bad_repl;
break;
case INTRINSIC_CONCAT:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
break;
case INTRINSIC_AND:
case INTRINSIC_OR:
case INTRINSIC_EQV:
case INTRINSIC_NEQV:
if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
goto bad_repl;
break;
default:
break;
}
return true;
#undef IS_NUMERIC_TYPE
bad_repl:
gfc_error ("Operator interface at %L conflicts with intrinsic interface",
&opwhere);
return false;
}
/* Given a pair of formal argument lists, we see if the two lists can
be distinguished by counting the number of nonoptional arguments of
a given type/rank in f1 and seeing if there are less then that
number of those arguments in f2 (including optional arguments).
Since this test is asymmetric, it has to be called twice to make it
symmetric. Returns nonzero if the argument lists are incompatible
by this test. This subroutine implements rule 1 of section F03:16.2.3.
'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
static bool
count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
const char *p1, const char *p2)
{
int ac1, ac2, i, j, k, n1;
gfc_formal_arglist *f;
typedef struct
{
int flag;
gfc_symbol *sym;
}
arginfo;
arginfo *arg;
n1 = 0;
for (f = f1; f; f = f->next)
n1++;
/* Build an array of integers that gives the same integer to
arguments of the same type/rank. */
arg = XCNEWVEC (arginfo, n1);
f = f1;
for (i = 0; i < n1; i++, f = f->next)
{
arg[i].flag = -1;
arg[i].sym = f->sym;
}
k = 0;
for (i = 0; i < n1; i++)
{
if (arg[i].flag != -1)
continue;
if (arg[i].sym && (arg[i].sym->attr.optional
|| (p1 && strcmp (arg[i].sym->name, p1) == 0)))
continue; /* Skip OPTIONAL and PASS arguments. */
arg[i].flag = k;
/* Find other non-optional, non-pass arguments of the same type/rank. */
for (j = i + 1; j < n1; j++)
if ((arg[j].sym == NULL
|| !(arg[j].sym->attr.optional
|| (p1 && strcmp (arg[j].sym->name, p1) == 0)))
&& (compare_type_rank_if (arg[i].sym, arg[j].sym)
|| compare_type_rank_if (arg[j].sym, arg[i].sym)))
arg[j].flag = k;
k++;
}
/* Now loop over each distinct type found in f1. */
k = 0;
bool rc = false;
for (i = 0; i < n1; i++)
{
if (arg[i].flag != k)
continue;
ac1 = 1;
for (j = i + 1; j < n1; j++)
if (arg[j].flag == k)
ac1++;
/* Count the number of non-pass arguments in f2 with that type,
including those that are optional. */
ac2 = 0;
for (f = f2; f; f = f->next)
if ((!p2 || strcmp (f->sym->name, p2) != 0)
&& (compare_type_rank_if (arg[i].sym, f->sym)
|| compare_type_rank_if (f->sym, arg[i].sym)))
ac2++;
if (ac1 > ac2)
{
rc = true;
break;
}
k++;
}
free (arg);
return rc;
}
/* Perform the correspondence test in rule (3) of F08:C1215.
Returns zero if no argument is found that satisfies this rule,
nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
(if applicable).
This test is also not symmetric in f1 and f2 and must be called
twice. This test finds problems caused by sorting the actual
argument list with keywords. For example:
INTERFACE FOO
SUBROUTINE F1(A, B)
INTEGER :: A ; REAL :: B
END SUBROUTINE F1
SUBROUTINE F2(B, A)
INTEGER :: A ; REAL :: B
END SUBROUTINE F1
END INTERFACE FOO
At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
static bool
generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
const char *p1, const char *p2)
{
gfc_formal_arglist *f2_save, *g;
gfc_symbol *sym;
f2_save = f2;
while (f1)
{
if (f1->sym->attr.optional)
goto next;
if (p1 && strcmp (f1->sym->name, p1) == 0)
f1 = f1->next;
if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
f2 = f2->next;
if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
|| compare_type_rank (f2->sym, f1->sym))
&& !((gfc_option.allow_std & GFC_STD_F2008)
&& ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
|| (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
goto next;
/* Now search for a disambiguating keyword argument starting at
the current non-match. */
for (g = f1; g; g = g->next)
{
if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
continue;
sym = find_keyword_arg (g->sym->name, f2_save);
if (sym == NULL || !compare_type_rank (g->sym, sym)
|| ((gfc_option.allow_std & GFC_STD_F2008)
&& ((sym->attr.allocatable && g->sym->attr.pointer)
|| (sym->attr.pointer && g->sym->attr.allocatable))))
return true;
}
next:
if (f1 != NULL)
f1 = f1->next;
if (f2 != NULL)
f2 = f2->next;
}
return false;
}
static int
symbol_rank (gfc_symbol *sym)
{
gfc_array_spec *as = NULL;
if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
as = CLASS_DATA (sym)->as;
else
as = sym->as;
return as ? as->rank : 0;
}
/* Check if the characteristics of two dummy arguments match,
cf. F08:12.3.2. */
bool
gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
bool type_must_agree, char *errmsg,
int err_len)
{
if (s1 == NULL || s2 == NULL)
return s1 == s2 ? true : false;
/* Check type and rank. */
if (type_must_agree)
{
if (!compare_type_characteristics (s1, s2)
|| !compare_type_characteristics (s2, s1))
{
snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
return false;
}
if (!compare_rank (s1, s2))
{
snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
s1->name, symbol_rank (s1), symbol_rank (s2));
return false;
}
}
/* Check INTENT. */
if (s1->attr.intent != s2->attr.intent)
{
snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
s1->name);
return false;
}
/* Check OPTIONAL attribute. */
if (s1->attr.optional != s2->attr.optional)
{
snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
s1->name);
return false;
}
/* Check ALLOCATABLE attribute. */
if (s1->attr.allocatable != s2->attr.allocatable)
{
snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
s1->name);
return false;
}
/* Check POINTER attribute. */
if (s1->attr.pointer != s2->attr.pointer)
{
snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
s1->name);
return false;
}
/* Check TARGET attribute. */
if (s1->attr.target != s2->attr.target)
{
snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
s1->name);
return false;
}
/* Check ASYNCHRONOUS attribute. */
if (s1->attr.asynchronous != s2->attr.asynchronous)
{
snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
s1->name);
return false;
}
/* Check CONTIGUOUS attribute. */
if (s1->attr.contiguous != s2->attr.contiguous)
{
snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
s1->name);
return false;
}
/* Check VALUE attribute. */
if (s1->attr.value != s2->attr.value)
{
snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
s1->name);
return false;
}
/* Check VOLATILE attribute. */
if (s1->attr.volatile_ != s2->attr.volatile_)
{
snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
s1->name);
return false;
}
/* Check interface of dummy procedures. */
if (s1->attr.flavor == FL_PROCEDURE)
{
char err[200];
if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
NULL, NULL))
{
snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
"'%s': %s", s1->name, err);
return false;
}
}
/* Check string length. */
if (s1->ts.type == BT_CHARACTER
&& s1->ts.u.cl && s1->ts.u.cl->length
&& s2->ts.u.cl && s2->ts.u.cl->length)
{
int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
s2->ts.u.cl->length);
switch (compval)
{
case -1:
case 1:
case -3:
snprintf (errmsg, err_len, "Character length mismatch "
"in argument '%s'", s1->name);
return false;
case -2:
/* FIXME: Implement a warning for this case.
gfc_warning (0, "Possible character length mismatch in argument %qs",
s1->name);*/
break;
case 0:
break;
default:
gfc_internal_error ("check_dummy_characteristics: Unexpected result "
"%i of gfc_dep_compare_expr", compval);
break;
}
}
/* Check array shape. */
if (s1->as && s2->as)
{
int i, compval;
gfc_expr *shape1, *shape2;
if (s1->as->type != s2->as->type)
{
snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
s1->name);
return false;
}
if (s1->as->corank != s2->as->corank)
{
snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)",
s1->name, s1->as->corank, s2->as->corank);
return false;
}
if (s1->as->type == AS_EXPLICIT)
for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++)
{
shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
gfc_copy_expr (s1->as->lower[i]));
shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
gfc_copy_expr (s2->as->lower[i]));
compval = gfc_dep_compare_expr (shape1, shape2);
gfc_free_expr (shape1);
gfc_free_expr (shape2);
switch (compval)
{
case -1:
case 1:
case -3:
if (i < s1->as->rank)
snprintf (errmsg, err_len, "Shape mismatch in dimension %i of"
" argument '%s'", i + 1, s1->name);
else
snprintf (errmsg, err_len, "Shape mismatch in codimension %i "
"of argument '%s'", i - s1->as->rank + 1, s1->name);
return false;
case -2:
/* FIXME: Implement a warning for this case.
gfc_warning (0, "Possible shape mismatch in argument %qs",
s1->name);*/
break;
case 0:
break;
default:
gfc_internal_error ("check_dummy_characteristics: Unexpected "
"result %i of gfc_dep_compare_expr",
compval);
break;
}
}
}
return true;
}
/* Check if the characteristics of two function results match,
cf. F08:12.3.3. */
bool
gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
char *errmsg, int err_len)
{
gfc_symbol *r1, *r2;
if (s1->ts.interface && s1->ts.interface->result)
r1 = s1->ts.interface->result;
else
r1 = s1->result ? s1->result : s1;
if (s2->ts.interface && s2->ts.interface->result)
r2 = s2->ts.interface->result;
else
r2 = s2->result ? s2->result : s2;
if (r1->ts.type == BT_UNKNOWN)
return true;
/* Check type and rank. */
if (!compare_type_characteristics (r1, r2))
{
snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
gfc_typename (&r1->ts), gfc_typename (&r2->ts));
return false;
}
if (!compare_rank (r1, r2))
{
snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
symbol_rank (r1), symbol_rank (r2));
return false;
}
/* Check ALLOCATABLE attribute. */
if (r1->attr.allocatable != r2->attr.allocatable)
{
snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
"function result");
return false;
}
/* Check POINTER attribute. */
if (r1->attr.pointer != r2->attr.pointer)
{
snprintf (errmsg, err_len, "POINTER attribute mismatch in "
"function result");
return false;
}
/* Check CONTIGUOUS attribute. */
if (r1->attr.contiguous != r2->attr.contiguous)
{
snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
"function result");
return false;
}
/* Check PROCEDURE POINTER attribute. */
if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
{
snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
"function result");
return false;
}
/* Check string length. */
if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
{
if (r1->ts.deferred != r2->ts.deferred)
{
snprintf (errmsg, err_len, "Character length mismatch "
"in function result");
return false;
}
if (r1->ts.u.cl->length && r2->ts.u.cl->length)
{
int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
r2->ts.u.cl->length);
switch (compval)
{
case -1:
case 1:
case -3:
snprintf (errmsg, err_len, "Character length mismatch "
"in function result");
return false;
case -2:
/* FIXME: Implement a warning for this case.
snprintf (errmsg, err_len, "Possible character length mismatch "
"in function result");*/
break;
case 0:
break;
default:
gfc_internal_error ("check_result_characteristics (1): Unexpected "
"result %i of gfc_dep_compare_expr", compval);
break;
}
}
}
/* Check array shape. */
if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
{
int i, compval;
gfc_expr *shape1, *shape2;
if (r1->as->type != r2->as->type)
{
snprintf (errmsg, err_len, "Shape mismatch in function result");
return false;
}
if (r1->as->type == AS_EXPLICIT)
for (i = 0; i < r1->as->rank + r1->as->corank; i++)
{
shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
gfc_copy_expr (r1->as->lower[i]));
shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
gfc_copy_expr (r2->as->lower[i]));
compval = gfc_dep_compare_expr (shape1, shape2);
gfc_free_expr (shape1);
gfc_free_expr (shape2);
switch (compval)
{
case -1:
case 1:
case -3:
snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
"function result", i + 1);
return false;
case -2:
/* FIXME: Implement a warning for this case.
gfc_warning (0, "Possible shape mismatch in return value");*/
break;
case 0:
break;
default:
gfc_internal_error ("check_result_characteristics (2): "
"Unexpected result %i of "
"gfc_dep_compare_expr", compval);
break;
}
}
}
return true;
}
/* 'Compare' two formal interfaces associated with a pair of symbols.
We return true if there exists an actual argument list that
would be ambiguous between the two interfaces, zero otherwise.
'strict_flag' specifies whether all the characteristics are
required to match, which is not the case for ambiguity checks.
'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
bool
gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
int generic_flag, int strict_flag,
char *errmsg, int err_len,
const char *p1, const char *p2)
{
gfc_formal_arglist *f1, *f2;
gcc_assert (name2 != NULL);
if (s1->attr.function && (s2->attr.subroutine
|| (!s2->attr.function && s2->ts.type == BT_UNKNOWN
&& gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' is not a function", name2);
return false;
}
if (s1->attr.subroutine && s2->attr.function)
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
return false;
}
/* Do strict checks on all characteristics
(for dummy procedures and procedure pointer assignments). */
if (!generic_flag && strict_flag)
{
if (s1->attr.function && s2->attr.function)
{
/* If both are functions, check result characteristics. */
if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len)
|| !gfc_check_result_characteristics (s2, s1, errmsg, err_len))
return false;
}
if (s1->attr.pure && !s2->attr.pure)
{
snprintf (errmsg, err_len, "Mismatch in PURE attribute");
return false;
}
if (s1->attr.elemental && !s2->attr.elemental)
{
snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
return false;
}
}
if (s1->attr.if_source == IFSRC_UNKNOWN
|| s2->attr.if_source == IFSRC_UNKNOWN)
return true;
f1 = gfc_sym_get_dummy_args (s1);
f2 = gfc_sym_get_dummy_args (s2);
/* Special case: No arguments. */
if (f1 == NULL && f2 == NULL)
return true;
if (generic_flag)
{
if (count_types_test (f1, f2, p1, p2)
|| count_types_test (f2, f1, p2, p1))
return false;
/* Special case: alternate returns. If both f1->sym and f2->sym are
NULL, then the leading formal arguments are alternate returns.
The previous conditional should catch argument lists with
different number of argument. */
if (f1 && f1->sym == NULL && f2 && f2->sym == NULL)
return true;
if (generic_correspondence (f1, f2, p1, p2)
|| generic_correspondence (f2, f1, p2, p1))
return false;
}
else
/* Perform the abbreviated correspondence test for operators (the
arguments cannot be optional and are always ordered correctly).
This is also done when comparing interfaces for dummy procedures and in
procedure pointer assignments. */
for (; f1 || f2; f1 = f1->next, f2 = f2->next)
{
/* Check existence. */
if (f1 == NULL || f2 == NULL)
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' has the wrong number of "
"arguments", name2);
return false;
}
if (strict_flag)
{
/* Check all characteristics. */
if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true,
errmsg, err_len))
return false;
}
else
{
/* Only check type and rank. */
if (!compare_type (f2->sym, f1->sym))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
"(%s/%s)", f1->sym->name,
gfc_typename (&f1->sym->ts),
gfc_typename (&f2->sym->ts));
return false;
}
if (!compare_rank (f2->sym, f1->sym))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
"(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
symbol_rank (f2->sym));
return false;
}
}
}
return true;
}
/* Given a pointer to an interface pointer, remove duplicate
interfaces and make sure that all symbols are either functions
or subroutines, and all of the same kind. Returns true if
something goes wrong. */
static bool
check_interface0 (gfc_interface *p, const char *interface_name)
{
gfc_interface *psave, *q, *qlast;
psave = p;
for (; p; p = p->next)
{
/* Make sure all symbols in the interface have been defined as
functions or subroutines. */
if (((!p->sym->attr.function && !p->sym->attr.subroutine)
|| !p->sym->attr.if_source)
&& !gfc_fl_struct (p->sym->attr.flavor))
{
const char *guessed
= gfc_lookup_function_fuzzy (p->sym->name, p->sym->ns->sym_root);
if (p->sym->attr.external)
if (guessed)
gfc_error ("Procedure %qs in %s at %L has no explicit interface"
"; did you mean %qs?",
p->sym->name, interface_name, &p->sym->declared_at,
guessed);
else
gfc_error ("Procedure %qs in %s at %L has no explicit interface",
p->sym->name, interface_name, &p->sym->declared_at);
else
if (guessed)
gfc_error ("Procedure %qs in %s at %L is neither function nor "
"subroutine; did you mean %qs?", p->sym->name,
interface_name, &p->sym->declared_at, guessed);
else
gfc_error ("Procedure %qs in %s at %L is neither function nor "
"subroutine", p->sym->name, interface_name,
&p->sym->declared_at);
return true;
}
/* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
if ((psave->sym->attr.function && !p->sym->attr.function
&& !gfc_fl_struct (p->sym->attr.flavor))
|| (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
{
if (!gfc_fl_struct (p->sym->attr.flavor))
gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
" or all FUNCTIONs", interface_name,
&p->sym->declared_at);
else if (p->sym->attr.flavor == FL_DERIVED)
gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
"generic name is also the name of a derived type",
interface_name, &p->sym->declared_at);
return true;
}
/* F2003, C1207. F2008, C1207. */
if (p->sym->attr.proc == PROC_INTERNAL
&& !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
"%qs in %s at %L", p->sym->name,
interface_name, &p->sym->declared_at))
return true;
}
p = psave;
/* Remove duplicate interfaces in this interface list. */
for (; p; p = p->next)
{
qlast = p;
for (q = p->next; q;)
{
if (p->sym != q->sym)
{
qlast = q;
q = q->next;
}
else
{
/* Duplicate interface. */
qlast->next = q->next;
free (q);
q = qlast->next;
}
}
}
return false;
}
/* Check lists of interfaces to make sure that no two interfaces are
ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
static bool
check_interface1 (gfc_interface *p, gfc_interface *q0,
int generic_flag, const char *interface_name,
bool referenced)
{
gfc_interface *q;
for (; p; p = p->next)
for (q = q0; q; q = q->next)
{
if (p->sym == q->sym)
continue; /* Duplicates OK here. */
if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
continue;
if (!gfc_fl_struct (p->sym->attr.flavor)
&& !gfc_fl_struct (q->sym->attr.flavor)
&& gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
generic_flag, 0, NULL, 0, NULL, NULL))
{
if (referenced)
gfc_error ("Ambiguous interfaces in %s for %qs at %L "
"and %qs at %L", interface_name,
q->sym->name, &q->sym->declared_at,
p->sym->name, &p->sym->declared_at);
else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L "
"and %qs at %L", interface_name,
q->sym->name, &q->sym->declared_at,
p->sym->name, &p->sym->declared_at);
else
gfc_warning (0, "Although not referenced, %qs has ambiguous "
"interfaces at %L", interface_name, &p->where);
return true;
}
}
return false;
}
/* Check the generic and operator interfaces of symbols to make sure
that none of the interfaces conflict. The check has to be done
after all of the symbols are actually loaded. */
static void
check_sym_interfaces (gfc_symbol *sym)
{
char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("generic interface ''")];
gfc_interface *p;
if (sym->ns != gfc_current_ns)
return;
if (sym->generic != NULL)
{
sprintf (interface_name, "generic interface '%s'", sym->name);
if (check_interface0 (sym->generic, interface_name))
return;
for (p = sym->generic; p; p = p->next)
{
if (p->sym->attr.mod_proc
&& !p->sym->attr.module_procedure
&& (p->sym->attr.if_source != IFSRC_DECL
|| p->sym->attr.procedure))
{
gfc_error ("%qs at %L is not a module procedure",
p->sym->name, &p->where);
return;
}
}
/* Originally, this test was applied to host interfaces too;
this is incorrect since host associated symbols, from any
source, cannot be ambiguous with local symbols. */
check_interface1 (sym->generic, sym->generic, 1, interface_name,
sym->attr.referenced || !sym->attr.use_assoc);
}
}
static void
check_uop_interfaces (gfc_user_op *uop)
{
char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("operator interface ''")];
gfc_user_op *uop2;
gfc_namespace *ns;
sprintf (interface_name, "operator interface '%s'", uop->name);
if (check_interface0 (uop->op, interface_name))
return;
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
uop2 = gfc_find_uop (uop->name, ns);
if (uop2 == NULL)
continue;
check_interface1 (uop->op, uop2->op, 0,
interface_name, true);
}
}
/* Given an intrinsic op, return an equivalent op if one exists,
or INTRINSIC_NONE otherwise. */
gfc_intrinsic_op
gfc_equivalent_op (gfc_intrinsic_op op)
{
switch(op)
{
case INTRINSIC_EQ:
return INTRINSIC_EQ_OS;
case INTRINSIC_EQ_OS:
return INTRINSIC_EQ;
case INTRINSIC_NE:
return INTRINSIC_NE_OS;
case INTRINSIC_NE_OS:
return INTRINSIC_NE;
case INTRINSIC_GT:
return INTRINSIC_GT_OS;
case INTRINSIC_GT_OS:
return INTRINSIC_GT;
case INTRINSIC_GE:
return INTRINSIC_GE_OS;
case INTRINSIC_GE_OS:
return INTRINSIC_GE;
case INTRINSIC_LT:
return INTRINSIC_LT_OS;
case INTRINSIC_LT_OS:
return INTRINSIC_LT;
case INTRINSIC_LE:
return INTRINSIC_LE_OS;
case INTRINSIC_LE_OS:
return INTRINSIC_LE;
default:
return INTRINSIC_NONE;
}
}
/* For the namespace, check generic, user operator and intrinsic
operator interfaces for consistency and to remove duplicate
interfaces. We traverse the whole namespace, counting on the fact
that most symbols will not have generic or operator interfaces. */
void
gfc_check_interfaces (gfc_namespace *ns)
{
gfc_namespace *old_ns, *ns2;
char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("intrinsic '' operator")];
int i;
old_ns = gfc_current_ns;
gfc_current_ns = ns;
gfc_traverse_ns (ns, check_sym_interfaces);
gfc_traverse_user_op (ns, check_uop_interfaces);
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
{
if (i == INTRINSIC_USER)
continue;
if (i == INTRINSIC_ASSIGN)
strcpy (interface_name, "intrinsic assignment operator");
else
sprintf (interface_name, "intrinsic '%s' operator",
gfc_op2string ((gfc_intrinsic_op) i));
if (check_interface0 (ns->op[i], interface_name))
continue;
if (ns->op[i])
gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
ns->op[i]->where);
for (ns2 = ns; ns2; ns2 = ns2->parent)
{
gfc_intrinsic_op other_op;
if (check_interface1 (ns->op[i], ns2->op[i], 0,
interface_name, true))
goto done;
/* i should be gfc_intrinsic_op, but has to be int with this cast
here for stupid C++ compatibility rules. */
other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
if (other_op != INTRINSIC_NONE
&& check_interface1 (ns->op[i], ns2->op[other_op],
0, interface_name, true))
goto done;
}
}
done:
gfc_current_ns = old_ns;
}
/* Given a symbol of a formal argument list and an expression, if the
formal argument is allocatable, check that the actual argument is
allocatable. Returns true if compatible, zero if not compatible. */
static bool
compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
{
if (formal->attr.allocatable
|| (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
{
symbol_attribute attr = gfc_expr_attr (actual);
if (actual->ts.type == BT_CLASS && !attr.class_ok)
return true;
else if (!attr.allocatable)
return false;
}
return true;
}
/* Given a symbol of a formal argument list and an expression, if the
formal argument is a pointer, see if the actual argument is a
pointer. Returns nonzero if compatible, zero if not compatible. */
static int
compare_pointer (gfc_symbol *formal, gfc_expr *actual)
{
symbol_attribute attr;
if (formal->attr.pointer
|| (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
&& CLASS_DATA (formal)->attr.class_pointer))
{
attr = gfc_expr_attr (actual);
/* Fortran 2008 allows non-pointer actual arguments. */
if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
return 2;
if (!attr.pointer)
return 0;
}
return 1;
}
/* Emit clear error messages for rank mismatch. */
static void
argument_rank_mismatch (const char *name, locus *where,
int rank1, int rank2)
{
/* TS 29113, C407b. */
if (rank2 == -1)
gfc_error ("The assumed-rank array at %L requires that the dummy argument"
" %qs has assumed-rank", where, name);
else if (rank1 == 0)
gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
"at %L (scalar and rank-%d)", name, where, rank2);
else if (rank2 == 0)
gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
"at %L (rank-%d and scalar)", name, where, rank1);
else
gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
"at %L (rank-%d and rank-%d)", name, where, rank1, rank2);
}
/* Given a symbol of a formal argument list and an expression, see if
the two are compatible as arguments. Returns true if
compatible, false if not compatible. */
static bool
compare_parameter (gfc_symbol *formal, gfc_expr *actual,
int ranks_must_agree, int is_elemental, locus *where)
{
gfc_ref *ref;
bool rank_check, is_pointer;
char err[200];
gfc_component *ppc;
/* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
procs c_f_pointer or c_f_procpointer, and we need to accept most
pointers the user could give us. This should allow that. */
if (formal->ts.type == BT_VOID)
return true;
if (formal->ts.type == BT_DERIVED
&& formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
&& actual->ts.type == BT_DERIVED
&& actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
return true;
if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
/* Make sure the vtab symbol is present when
the module variables are generated. */
gfc_find_derived_vtab (actual->ts.u.derived);
if (actual->ts.type == BT_PROCEDURE)
{
gfc_symbol *act_sym = actual->symtree->n.sym;
if (formal->attr.flavor != FL_PROCEDURE)
{
if (where)
gfc_error ("Invalid procedure argument at %L", &actual->where);
return false;
}
if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
sizeof(err), NULL, NULL))
{
if (where)
gfc_error_opt (OPT_Wargument_mismatch,
"Interface mismatch in dummy procedure %qs at %L:"
" %s", formal->name, &actual->where, err);
return false;
}
if (formal->attr.function && !act_sym->attr.function)
{
gfc_add_function (&act_sym->attr, act_sym->name,
&act_sym->declared_at);
if (act_sym->ts.type == BT_UNKNOWN
&& !gfc_set_default_type (act_sym, 1, act_sym->ns))
return false;
}
else if (formal->attr.subroutine && !act_sym->attr.subroutine)
gfc_add_subroutine (&act_sym->attr, act_sym->name,
&act_sym->declared_at);
return true;
}
ppc = gfc_get_proc_ptr_comp (actual);
if (ppc && ppc->ts.interface)
{
if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
err, sizeof(err), NULL, NULL))
{
if (where)
gfc_error_opt (OPT_Wargument_mismatch,
"Interface mismatch in dummy procedure %qs at %L:"
" %s", formal->name, &actual->where, err);
return false;
}
}
/* F2008, C1241. */
if (formal->attr.pointer && formal->attr.contiguous
&& !gfc_is_simply_contiguous (actual, true, false))
{
if (where)
gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
"must be simply contiguous", formal->name, &actual->where);
return false;
}
symbol_attribute actual_attr = gfc_expr_attr (actual);
if (actual->ts.type == BT_CLASS && !actual_attr.class_ok)
return true;
if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
&& actual->ts.type != BT_HOLLERITH
&& formal->ts.type != BT_ASSUMED
&& !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
&& !gfc_compare_types (&formal->ts, &actual->ts)
&& !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
&& gfc_compare_derived_types (formal->ts.u.derived,
CLASS_DATA (actual)->ts.u.derived)))
{
if (where)
gfc_error_opt (OPT_Wargument_mismatch,
"Type mismatch in argument %qs at %L; passed %s to %s",
formal->name, where, gfc_typename (&actual->ts),
gfc_typename (&formal->ts));
return false;
}
if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
{
if (where)
gfc_error ("Assumed-type actual argument at %L requires that dummy "
"argument %qs is of assumed type", &actual->where,
formal->name);
return false;
}
/* F2008, 12.5.2.5; IR F08/0073. */
if (formal->ts.type == BT_CLASS && formal->attr.class_ok
&& actual->expr_type != EXPR_NULL
&& ((CLASS_DATA (formal)->attr.class_pointer
&& formal->attr.intent != INTENT_IN)
|| CLASS_DATA (formal)->attr.allocatable))
{
if (actual->ts.type != BT_CLASS)
{
if (where)
gfc_error ("Actual argument to %qs at %L must be polymorphic",
formal->name, &actual->where);
return false;
}
if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
&& !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
CLASS_DATA (formal)->ts.u.derived))
{
if (where)
gfc_error ("Actual argument to %qs at %L must have the same "
"declared type", formal->name, &actual->where);
return false;
}
}
/* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
is necessary also for F03, so retain error for both.
NOTE: Other type/kind errors pre-empt this error. Since they are F03
compatible, no attempt has been made to channel to this one. */
if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
&& (CLASS_DATA (formal)->attr.allocatable
||CLASS_DATA (formal)->attr.class_pointer))
{
if (where)
gfc_error ("Actual argument to %qs at %L must be unlimited "
"polymorphic since the formal argument is a "
"pointer or allocatable unlimited polymorphic "
"entity [F2008: 12.5.2.5]", formal->name,
&actual->where);
return false;
}
if (formal->attr.codimension && !gfc_is_coarray (actual))
{
if (where)
gfc_error ("Actual argument to %qs at %L must be a coarray",
formal->name, &actual->where);
return false;
}
if (formal->attr.codimension && formal->attr.allocatable)
{
gfc_ref *last = NULL;
for (ref = actual->ref; ref; ref = ref->next)
if (ref->type == REF_COMPONENT)
last = ref;
/* F2008, 12.5.2.6. */
if ((last && last->u.c.component->as->corank != formal->as->corank)
|| (!last
&& actual->symtree->n.sym->as->corank != formal->as->corank))
{
if (where)
gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
formal->name, &actual->where, formal->as->corank,
last ? last->u.c.component->as->corank
: actual->symtree->n.sym->as->corank);
return false;
}
}
if (formal->attr.codimension)
{
/* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */
/* F2018, 12.5.2.8. */
if (formal->attr.dimension
&& (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
&& actual_attr.dimension
&& !gfc_is_simply_contiguous (actual, true, true))
{
if (where)
gfc_error ("Actual argument to %qs at %L must be simply "
"contiguous or an element of such an array",
formal->name, &actual->where);
return false;
}
/* F2008, C1303 and C1304. */
if (formal->attr.intent != INTENT_INOUT
&& (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
&& formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
|| formal->attr.lock_comp))
{
if (where)
gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
"which is LOCK_TYPE or has a LOCK_TYPE component",
formal->name, &actual->where);
return false;
}
/* TS18508, C702/C703. */
if (formal->attr.intent != INTENT_INOUT
&& (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
&& formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
|| formal->attr.event_comp))
{
if (where)
gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
"which is EVENT_TYPE or has a EVENT_TYPE component",
formal->name, &actual->where);
return false;
}
}
/* F2008, C1239/C1240. */
if (actual->expr_type == EXPR_VARIABLE
&& (actual->symtree->n.sym->attr.asynchronous
|| actual->symtree->n.sym->attr.volatile_)
&& (formal->attr.asynchronous || formal->attr.volatile_)
&& actual->rank && formal->as
&& !gfc_is_simply_contiguous (actual, true, false)
&& ((formal->as->type != AS_ASSUMED_SHAPE
&& formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
|| formal->attr.contiguous))
{
if (where)
gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
"assumed-rank array without CONTIGUOUS attribute - as actual"
" argument at %L is not simply contiguous and both are "
"ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
return false;
}
if (formal->attr.allocatable && !formal->attr.codimension
&& actual_attr.codimension)
{
if (formal->attr.intent == INTENT_OUT)
{
if (where)
gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
"INTENT(OUT) dummy argument %qs", &actual->where,
formal->name);
return false;
}
else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
gfc_warning (OPT_Wsurprising,
"Passing coarray at %L to allocatable, noncoarray dummy "
"argument %qs, which is invalid if the allocation status"
" is modified", &actual->where, formal->name);
}
/* If the rank is the same or the formal argument has assumed-rank. */
if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
return true;
rank_check = where != NULL && !is_elemental && formal->as
&& (formal->as->type == AS_ASSUMED_SHAPE
|| formal->as->type == AS_DEFERRED)
&& actual->expr_type != EXPR_NULL;
/* Skip rank checks for NO_ARG_CHECK. */
if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
return true;
/* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
if (rank_check || ranks_must_agree
|| (formal->attr.pointer && actual->expr_type != EXPR_NULL)
|| (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
|| (actual->rank == 0
&& ((formal->ts.type == BT_CLASS
&& CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
|| (formal->ts.type != BT_CLASS
&& formal->as->type == AS_ASSUMED_SHAPE))
&& actual->expr_type != EXPR_NULL)
|| (actual->rank == 0 && formal->attr.dimension
&& gfc_is_coindexed (actual)))
{
if (where)
argument_rank_mismatch (formal->name, &actual->where,
symbol_rank (formal), actual->rank);
return false;
}
else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
return true;
/* At this point, we are considering a scalar passed to an array. This
is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
- if the actual argument is (a substring of) an element of a
non-assumed-shape/non-pointer/non-polymorphic array; or
- (F2003) if the actual argument is of type character of default/c_char
kind. */
is_pointer = actual->expr_type == EXPR_VARIABLE
? actual->symtree->n.sym->attr.pointer : false;
for (ref = actual->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT)
is_pointer = ref->u.c.component->attr.pointer;
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
&& ref->u.ar.dimen > 0
&& (!ref->next
|| (ref->next->type == REF_SUBSTRING && !ref->next->next)))
break;
}
if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
{
if (where)
gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
"at %L", formal->name, &actual->where);
return false;
}
if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
&& (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
{
if (where)
gfc_error ("Element of assumed-shaped or pointer "
"array passed to array dummy argument %qs at %L",
formal->name, &actual->where);
return false;
}
if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
&& (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
{
if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
{
if (where)
gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
"CHARACTER actual argument with array dummy argument "
"%qs at %L", formal->name, &actual->where);
return false;
}
if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
{
gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
"array dummy argument %qs at %L",
formal->name, &actual->where);
return false;
}
else
return ((gfc_option.allow_std & GFC_STD_F2003) != 0);
}
if (ref == NULL && actual->expr_type != EXPR_NULL)
{
if (where)
argument_rank_mismatch (formal->name, &actual->where,
symbol_rank (formal), actual->rank);
return false;
}
return true;
}
/* Returns the storage size of a symbol (formal argument) or
zero if it cannot be determined. */
static unsigned long
get_sym_storage_size (gfc_symbol *sym)
{
int i;
unsigned long strlen, elements;
if (sym->ts.type == BT_CHARACTER)
{
if (sym->ts.u.cl && sym->ts.u.cl->length
&& sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
else
return 0;
}
else
strlen = 1;
if (symbol_rank (sym) == 0)
return strlen;
elements = 1;
if (sym->as->type != AS_EXPLICIT)
return 0;
for (i = 0; i < sym->as->rank; i++)
{
if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
|| sym->as->lower[i]->expr_type != EXPR_CONSTANT)
return 0;
elements *= mpz_get_si (sym->as->upper[i]->value.integer)
- mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
}
return strlen*elements;
}
/* Returns the storage size of an expression (actual argument) or
zero if it cannot be determined. For an array element, it returns
the remaining size as the element sequence consists of all storage
units of the actual argument up to the end of the array. */
static unsigned long
get_expr_storage_size (gfc_expr *e)
{
int i;
long int strlen, elements;
long int substrlen = 0;
bool is_str_storage = false;
gfc_ref *ref;
if (e == NULL)
return 0;
if (e->ts.type == BT_CHARACTER)
{
if (e->ts.u.cl && e->ts.u.cl->length
&& e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
else if (e->expr_type == EXPR_CONSTANT
&& (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
strlen = e->value.character.length;
else
return 0;
}
else
strlen = 1; /* Length per element. */
if (e->rank == 0 && !e->ref)
return strlen;
elements = 1;
if (!e->ref)
{
if (!e->shape)
return 0;
for (i = 0; i < e->rank; i++)
elements *= mpz_get_si (e->shape[i]);
return elements*strlen;
}
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_SUBSTRING && ref->u.ss.start
&& ref->u.ss.start->expr_type == EXPR_CONSTANT)
{
if (is_str_storage)
{
/* The string length is the substring length.
Set now to full string length. */
if (!ref->u.ss.length || !ref->u.ss.length->length
|| ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
return 0;
strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
}
substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
continue;
}
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
for (i = 0; i < ref->u.ar.dimen; i++)
{
long int start, end, stride;
stride = 1;
if (ref->u.ar.stride[i])
{
if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
else
return 0;
}
if (ref->u.ar.start[i])
{
if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
start = mpz_get_si (ref->u.ar.start[i]->value.integer);
else
return 0;
}
else if (ref->u.ar.as->lower[i]
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
else
return 0;
if (ref->u.ar.end[i])
{
if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
end = mpz_get_si (ref->u.ar.end[i]->value.integer);
else
return 0;
}
else if (ref->u.ar.as->upper[i]
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
else
return 0;
elements *= (end - start)/stride + 1L;
}
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
for (i = 0; i < ref->u.ar.as->rank; i++)
{
if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
&& ref->u.ar.as->lower[i]->ts.type == BT_INTEGER
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT
&& ref->u.ar.as->upper[i]->ts.type == BT_INTEGER)
elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ 1L;
else
return 0;
}
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
&& e->expr_type == EXPR_VARIABLE)
{
if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
|| e->symtree->n.sym->attr.pointer)
{
elements = 1;
continue;
}
/* Determine the number of remaining elements in the element
sequence for array element designators. */
is_str_storage = true;
for (i = ref->u.ar.dimen - 1; i >= 0; i--)
{
if (ref->u.ar.start[i] == NULL
|| ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
|| ref->u.ar.as->upper[i] == NULL
|| ref->u.ar.as->lower[i] == NULL
|| ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
|| ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
return 0;
elements
= elements
* (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ 1L)
- (mpz_get_si (ref->u.ar.start[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
}
}
else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
&& ref->u.c.component->attr.proc_pointer
&& ref->u.c.component->attr.dimension)
{
/* Array-valued procedure-pointer components. */
gfc_array_spec *as = ref->u.c.component->as;
for (i = 0; i < as->rank; i++)
{
if (!as->upper[i] || !as->lower[i]
|| as->upper[i]->expr_type != EXPR_CONSTANT
|| as->lower[i]->expr_type != EXPR_CONSTANT)
return 0;
elements = elements
* (mpz_get_si (as->upper[i]->value.integer)
- mpz_get_si (as->lower[i]->value.integer) + 1L);
}
}
}
if (substrlen)
return (is_str_storage) ? substrlen + (elements-1)*strlen
: elements*strlen;
else
return elements*strlen;
}
/* Given an expression, check whether it is an array section
which has a vector subscript. */
bool
gfc_has_vector_subscript (gfc_expr *e)
{
int i;
gfc_ref *ref;
if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
return false;
for (ref = e->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
for (i = 0; i < ref->u.ar.dimen; i++)
if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
return true;
return false;
}
static bool
is_procptr_result (gfc_expr *expr)
{
gfc_component *c = gfc_get_proc_ptr_comp (expr);
if (c)
return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
else
return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
&& (expr->symtree->n.sym->result->attr.proc_pointer == 1));
}
/* Recursively append candidate argument ARG to CANDIDATES. Store the
number of total candidates in CANDIDATES_LEN. */
static void
lookup_arg_fuzzy_find_candidates (gfc_formal_arglist *arg,
char **&candidates,
size_t &candidates_len)
{
for (gfc_formal_arglist *p = arg; p && p->sym; p = p->next)
vec_push (candidates, candidates_len, p->sym->name);
}
/* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account. */
static const char*
lookup_arg_fuzzy (const char *arg, gfc_formal_arglist *arguments)
{
char **candidates = NULL;
size_t candidates_len = 0;
lookup_arg_fuzzy_find_candidates (arguments, candidates, candidates_len);
return gfc_closest_fuzzy_match (arg, candidates);
}
/* Given formal and actual argument lists, see if they are compatible.
If they are compatible, the actual argument list is sorted to
correspond with the formal list, and elements for missing optional
arguments are inserted. If WHERE pointer is nonnull, then we issue
errors when things don't match instead of just returning the status
code. */
static bool
compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
int ranks_must_agree, int is_elemental,
bool in_statement_function, locus *where)
{
gfc_actual_arglist **new_arg, *a, *actual;
gfc_formal_arglist *f;
int i, n, na;
unsigned long actual_size, formal_size;
bool full_array = false;
gfc_array_ref *actual_arr_ref;
actual = *ap;
if (actual == NULL && formal == NULL)
return true;
n = 0;
for (f = formal; f; f = f->next)
n++;
new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
for (i = 0; i < n; i++)
new_arg[i] = NULL;
na = 0;
f = formal;
i = 0;
for (a = actual; a; a = a->next, f = f->next)
{
if (a->name != NULL && in_statement_function)
{
gfc_error ("Keyword argument %qs at %L is invalid in "
"a statement function", a->name, &a->expr->where);
return false;
}
/* Look for keywords but ignore g77 extensions like %VAL. */
if (a->name != NULL && a->name[0] != '%')
{
i = 0;
for (f = formal; f; f = f->next, i++)
{
if (f->sym == NULL)
continue;
if (strcmp (f->sym->name, a->name) == 0)
break;
}
if (f == NULL)
{
if (where)
{
const char *guessed = lookup_arg_fuzzy (a->name, formal);
if (guessed)
gfc_error ("Keyword argument %qs at %L is not in "
"the procedure; did you mean %qs?",
a->name, &a->expr->where, guessed);
else
gfc_error ("Keyword argument %qs at %L is not in "
"the procedure", a->name, &a->expr->where);
}
return false;
}
if (new_arg[i] != NULL)
{
if (where)
gfc_error ("Keyword argument %qs at %L is already associated "
"with another actual argument", a->name,
&a->expr->where);
return false;
}
}
if (f == NULL)
{
if (where)
gfc_error ("More actual than formal arguments in procedure "
"call at %L", where);
return false;
}
if (f->sym == NULL && a->expr == NULL)
goto match;
if (f->sym == NULL)
{
if (where)
gfc_error ("Missing alternate return spec in subroutine call "
"at %L", where);
return false;
}
if (a->expr == NULL)
{
if (where)
gfc_error ("Unexpected alternate return spec in subroutine "
"call at %L", where);
return false;
}
/* Make sure that intrinsic vtables exist for calls to unlimited
polymorphic formal arguments. */
if (UNLIMITED_POLY (f->sym)
&& a->expr->ts.type != BT_DERIVED
&& a->expr->ts.type != BT_CLASS)
gfc_find_vtab (&a->expr->ts);
if (a->expr->expr_type == EXPR_NULL
&& ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
&& (f->sym->attr.allocatable || !f->sym->attr.optional
|| (gfc_option.allow_std & GFC_STD_F2008) == 0))
|| (f->sym->ts.type == BT_CLASS
&& !CLASS_DATA (f->sym)->attr.class_pointer
&& (CLASS_DATA (f->sym)->attr.allocatable
|| !f->sym->attr.optional
|| (gfc_option.allow_std & GFC_STD_F2008) == 0))))
{
if (where
&& (!f->sym->attr.optional
|| (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
|| (f->sym->ts.type == BT_CLASS
&& CLASS_DATA (f->sym)->attr.allocatable)))
gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
where, f->sym->name);
else if (where)
gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
"dummy %qs", where, f->sym->name);
return false;
}
if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
is_elemental, where))
return false;
/* TS 29113, 6.3p2. */
if (f->sym->ts.type == BT_ASSUMED
&& (a->expr->ts.type == BT_DERIVED
|| (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
{
gfc_namespace *f2k_derived;
f2k_derived = a->expr->ts.type == BT_DERIVED
? a->expr->ts.u.derived->f2k_derived
: CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
if (f2k_derived
&& (f2k_derived->finalizers || f2k_derived->tb_sym_root))
{
gfc_error ("Actual argument at %L to assumed-type dummy is of "
"derived type with type-bound or FINAL procedures",
&a->expr->where);
return false;
}
}
/* Special case for character arguments. For allocatable, pointer
and assumed-shape dummies, the string length needs to match
exactly. */
if (a->expr->ts.type == BT_CHARACTER
&& a->expr->ts.u.cl && a->expr->ts.u.cl->length
&& a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
&& f->sym->ts.type == BT_CHARACTER && f->sym->ts.u.cl
&& f->sym->ts.u.cl->length
&& f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
&& (f->sym->attr.pointer || f->sym->attr.allocatable
|| (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
&& (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
f->sym->ts.u.cl->length->value.integer) != 0))
{
if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
gfc_warning (OPT_Wargument_mismatch,
"Character length mismatch (%ld/%ld) between actual "
"argument and pointer or allocatable dummy argument "
"%qs at %L",
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
f->sym->name, &a->expr->where);
else if (where)
gfc_warning (OPT_Wargument_mismatch,
"Character length mismatch (%ld/%ld) between actual "
"argument and assumed-shape dummy argument %qs "
"at %L",
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
f->sym->name, &a->expr->where);
return false;
}
if ((f->sym->attr.pointer || f->sym->attr.allocatable)
&& f->sym->ts.deferred != a->expr->ts.deferred
&& a->expr->ts.type == BT_CHARACTER)
{
if (where)
gfc_error ("Actual argument at %L to allocatable or "
"pointer dummy argument %qs must have a deferred "
"length type parameter if and only if the dummy has one",
&a->expr->where, f->sym->name);
return false;
}
if (f->sym->ts.type == BT_CLASS)
goto skip_size_check;
actual_size = get_expr_storage_size (a->expr);
formal_size = get_sym_storage_size (f->sym);
if (actual_size != 0 && actual_size < formal_size
&& a->expr->ts.type != BT_PROCEDURE
&& f->sym->attr.flavor != FL_PROCEDURE)
{
if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
gfc_warning (OPT_Wargument_mismatch,
"Character length of actual argument shorter "
"than of dummy argument %qs (%lu/%lu) at %L",
f->sym->name, actual_size, formal_size,
&a->expr->where);
else if (where)
{
/* Emit a warning for -std=legacy and an error otherwise. */
if (gfc_option.warn_std == 0)
gfc_warning (OPT_Wargument_mismatch,
"Actual argument contains too few "
"elements for dummy argument %qs (%lu/%lu) "
"at %L", f->sym->name, actual_size,
formal_size, &a->expr->where);
else
gfc_error_now ("Actual argument contains too few "
"elements for dummy argument %qs (%lu/%lu) "
"at %L", f->sym->name, actual_size,
formal_size, &a->expr->where);
}
return false;
}
skip_size_check:
/* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
argument is provided for a procedure pointer formal argument. */
if (f->sym->attr.proc_pointer
&& !((a->expr->expr_type == EXPR_VARIABLE
&& (a->expr->symtree->n.sym->attr.proc_pointer
|| gfc_is_proc_ptr_comp (a->expr)))
|| (a->expr->expr_type == EXPR_FUNCTION
&& is_procptr_result (a->expr))))
{
if (where)
gfc_error ("Expected a procedure pointer for argument %qs at %L",
f->sym->name, &a->expr->where);
return false;
}
/* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
provided for a procedure formal argument. */
if (f->sym->attr.flavor == FL_PROCEDURE
&& !((a->expr->expr_type == EXPR_VARIABLE
&& (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
|| a->expr->symtree->n.sym->attr.proc_pointer
|| gfc_is_proc_ptr_comp (a->expr)))
|| (a->expr->expr_type == EXPR_FUNCTION
&& is_procptr_result (a->expr))))
{
if (where)
gfc_error ("Expected a procedure for argument %qs at %L",
f->sym->name, &a->expr->where);
return false;
}
if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
&& a->expr->expr_type == EXPR_VARIABLE
&& a->expr->symtree->n.sym->as
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
&& (a->expr->ref == NULL
|| (a->expr->ref->type == REF_ARRAY
&& a->expr->ref->u.ar.type == AR_FULL)))
{
if (where)
gfc_error ("Actual argument for %qs cannot be an assumed-size"
" array at %L", f->sym->name, where);
return false;
}
if (a->expr->expr_type != EXPR_NULL
&& compare_pointer (f->sym, a->expr) == 0)
{
if (where)
gfc_error ("Actual argument for %qs must be a pointer at %L",
f->sym->name, &a->expr->where);
return false;
}
if (a->expr->expr_type != EXPR_NULL
&& (gfc_option.allow_std & GFC_STD_F2008) == 0
&& compare_pointer (f->sym, a->expr) == 2)
{
if (where)
gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
"pointer dummy %qs", &a->expr->where,f->sym->name);
return false;
}
/* Fortran 2008, C1242. */
if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L to pointer "
"dummy %qs",
&a->expr->where, f->sym->name);
return false;
}
/* Fortran 2008, 12.5.2.5 (no constraint). */
if (a->expr->expr_type == EXPR_VARIABLE
&& f->sym->attr.intent != INTENT_IN
&& f->sym->attr.allocatable
&& gfc_is_coindexed (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L to allocatable "
"dummy %qs requires INTENT(IN)",
&a->expr->where, f->sym->name);
return false;
}
/* Fortran 2008, C1237. */
if (a->expr->expr_type == EXPR_VARIABLE
&& (f->sym->attr.asynchronous || f->sym->attr.volatile_)
&& gfc_is_coindexed (a->expr)
&& (a->expr->symtree->n.sym->attr.volatile_
|| a->expr->symtree->n.sym->attr.asynchronous))
{
if (where)
gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
"%L requires that dummy %qs has neither "
"ASYNCHRONOUS nor VOLATILE", &a->expr->where,
f->sym->name);
return false;
}
/* Fortran 2008, 12.5.2.4 (no constraint). */
if (a->expr->expr_type == EXPR_VARIABLE
&& f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
&& gfc_is_coindexed (a->expr)
&& gfc_has_ultimate_allocatable (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L with allocatable "
"ultimate component to dummy %qs requires either VALUE "
"or INTENT(IN)", &a->expr->where, f->sym->name);
return false;
}
if (f->sym->ts.type == BT_CLASS
&& CLASS_DATA (f->sym)->attr.allocatable
&& gfc_is_class_array_ref (a->expr, &full_array)
&& !full_array)
{
if (where)
gfc_error ("Actual CLASS array argument for %qs must be a full "
"array at %L", f->sym->name, &a->expr->where);
return false;
}
if (a->expr->expr_type != EXPR_NULL
&& !compare_allocatable (f->sym, a->expr))
{
if (where)
gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
f->sym->name, &a->expr->where);
return false;
}
/* Check intent = OUT/INOUT for definable actual argument. */
if (!in_statement_function
&& (f->sym->attr.intent == INTENT_OUT
|| f->sym->attr.intent == INTENT_INOUT))
{
const char* context = (where
? _("actual argument to INTENT = OUT/INOUT")
: NULL);
if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
&& CLASS_DATA (f->sym)->attr.class_pointer)
|| (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
&& !gfc_check_vardef_context (a->expr, true, false, false, context))
return false;
if (!gfc_check_vardef_context (a->expr, false, false, false, context))
return false;
}
if ((f->sym->attr.intent == INTENT_OUT
|| f->sym->attr.intent == INTENT_INOUT
|| f->sym->attr.volatile_
|| f->sym->attr.asynchronous)
&& gfc_has_vector_subscript (a->expr))
{
if (where)
gfc_error ("Array-section actual argument with vector "
"subscripts at %L is incompatible with INTENT(OUT), "
"INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
"of the dummy argument %qs",
&a->expr->where, f->sym->name);
return false;
}
/* C1232 (R1221) For an actual argument which is an array section or
an assumed-shape array, the dummy argument shall be an assumed-
shape array, if the dummy argument has the VOLATILE attribute. */
if (f->sym->attr.volatile_
&& a->expr->expr_type == EXPR_VARIABLE
&& a->expr->symtree->n.sym->as
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
{
if (where)
gfc_error ("Assumed-shape actual argument at %L is "
"incompatible with the non-assumed-shape "
"dummy argument %qs due to VOLATILE attribute",
&a->expr->where,f->sym->name);
return false;
}
/* Find the last array_ref. */
actual_arr_ref = NULL;
if (a->expr->ref)
actual_arr_ref = gfc_find_array_ref (a->expr, true);
if (f->sym->attr.volatile_
&& actual_arr_ref && actual_arr_ref->type == AR_SECTION
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
{
if (where)
gfc_error ("Array-section actual argument at %L is "
"incompatible with the non-assumed-shape "
"dummy argument %qs due to VOLATILE attribute",
&a->expr->where, f->sym->name);
return false;
}
/* C1233 (R1221) For an actual argument which is a pointer array, the
dummy argument shall be an assumed-shape or pointer array, if the
dummy argument has the VOLATILE attribute. */
if (f->sym->attr.volatile_
&& a->expr->expr_type == EXPR_VARIABLE
&& a->expr->symtree->n.sym->attr.pointer
&& a->expr->symtree->n.sym->as
&& !(f->sym->as
&& (f->sym->as->type == AS_ASSUMED_SHAPE
|| f->sym->attr.pointer)))
{
if (where)
gfc_error ("Pointer-array actual argument at %L requires "
"an assumed-shape or pointer-array dummy "
"argument %qs due to VOLATILE attribute",
&a->expr->where,f->sym->name);
return false;
}
match:
if (a == actual)
na = i;
new_arg[i++] = a;
}
/* Make sure missing actual arguments are optional. */
i = 0;
for (f = formal; f; f = f->next, i++)
{
if (new_arg[i] != NULL)
continue;
if (f->sym == NULL)
{
if (where)
gfc_error ("Missing alternate return spec in subroutine call "
"at %L", where);
return false;
}
if (!f->sym->attr.optional
|| (in_statement_function && f->sym->attr.optional))
{
if (where)
gfc_error ("Missing actual argument for argument %qs at %L",
f->sym->name, where);
return false;
}
}
/* The argument lists are compatible. We now relink a new actual
argument list with null arguments in the right places. The head
of the list remains the head. */
for (i = 0; i < n; i++)
if (new_arg[i] == NULL)
new_arg[i] = gfc_get_actual_arglist ();
if (na != 0)
{
std::swap (*new_arg[0], *actual);
std::swap (new_arg[0], new_arg[na]);
}
for (i = 0; i < n - 1; i++)
new_arg[i]->next = new_arg[i + 1];
new_arg[i]->next = NULL;
if (*ap == NULL && n > 0)
*ap = new_arg[0];
/* Note the types of omitted optional arguments. */
for (a = *ap, f = formal; a; a = a->next, f = f->next)
if (a->expr == NULL && a->label == NULL)
a->missing_arg_type = f->sym->ts.type;
return true;
}
typedef struct
{
gfc_formal_arglist *f;
gfc_actual_arglist *a;
}
argpair;
/* qsort comparison function for argument pairs, with the following
order:
- p->a->expr == NULL
- p->a->expr->expr_type != EXPR_VARIABLE
- by gfc_symbol pointer value (larger first). */
static int
pair_cmp (const void *p1, const void *p2)
{
const gfc_actual_arglist *a1, *a2;
/* *p1 and *p2 are elements of the to-be-sorted array. */
a1 = ((const argpair *) p1)->a;
a2 = ((const argpair *) p2)->a;
if (!a1->expr)
{
if (!a2->expr)
return 0;
return -1;
}
if (!a2->expr)
return 1;
if (a1->expr->expr_type != EXPR_VARIABLE)
{
if (a2->expr->expr_type != EXPR_VARIABLE)
return 0;
return -1;
}
if (a2->expr->expr_type != EXPR_VARIABLE)
return 1;
if (a1->expr->symtree->n.sym > a2->expr->symtree->n.sym)
return -1;
return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
}
/* Given two expressions from some actual arguments, test whether they
refer to the same expression. The analysis is conservative.
Returning false will produce no warning. */
static bool
compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
{
const gfc_ref *r1, *r2;
if (!e1 || !e2
|| e1->expr_type != EXPR_VARIABLE
|| e2->expr_type != EXPR_VARIABLE
|| e1->symtree->n.sym != e2->symtree->n.sym)
return false;
/* TODO: improve comparison, see expr.c:show_ref(). */
for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
{
if (r1->type != r2->type)
return false;
switch (r1->type)
{
case REF_ARRAY:
if (r1->u.ar.type != r2->u.ar.type)
return false;
/* TODO: At the moment, consider only full arrays;
we could do better. */
if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
return false;
break;
case REF_COMPONENT:
if (r1->u.c.component != r2->u.c.component)
return false;
break;
case REF_SUBSTRING:
return false;
default:
gfc_internal_error ("compare_actual_expr(): Bad component code");
}
}
if (!r1 && !r2)
return true;
return false;
}
/* Given formal and actual argument lists that correspond to one
another, check that identical actual arguments aren't not
associated with some incompatible INTENTs. */
static bool
check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
sym_intent f1_intent, f2_intent;
gfc_formal_arglist *f1;
gfc_actual_arglist *a1;
size_t n, i, j;
argpair *p;
bool t = true;
n = 0;
for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
{
if (f1 == NULL && a1 == NULL)
break;
if (f1 == NULL || a1 == NULL)
gfc_internal_error ("check_some_aliasing(): List mismatch");
n++;
}
if (n == 0)
return t;
p = XALLOCAVEC (argpair, n);
for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
{
p[i].f = f1;
p[i].a = a1;
}
qsort (p, n, sizeof (argpair), pair_cmp);
for (i = 0; i < n; i++)
{
if (!p[i].a->expr
|| p[i].a->expr->expr_type != EXPR_VARIABLE
|| p[i].a->expr->ts.type == BT_PROCEDURE)
continue;
f1_intent = p[i].f->sym->attr.intent;
for (j = i + 1; j < n; j++)
{
/* Expected order after the sort. */
if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
gfc_internal_error ("check_some_aliasing(): corrupted data");
/* Are the expression the same? */
if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
break;
f2_intent = p[j].f->sym->attr.intent;
if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
|| (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
|| (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
{
gfc_warning (0, "Same actual argument associated with INTENT(%s) "
"argument %qs and INTENT(%s) argument %qs at %L",
gfc_intent_string (f1_intent), p[i].f->sym->name,
gfc_intent_string (f2_intent), p[j].f->sym->name,
&p[i].a->expr->where);
t = false;
}
}
}
return t;
}
/* Given formal and actual argument lists that correspond to one
another, check that they are compatible in the sense that intents
are not mismatched. */
static bool
check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
sym_intent f_intent;
for (;; f = f->next, a = a->next)
{
gfc_expr *expr;
if (f == NULL && a == NULL)
break;
if (f == NULL || a == NULL)
gfc_internal_error ("check_intents(): List mismatch");
if (a->expr && a->expr->expr_type == EXPR_FUNCTION
&& a->expr->value.function.isym
&& a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
expr = a->expr->value.function.actual->expr;
else
expr = a->expr;
if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
continue;
f_intent = f->sym->attr.intent;
if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
{
if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
&& CLASS_DATA (f->sym)->attr.class_pointer)
|| (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
{
gfc_error ("Procedure argument at %L is local to a PURE "
"procedure and has the POINTER attribute",
&expr->where);
return false;
}
}
/* Fortran 2008, C1283. */
if (gfc_pure (NULL) && gfc_is_coindexed (expr))
{
if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
{
gfc_error ("Coindexed actual argument at %L in PURE procedure "
"is passed to an INTENT(%s) argument",
&expr->where, gfc_intent_string (f_intent));
return false;
}
if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
&& CLASS_DATA (f->sym)->attr.class_pointer)
|| (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
{
gfc_error ("Coindexed actual argument at %L in PURE procedure "
"is passed to a POINTER dummy argument",
&expr->where);
return false;
}
}
/* F2008, Section 12.5.2.4. */
if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
&& gfc_is_coindexed (expr))
{
gfc_error ("Coindexed polymorphic actual argument at %L is passed "
"polymorphic dummy argument %qs",
&expr->where, f->sym->name);
return false;
}
}
return true;
}
/* Check how a procedure is used against its interface. If all goes
well, the actual argument list will also end up being properly
sorted. */
bool
gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
{
gfc_actual_arglist *a;
gfc_formal_arglist *dummy_args;
/* Warn about calls with an implicit interface. Special case
for calling a ISO_C_BINDING because c_loc and c_funloc
are pseudo-unknown. Additionally, warn about procedures not
explicitly declared at all if requested. */
if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
{
if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
{
const char *guessed
= gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
if (guessed)
gfc_error ("Procedure %qs called at %L is not explicitly declared"
"; did you mean %qs?",
sym->name, where, guessed);
else
gfc_error ("Procedure %qs called at %L is not explicitly declared",
sym->name, where);
return false;
}
if (warn_implicit_interface)
gfc_warning (OPT_Wimplicit_interface,
"Procedure %qs called with an implicit interface at %L",
sym->name, where);
else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
gfc_warning (OPT_Wimplicit_procedure,
"Procedure %qs called at %L is not explicitly declared",
sym->name, where);
}
if (sym->attr.if_source == IFSRC_UNKNOWN)
{
if (sym->attr.pointer)
{
gfc_error ("The pointer object %qs at %L must have an explicit "
"function interface or be declared as array",
sym->name, where);
return false;
}
if (sym->attr.allocatable && !sym->attr.external)
{
gfc_error ("The allocatable object %qs at %L must have an explicit "
"function interface or be declared as array",
sym->name, where);
return false;
}
if (sym->attr.allocatable)
{
gfc_error ("Allocatable function %qs at %L must have an explicit "
"function interface", sym->name, where);
return false;
}
for (a = *ap; a; a = a->next)
{
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
if (a->name != NULL && a->name[0] != '%')
{
gfc_error ("Keyword argument requires explicit interface "
"for procedure %qs at %L", sym->name, &a->expr->where);
break;
}
/* TS 29113, 6.2. */
if (a->expr && a->expr->ts.type == BT_ASSUMED
&& sym->intmod_sym_id != ISOCBINDING_LOC)
{
gfc_error ("Assumed-type argument %s at %L requires an explicit "
"interface", a->expr->symtree->n.sym->name,
&a->expr->where);
break;
}
/* F2008, C1303 and C1304. */
if (a->expr
&& (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
&& ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
|| gfc_expr_attr (a->expr).lock_comp))
{
gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
"component at %L requires an explicit interface for "
"procedure %qs", &a->expr->where, sym->name);
break;
}
if (a->expr
&& (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
&& ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& a->expr->ts.u.derived->intmod_sym_id
== ISOFORTRAN_EVENT_TYPE)
|| gfc_expr_attr (a->expr).event_comp))
{
gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE "
"component at %L requires an explicit interface for "
"procedure %qs", &a->expr->where, sym->name);
break;
}
if (a->expr && a->expr->expr_type == EXPR_NULL
&& a->expr->ts.type == BT_UNKNOWN)
{
gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
return false;
}
/* TS 29113, C407b. */
if (a->expr && a->expr->expr_type == EXPR_VARIABLE
&& symbol_rank (a->expr->symtree->n.sym) == -1)
{
gfc_error ("Assumed-rank argument requires an explicit interface "
"at %L", &a->expr->where);
return false;
}
}
return true;
}
dummy_args = gfc_sym_get_dummy_args (sym);
/* For a statement function, check that types and type parameters of actual
arguments and dummy arguments match. */
if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental,
sym->attr.proc == PROC_ST_FUNCTION, where))
return false;
if (!check_intents (dummy_args, *ap))
return false;
if (warn_aliasing)
check_some_aliasing (dummy_args, *ap);
return true;
}
/* Check how a procedure pointer component is used against its interface.
If all goes well, the actual argument list will also end up being properly
sorted. Completely analogous to gfc_procedure_use. */
void
gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
{
/* Warn about calls with an implicit interface. Special case
for calling a ISO_C_BINDING because c_loc and c_funloc
are pseudo-unknown. */
if (warn_implicit_interface
&& comp->attr.if_source == IFSRC_UNKNOWN
&& !comp->attr.is_iso_c)
gfc_warning (OPT_Wimplicit_interface,
"Procedure pointer component %qs called with an implicit "
"interface at %L", comp->name, where);
if (comp->attr.if_source == IFSRC_UNKNOWN)
{
gfc_actual_arglist *a;
for (a = *ap; a; a = a->next)
{
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
if (a->name != NULL && a->name[0] != '%')
{
gfc_error ("Keyword argument requires explicit interface "
"for procedure pointer component %qs at %L",
comp->name, &a->expr->where);
break;
}
}
return;
}
if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
comp->attr.elemental, false, where))
return;
check_intents (comp->ts.interface->formal, *ap);
if (warn_aliasing)
check_some_aliasing (comp->ts.interface->formal, *ap);
}
/* Try if an actual argument list matches the formal list of a symbol,
respecting the symbol's attributes like ELEMENTAL. This is used for
GENERIC resolution. */
bool
gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
{
gfc_formal_arglist *dummy_args;
bool r;
if (sym->attr.flavor != FL_PROCEDURE)
return false;
dummy_args = gfc_sym_get_dummy_args (sym);
r = !sym->attr.elemental;
if (compare_actual_formal (args, dummy_args, r, !r, false, NULL))
{
check_intents (dummy_args, *args);
if (warn_aliasing)
check_some_aliasing (dummy_args, *args);
return true;
}
return false;
}
/* Given an interface pointer and an actual argument list, search for
a formal argument list that matches the actual. If found, returns
a pointer to the symbol of the correct interface. Returns NULL if
not found. */
gfc_symbol *
gfc_search_interface (gfc_interface *intr, int sub_flag,
gfc_actual_arglist **ap)
{
gfc_symbol *elem_sym = NULL;
gfc_symbol *null_sym = NULL;
locus null_expr_loc;
gfc_actual_arglist *a;
bool has_null_arg = false;
for (a = *ap; a; a = a->next)
if (a->expr && a->expr->expr_type == EXPR_NULL
&& a->expr->ts.type == BT_UNKNOWN)
{
has_null_arg = true;
null_expr_loc = a->expr->where;
break;
}
for (; intr; intr = intr->next)
{
if (gfc_fl_struct (intr->sym->attr.flavor))
continue;
if (sub_flag && intr->sym->attr.function)
continue;
if (!sub_flag && intr->sym->attr.subroutine)
continue;
if (gfc_arglist_matches_symbol (ap, intr->sym))
{
if (has_null_arg && null_sym)
{
gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
"between specific functions %s and %s",
&null_expr_loc, null_sym->name, intr->sym->name);
return NULL;
}
else if (has_null_arg)
{
null_sym = intr->sym;
continue;
}
/* Satisfy 12.4.4.1 such that an elemental match has lower
weight than a non-elemental match. */
if (intr->sym->attr.elemental)
{
elem_sym = intr->sym;
continue;
}
return intr->sym;
}
}
if (null_sym)
return null_sym;
return elem_sym ? elem_sym : NULL;
}
/* Do a brute force recursive search for a symbol. */
static gfc_symtree *
find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
{
gfc_symtree * st;
if (root->n.sym == sym)
return root;
st = NULL;
if (root->left)
st = find_symtree0 (root->left, sym);
if (root->right && ! st)
st = find_symtree0 (root->right, sym);
return st;
}
/* Find a symtree for a symbol. */
gfc_symtree *
gfc_find_sym_in_symtree (gfc_symbol *sym)
{
gfc_symtree *st;
gfc_namespace *ns;
/* First try to find it by name. */
gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
if (st && st->n.sym == sym)
return st;
/* If it's been renamed, resort to a brute-force search. */
/* TODO: avoid having to do this search. If the symbol doesn't exist
in the symtree for the current namespace, it should probably be added. */
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
st = find_symtree0 (ns->sym_root, sym);
if (st)
return st;
}
gfc_internal_error ("Unable to find symbol %qs", sym->name);
/* Not reached. */
}
/* See if the arglist to an operator-call contains a derived-type argument
with a matching type-bound operator. If so, return the matching specific
procedure defined as operator-target as well as the base-object to use
(which is the found derived-type argument with operator). The generic
name, if any, is transmitted to the final expression via 'gname'. */
static gfc_typebound_proc*
matching_typebound_op (gfc_expr** tb_base,
gfc_actual_arglist* args,
gfc_intrinsic_op op, const char* uop,
const char ** gname)
{
gfc_actual_arglist* base;
for (base = args; base; base = base->next)
if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
{
gfc_typebound_proc* tb;
gfc_symbol* derived;
bool result;
while (base->expr->expr_type == EXPR_OP
&& base->expr->value.op.op == INTRINSIC_PARENTHESES)
base->expr = base->expr->value.op.op1;
if (base->expr->ts.type == BT_CLASS)
{
if (!base->expr->ts.u.derived || CLASS_DATA (base->expr) == NULL
|| !gfc_expr_attr (base->expr).class_ok)
continue;
derived = CLASS_DATA (base->expr)->ts.u.derived;
}
else
derived = base->expr->ts.u.derived;
if (op == INTRINSIC_USER)
{
gfc_symtree* tb_uop;
gcc_assert (uop);
tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
false, NULL);
if (tb_uop)
tb = tb_uop->n.tb;
else
tb = NULL;
}
else
tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
false, NULL);
/* This means we hit a PRIVATE operator which is use-associated and
should thus not be seen. */
if (!result)
tb = NULL;
/* Look through the super-type hierarchy for a matching specific
binding. */
for (; tb; tb = tb->overridden)
{
gfc_tbp_generic* g;
gcc_assert (tb->is_generic);
for (g = tb->u.generic; g; g = g->next)
{
gfc_symbol* target;
gfc_actual_arglist* argcopy;
bool matches;
gcc_assert (g->specific);
if (g->specific->error)
continue;
target = g->specific->u.specific->n.sym;
/* Check if this arglist matches the formal. */
argcopy = gfc_copy_actual_arglist (args);
matches = gfc_arglist_matches_symbol (&argcopy, target);
gfc_free_actual_arglist (argcopy);
/* Return if we found a match. */
if (matches)
{
*tb_base = base->expr;
*gname = g->specific_st->name;
return g->specific;
}
}
}
}
return NULL;
}
/* For the 'actual arglist' of an operator call and a specific typebound
procedure that has been found the target of a type-bound operator, build the
appropriate EXPR_COMPCALL and resolve it. We take this indirection over
type-bound procedures rather than resolving type-bound operators 'directly'
so that we can reuse the existing logic. */
static void
build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
gfc_expr* base, gfc_typebound_proc* target,
const char *gname)
{
e->expr_type = EXPR_COMPCALL;
e->value.compcall.tbp = target;
e->value.compcall.name = gname ? gname : "$op";
e->value.compcall.actual = actual;
e->value.compcall.base_object = base;
e->value.compcall.ignore_pass = 1;
e->value.compcall.assign = 0;
if (e->ts.type == BT_UNKNOWN
&& target->function)
{
if (target->is_generic)
e->ts = target->u.generic->specific->u.specific->n.sym->ts;
else
e->ts = target->u.specific->n.sym->ts;
}
}
/* This subroutine is called when an expression is being resolved.
The expression node in question is either a user defined operator
or an intrinsic operator with arguments that aren't compatible
with the operator. This subroutine builds an actual argument list
corresponding to the operands, then searches for a compatible
interface. If one is found, the expression node is replaced with
the appropriate function call. We use the 'match' enum to specify
whether a replacement has been made or not, or if an error occurred. */
match
gfc_extend_expr (gfc_expr *e)
{
gfc_actual_arglist *actual;
gfc_symbol *sym;
gfc_namespace *ns;
gfc_user_op *uop;
gfc_intrinsic_op i;
const char *gname;
gfc_typebound_proc* tbo;
gfc_expr* tb_base;
sym = NULL;
actual = gfc_get_actual_arglist ();
actual->expr = e->value.op.op1;
gname = NULL;
if (e->value.op.op2 != NULL)
{
actual->next = gfc_get_actual_arglist ();
actual->next->expr = e->value.op.op2;
}
i = fold_unary_intrinsic (e->value.op.op);
/* See if we find a matching type-bound operator. */
if (i == INTRINSIC_USER)
tbo = matching_typebound_op (&tb_base, actual,
i, e->value.op.uop->name, &gname);
else
switch (i)
{
#define CHECK_OS_COMPARISON(comp) \
case INTRINSIC_##comp: \
case INTRINSIC_##comp##_OS: \
tbo = matching_typebound_op (&tb_base, actual, \
INTRINSIC_##comp, NULL, &gname); \
if (!tbo) \
tbo = matching_typebound_op (&tb_base, actual, \
INTRINSIC_##comp##_OS, NULL, &gname); \
break;
CHECK_OS_COMPARISON(EQ)
CHECK_OS_COMPARISON(NE)
CHECK_OS_COMPARISON(GT)
CHECK_OS_COMPARISON(GE)
CHECK_OS_COMPARISON(LT)
CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON
default:
tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
break;
}
/* If there is a matching typebound-operator, replace the expression with
a call to it and succeed. */
if (tbo)
{
gcc_assert (tb_base);
build_compcall_for_operator (e, actual, tb_base, tbo, gname);
if (!gfc_resolve_expr (e))
return MATCH_ERROR;
else
return MATCH_YES;
}
if (i == INTRINSIC_USER)
{
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
uop = gfc_find_uop (e->value.op.uop->name, ns);
if (uop == NULL)
continue;
sym = gfc_search_interface (uop->op, 0, &actual);
if (sym != NULL)
break;
}
}
else
{
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
/* Due to the distinction between '==' and '.eq.' and friends, one has
to check if either is defined. */
switch (i)
{
#define CHECK_OS_COMPARISON(comp) \
case INTRINSIC_##comp: \
case INTRINSIC_##comp##_OS: \
sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
if (!sym) \
sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
break;
CHECK_OS_COMPARISON(EQ)
CHECK_OS_COMPARISON(NE)
CHECK_OS_COMPARISON(GT)
CHECK_OS_COMPARISON(GE)
CHECK_OS_COMPARISON(LT)
CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON
default:
sym = gfc_search_interface (ns->op[i], 0, &actual);
}
if (sym != NULL)
break;
}
}
/* TODO: Do an ambiguity-check and error if multiple matching interfaces are
found rather than just taking the first one and not checking further. */
if (sym == NULL)
{
/* Don't use gfc_free_actual_arglist(). */
free (actual->next);
free (actual);
return MATCH_NO;
}
/* Change the expression node to a function call. */
e->expr_type = EXPR_FUNCTION;
e->symtree = gfc_find_sym_in_symtree (sym);
e->value.function.actual = actual;
e->value.function.esym = NULL;
e->value.function.isym = NULL;
e->value.function.name = NULL;
e->user_operator = 1;
if (!gfc_resolve_expr (e))
return MATCH_ERROR;
return MATCH_YES;
}
/* Tries to replace an assignment code node with a subroutine call to the
subroutine associated with the assignment operator. Return true if the node
was replaced. On false, no error is generated. */
bool
gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
{
gfc_actual_arglist *actual;
gfc_expr *lhs, *rhs, *tb_base;
gfc_symbol *sym = NULL;
const char *gname = NULL;
gfc_typebound_proc* tbo;
lhs = c->expr1;
rhs = c->expr2;
/* Don't allow an intrinsic assignment to be replaced. */
if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
&& (rhs->rank == 0 || rhs->rank == lhs->rank)
&& (lhs->ts.type == rhs->ts.type
|| (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
return false;
actual = gfc_get_actual_arglist ();
actual->expr = lhs;
actual->next = gfc_get_actual_arglist ();
actual->next->expr = rhs;
/* TODO: Ambiguity-check, see above for gfc_extend_expr. */
/* See if we find a matching type-bound assignment. */
tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
NULL, &gname);
if (tbo)
{
/* Success: Replace the expression with a type-bound call. */
gcc_assert (tb_base);
c->expr1 = gfc_get_expr ();
build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
c->expr1->value.compcall.assign = 1;
c->expr1->where = c->loc;
c->expr2 = NULL;
c->op = EXEC_COMPCALL;
return true;
}
/* See if we find an 'ordinary' (non-typebound) assignment procedure. */
for (; ns; ns = ns->parent)
{
sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
if (sym != NULL)
break;
}
if (sym)
{
/* Success: Replace the assignment with the call. */
c->op = EXEC_ASSIGN_CALL;
c->symtree = gfc_find_sym_in_symtree (sym);
c->expr1 = NULL;
c->expr2 = NULL;
c->ext.actual = actual;
return true;
}
/* Failure: No assignment procedure found. */
free (actual->next);
free (actual);
return false;
}
/* Make sure that the interface just parsed is not already present in
the given interface list. Ambiguity isn't checked yet since module
procedures can be present without interfaces. */
bool
gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
{
gfc_interface *ip;
for (ip = base; ip; ip = ip->next)
{
if (ip->sym == new_sym)
{
gfc_error ("Entity %qs at %L is already present in the interface",
new_sym->name, &loc);
return false;
}
}
return true;
}
/* Add a symbol to the current interface. */
bool
gfc_add_interface (gfc_symbol *new_sym)
{
gfc_interface **head, *intr;
gfc_namespace *ns;
gfc_symbol *sym;
switch (current_interface.type)
{
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
return true;
case INTERFACE_INTRINSIC_OP:
for (ns = current_interface.ns; ns; ns = ns->parent)
switch (current_interface.op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
new_sym, gfc_current_locus))
return false;
break;
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
new_sym, gfc_current_locus))
return false;
break;
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
new_sym, gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
new_sym, gfc_current_locus))
return false;
break;
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
new_sym, gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
new_sym, gfc_current_locus))
return false;
break;
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
new_sym, gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
new_sym, gfc_current_locus))
return false;
break;
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
new_sym, gfc_current_locus)
|| !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
new_sym, gfc_current_locus))
return false;
break;
default:
if (!gfc_check_new_interface (ns->op[current_interface.op],
new_sym, gfc_current_locus))
return false;
}
head = ¤t_interface.ns->op[current_interface.op];
break;
case INTERFACE_GENERIC:
case INTERFACE_DTIO:
for (ns = current_interface.ns; ns; ns = ns->parent)
{
gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
if (sym == NULL)
continue;
if (!gfc_check_new_interface (sym->generic,
new_sym, gfc_current_locus))
return false;
}
head = ¤t_interface.sym->generic;
break;
case INTERFACE_USER_OP:
if (!gfc_check_new_interface (current_interface.uop->op,
new_sym, gfc_current_locus))
return false;
head = ¤t_interface.uop->op;
break;
default:
gfc_internal_error ("gfc_add_interface(): Bad interface type");
}
intr = gfc_get_interface ();
intr->sym = new_sym;
intr->where = gfc_current_locus;
intr->next = *head;
*head = intr;
return true;
}
gfc_interface *
gfc_current_interface_head (void)
{
switch (current_interface.type)
{
case INTERFACE_INTRINSIC_OP:
return current_interface.ns->op[current_interface.op];
case INTERFACE_GENERIC:
case INTERFACE_DTIO:
return current_interface.sym->generic;
case INTERFACE_USER_OP:
return current_interface.uop->op;
default:
gcc_unreachable ();
}
}
void
gfc_set_current_interface_head (gfc_interface *i)
{
switch (current_interface.type)
{
case INTERFACE_INTRINSIC_OP:
current_interface.ns->op[current_interface.op] = i;
break;
case INTERFACE_GENERIC:
case INTERFACE_DTIO:
current_interface.sym->generic = i;
break;
case INTERFACE_USER_OP:
current_interface.uop->op = i;
break;
default:
gcc_unreachable ();
}
}
/* Gets rid of a formal argument list. We do not free symbols.
Symbols are freed when a namespace is freed. */
void
gfc_free_formal_arglist (gfc_formal_arglist *p)
{
gfc_formal_arglist *q;
for (; p; p = q)
{
q = p->next;
free (p);
}
}
/* Check that it is ok for the type-bound procedure 'proc' to override the
procedure 'old', cf. F08:4.5.7.3. */
bool
gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
{
locus where;
gfc_symbol *proc_target, *old_target;
unsigned proc_pass_arg, old_pass_arg, argpos;
gfc_formal_arglist *proc_formal, *old_formal;
bool check_type;
char err[200];
/* This procedure should only be called for non-GENERIC proc. */
gcc_assert (!proc->n.tb->is_generic);
/* If the overwritten procedure is GENERIC, this is an error. */
if (old->n.tb->is_generic)
{
gfc_error ("Can't overwrite GENERIC %qs at %L",
old->name, &proc->n.tb->where);
return false;
}
where = proc->n.tb->where;
proc_target = proc->n.tb->u.specific->n.sym;
old_target = old->n.tb->u.specific->n.sym;
/* Check that overridden binding is not NON_OVERRIDABLE. */
if (old->n.tb->non_overridable)
{
gfc_error ("%qs at %L overrides a procedure binding declared"
" NON_OVERRIDABLE", proc->name, &where);
return false;
}
/* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
if (!old->n.tb->deferred && proc->n.tb->deferred)
{
gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
" non-DEFERRED binding", proc->name, &where);
return false;
}
/* If the overridden binding is PURE, the overriding must be, too. */
if (old_target->attr.pure && !proc_target->attr.pure)
{
gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
proc->name, &where);
return false;
}
/* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
is not, the overriding must not be either. */
if (old_target->attr.elemental && !proc_target->attr.elemental)
{
gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
" ELEMENTAL", proc->name, &where);
return false;
}
if (!old_target->attr.elemental && proc_target->attr.elemental)
{
gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
" be ELEMENTAL, either", proc->name, &where);
return false;
}
/* If the overridden binding is a SUBROUTINE, the overriding must also be a
SUBROUTINE. */
if (old_target->attr.subroutine && !proc_target->attr.subroutine)
{
gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
" SUBROUTINE", proc->name, &where);
return false;
}
/* If the overridden binding is a FUNCTION, the overriding must also be a
FUNCTION and have the same characteristics. */
if (old_target->attr.function)
{
if (!proc_target->attr.function)
{
gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
" FUNCTION", proc->name, &where);
return false;
}
if (!gfc_check_result_characteristics (proc_target, old_target,
err, sizeof(err)))
{
gfc_error ("Result mismatch for the overriding procedure "
"%qs at %L: %s", proc->name, &where, err);
return false;
}
}
/* If the overridden binding is PUBLIC, the overriding one must not be
PRIVATE. */
if (old->n.tb->access == ACCESS_PUBLIC
&& proc->n.tb->access == ACCESS_PRIVATE)
{
gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
" PRIVATE", proc->name, &where);
return false;
}
/* Compare the formal argument lists of both procedures. This is also abused
to find the position of the passed-object dummy arguments of both
bindings as at least the overridden one might not yet be resolved and we
need those positions in the check below. */
proc_pass_arg = old_pass_arg = 0;
if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
proc_pass_arg = 1;
if (!old->n.tb->nopass && !old->n.tb->pass_arg)
old_pass_arg = 1;
argpos = 1;
proc_formal = gfc_sym_get_dummy_args (proc_target);
old_formal = gfc_sym_get_dummy_args (old_target);
for ( ; proc_formal && old_formal;
proc_formal = proc_formal->next, old_formal = old_formal->next)
{
if (proc->n.tb->pass_arg
&& !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
proc_pass_arg = argpos;
if (old->n.tb->pass_arg
&& !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
old_pass_arg = argpos;
/* Check that the names correspond. */
if (strcmp (proc_formal->sym->name, old_formal->sym->name))
{
gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
" to match the corresponding argument of the overridden"
" procedure", proc_formal->sym->name, proc->name, &where,
old_formal->sym->name);
return false;
}
check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym,
check_type, err, sizeof(err)))
{
gfc_error_opt (OPT_Wargument_mismatch,
"Argument mismatch for the overriding procedure "
"%qs at %L: %s", proc->name, &where, err);
return false;
}
++argpos;
}
if (proc_formal || old_formal)
{
gfc_error ("%qs at %L must have the same number of formal arguments as"
" the overridden procedure", proc->name, &where);
return false;
}
/* If the overridden binding is NOPASS, the overriding one must also be
NOPASS. */
if (old->n.tb->nopass && !proc->n.tb->nopass)
{
gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
" NOPASS", proc->name, &where);
return false;
}
/* If the overridden binding is PASS(x), the overriding one must also be
PASS and the passed-object dummy arguments must correspond. */
if (!old->n.tb->nopass)
{
if (proc->n.tb->nopass)
{
gfc_error ("%qs at %L overrides a binding with PASS and must also be"
" PASS", proc->name, &where);
return false;
}
if (proc_pass_arg != old_pass_arg)
{
gfc_error ("Passed-object dummy argument of %qs at %L must be at"
" the same position as the passed-object dummy argument of"
" the overridden procedure", proc->name, &where);
return false;
}
}
return true;
}
/* The following three functions check that the formal arguments
of user defined derived type IO procedures are compliant with
the requirements of the standard, see F03:9.5.3.7.2 (F08:9.6.4.8.3). */
static void
check_dtio_arg_TKR_intent (gfc_symbol *fsym, bool typebound, bt type,
int kind, int rank, sym_intent intent)
{
if (fsym->ts.type != type)
{
gfc_error ("DTIO dummy argument at %L must be of type %s",
&fsym->declared_at, gfc_basic_typename (type));
return;
}
if (fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED
&& fsym->ts.kind != kind)
gfc_error ("DTIO dummy argument at %L must be of KIND = %d",
&fsym->declared_at, kind);
if (!typebound
&& rank == 0
&& (((type == BT_CLASS) && CLASS_DATA (fsym)->attr.dimension)
|| ((type != BT_CLASS) && fsym->attr.dimension)))
gfc_error ("DTIO dummy argument at %L must be a scalar",
&fsym->declared_at);
else if (rank == 1
&& (fsym->as == NULL || fsym->as->type != AS_ASSUMED_SHAPE))
gfc_error ("DTIO dummy argument at %L must be an "
"ASSUMED SHAPE ARRAY", &fsym->declared_at);
if (type == BT_CHARACTER && fsym->ts.u.cl->length != NULL)
gfc_error ("DTIO character argument at %L must have assumed length",
&fsym->declared_at);
if (fsym->attr.intent != intent)
gfc_error ("DTIO dummy argument at %L must have INTENT %s",
&fsym->declared_at, gfc_code2string (intents, (int)intent));
return;
}
static void
check_dtio_interface1 (gfc_symbol *derived, gfc_symtree *tb_io_st,
bool typebound, bool formatted, int code)
{
gfc_symbol *dtio_sub, *generic_proc, *fsym;
gfc_typebound_proc *tb_io_proc, *specific_proc;
gfc_interface *intr;
gfc_formal_arglist *formal;
int arg_num;
bool read = ((dtio_codes)code == DTIO_RF)
|| ((dtio_codes)code == DTIO_RUF);
bt type;
sym_intent intent;
int kind;
dtio_sub = NULL;
if (typebound)
{
/* Typebound DTIO binding. */
tb_io_proc = tb_io_st->n.tb;
if (tb_io_proc == NULL)
return;
gcc_assert (tb_io_proc->is_generic);
gcc_assert (tb_io_proc->u.generic->next == NULL);
specific_proc = tb_io_proc->u.generic->specific;
if (specific_proc == NULL || specific_proc->is_generic)
return;
dtio_sub = specific_proc->u.specific->n.sym;
}
else
{
generic_proc = tb_io_st->n.sym;
if (generic_proc == NULL || generic_proc->generic == NULL)
return;
for (intr = tb_io_st->n.sym->generic; intr; intr = intr->next)
{
if (intr->sym && intr->sym->formal && intr->sym->formal->sym
&& ((intr->sym->formal->sym->ts.type == BT_CLASS
&& CLASS_DATA (intr->sym->formal->sym)->ts.u.derived
== derived)
|| (intr->sym->formal->sym->ts.type == BT_DERIVED
&& intr->sym->formal->sym->ts.u.derived == derived)))
{
dtio_sub = intr->sym;
break;
}
else if (intr->sym && intr->sym->formal && !intr->sym->formal->sym)
{
gfc_error ("Alternate return at %L is not permitted in a DTIO "
"procedure", &intr->sym->declared_at);
return;
}
}
if (dtio_sub == NULL)
return;
}
gcc_assert (dtio_sub);
if (!dtio_sub->attr.subroutine)
gfc_error ("DTIO procedure %qs at %L must be a subroutine",
dtio_sub->name, &dtio_sub->declared_at);
arg_num = 0;
for (formal = dtio_sub->formal; formal; formal = formal->next)
arg_num++;
if (arg_num < (formatted ? 6 : 4))
{
gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L",
dtio_sub->name, &dtio_sub->declared_at);
return;
}
if (arg_num > (formatted ? 6 : 4))
{
gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L",
dtio_sub->name, &dtio_sub->declared_at);
return;
}
/* Now go through the formal arglist. */
arg_num = 1;
for (formal = dtio_sub->formal; formal; formal = formal->next, arg_num++)
{
if (!formatted && arg_num == 3)
arg_num = 5;
fsym = formal->sym;
if (fsym == NULL)
{
gfc_error ("Alternate return at %L is not permitted in a DTIO "
"procedure", &dtio_sub->declared_at);
return;
}
switch (arg_num)
{
case(1): /* DTV */
type = derived->attr.sequence || derived->attr.is_bind_c ?
BT_DERIVED : BT_CLASS;
kind = 0;
intent = read ? INTENT_INOUT : INTENT_IN;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
0, intent);
break;
case(2): /* UNIT */
type = BT_INTEGER;
kind = gfc_default_integer_kind;
intent = INTENT_IN;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
0, intent);
break;
case(3): /* IOTYPE */
type = BT_CHARACTER;
kind = gfc_default_character_kind;
intent = INTENT_IN;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
0, intent);
break;
case(4): /* VLIST */
type = BT_INTEGER;
kind = gfc_default_integer_kind;
intent = INTENT_IN;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
1, intent);
break;
case(5): /* IOSTAT */
type = BT_INTEGER;
kind = gfc_default_integer_kind;
intent = INTENT_OUT;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
0, intent);
break;
case(6): /* IOMSG */
type = BT_CHARACTER;
kind = gfc_default_character_kind;
intent = INTENT_INOUT;
check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
0, intent);
break;
default:
gcc_unreachable ();
}
}
derived->attr.has_dtio_procs = 1;
return;
}
void
gfc_check_dtio_interfaces (gfc_symbol *derived)
{
gfc_symtree *tb_io_st;
bool t = false;
int code;
bool formatted;
if (derived->attr.is_class == 1 || derived->attr.vtype == 1)
return;
/* Check typebound DTIO bindings. */
for (code = 0; code < 4; code++)
{
formatted = ((dtio_codes)code == DTIO_RF)
|| ((dtio_codes)code == DTIO_WF);
tb_io_st = gfc_find_typebound_proc (derived, &t,
gfc_code2string (dtio_procs, code),
true, &derived->declared_at);
if (tb_io_st != NULL)
check_dtio_interface1 (derived, tb_io_st, true, formatted, code);
}
/* Check generic DTIO interfaces. */
for (code = 0; code < 4; code++)
{
formatted = ((dtio_codes)code == DTIO_RF)
|| ((dtio_codes)code == DTIO_WF);
tb_io_st = gfc_find_symtree (derived->ns->sym_root,
gfc_code2string (dtio_procs, code));
if (tb_io_st != NULL)
check_dtio_interface1 (derived, tb_io_st, false, formatted, code);
}
}
gfc_symtree*
gfc_find_typebound_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
{
gfc_symtree *tb_io_st = NULL;
bool t = false;
if (!derived || !derived->resolved || derived->attr.flavor != FL_DERIVED)
return NULL;
/* Try to find a typebound DTIO binding. */
if (formatted == true)
{
if (write == true)
tb_io_st = gfc_find_typebound_proc (derived, &t,
gfc_code2string (dtio_procs,
DTIO_WF),
true,
&derived->declared_at);
else
tb_io_st = gfc_find_typebound_proc (derived, &t,
gfc_code2string (dtio_procs,
DTIO_RF),
true,
&derived->declared_at);
}
else
{
if (write == true)
tb_io_st = gfc_find_typebound_proc (derived, &t,
gfc_code2string (dtio_procs,
DTIO_WUF),
true,
&derived->declared_at);
else
tb_io_st = gfc_find_typebound_proc (derived, &t,
gfc_code2string (dtio_procs,
DTIO_RUF),
true,
&derived->declared_at);
}
return tb_io_st;
}
gfc_symbol *
gfc_find_specific_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
{
gfc_symtree *tb_io_st = NULL;
gfc_symbol *dtio_sub = NULL;
gfc_symbol *extended;
gfc_typebound_proc *tb_io_proc, *specific_proc;
tb_io_st = gfc_find_typebound_dtio_proc (derived, write, formatted);
if (tb_io_st != NULL)
{
const char *genname;
gfc_symtree *st;
tb_io_proc = tb_io_st->n.tb;
gcc_assert (tb_io_proc != NULL);
gcc_assert (tb_io_proc->is_generic);
gcc_assert (tb_io_proc->u.generic->next == NULL);
specific_proc = tb_io_proc->u.generic->specific;
gcc_assert (!specific_proc->is_generic);
/* Go back and make sure that we have the right specific procedure.
Here we most likely have a procedure from the parent type, which
can be overridden in extensions. */
genname = tb_io_proc->u.generic->specific_st->name;
st = gfc_find_typebound_proc (derived, NULL, genname,
true, &tb_io_proc->where);
if (st)
dtio_sub = st->n.tb->u.specific->n.sym;
else
dtio_sub = specific_proc->u.specific->n.sym;
goto finish;
}
/* If there is not a typebound binding, look for a generic
DTIO interface. */
for (extended = derived; extended;
extended = gfc_get_derived_super_type (extended))
{
if (extended == NULL || extended->ns == NULL
|| extended->attr.flavor == FL_UNKNOWN)
return NULL;
if (formatted == true)
{
if (write == true)
tb_io_st = gfc_find_symtree (extended->ns->sym_root,
gfc_code2string (dtio_procs,
DTIO_WF));
else
tb_io_st = gfc_find_symtree (extended->ns->sym_root,
gfc_code2string (dtio_procs,
DTIO_RF));
}
else
{
if (write == true)
tb_io_st = gfc_find_symtree (extended->ns->sym_root,
gfc_code2string (dtio_procs,
DTIO_WUF));
else
tb_io_st = gfc_find_symtree (extended->ns->sym_root,
gfc_code2string (dtio_procs,
DTIO_RUF));
}
if (tb_io_st != NULL
&& tb_io_st->n.sym
&& tb_io_st->n.sym->generic)
{
for (gfc_interface *intr = tb_io_st->n.sym->generic;
intr && intr->sym; intr = intr->next)
{
if (intr->sym->formal)
{
gfc_symbol *fsym = intr->sym->formal->sym;
if ((fsym->ts.type == BT_CLASS
&& CLASS_DATA (fsym)->ts.u.derived == extended)
|| (fsym->ts.type == BT_DERIVED
&& fsym->ts.u.derived == extended))
{
dtio_sub = intr->sym;
break;
}
}
}
}
}
finish:
if (dtio_sub && derived != CLASS_DATA (dtio_sub->formal->sym)->ts.u.derived)
gfc_find_derived_vtab (derived);
return dtio_sub;
}