/* A pure C API to enable client code to embed GCC as a JIT-compiler.
Copyright (C) 2013-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#ifndef LIBGCCJIT_H
#define LIBGCCJIT_H
#include
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/**********************************************************************
Data structures.
**********************************************************************/
/* All structs within the API are opaque. */
/* A gcc_jit_context encapsulates the state of a compilation.
You can set up options on it, and add types, functions and code, using
the API below.
Invoking gcc_jit_context_compile on it gives you a gcc_jit_result *
(or NULL), representing in-memory machine code.
You can call gcc_jit_context_compile repeatedly on one context, giving
multiple independent results.
Similarly, you can call gcc_jit_context_compile_to_file on a context
to compile to disk.
Eventually you can call gcc_jit_context_release to clean up the
context; any in-memory results created from it are still usable, and
should be cleaned up via gcc_jit_result_release. */
typedef struct gcc_jit_context gcc_jit_context;
/* A gcc_jit_result encapsulates the result of an in-memory compilation. */
typedef struct gcc_jit_result gcc_jit_result;
/* An object created within a context. Such objects are automatically
cleaned up when the context is released.
The class hierarchy looks like this:
+- gcc_jit_object
+- gcc_jit_location
+- gcc_jit_type
+- gcc_jit_struct
+- gcc_jit_field
+- gcc_jit_function
+- gcc_jit_block
+- gcc_jit_rvalue
+- gcc_jit_lvalue
+- gcc_jit_param
+- gcc_jit_case
*/
typedef struct gcc_jit_object gcc_jit_object;
/* A gcc_jit_location encapsulates a source code location, so that
you can (optionally) associate locations in your language with
statements in the JIT-compiled code, allowing the debugger to
single-step through your language.
Note that to do so, you also need to enable
GCC_JIT_BOOL_OPTION_DEBUGINFO
on the gcc_jit_context.
gcc_jit_location instances are optional; you can always pass
NULL. */
typedef struct gcc_jit_location gcc_jit_location;
/* A gcc_jit_type encapsulates a type e.g. "int" or a "struct foo*". */
typedef struct gcc_jit_type gcc_jit_type;
/* A gcc_jit_field encapsulates a field within a struct; it is used
when creating a struct type (using gcc_jit_context_new_struct_type).
Fields cannot be shared between structs. */
typedef struct gcc_jit_field gcc_jit_field;
/* A gcc_jit_struct encapsulates a struct type, either one that we have
the layout for, or an opaque type. */
typedef struct gcc_jit_struct gcc_jit_struct;
/* A gcc_jit_function encapsulates a function: either one that you're
creating yourself, or a reference to one that you're dynamically
linking to within the rest of the process. */
typedef struct gcc_jit_function gcc_jit_function;
/* A gcc_jit_block encapsulates a "basic block" of statements within a
function (i.e. with one entry point and one exit point).
Every block within a function must be terminated with a conditional,
a branch, or a return.
The blocks within a function form a directed graph.
The entrypoint to the function is the first block created within
it.
All of the blocks in a function must be reachable via some path from
the first block.
It's OK to have more than one "return" from a function (i.e. multiple
blocks that terminate by returning). */
typedef struct gcc_jit_block gcc_jit_block;
/* A gcc_jit_rvalue is an expression within your code, with some type. */
typedef struct gcc_jit_rvalue gcc_jit_rvalue;
/* A gcc_jit_lvalue is a storage location within your code (e.g. a
variable, a parameter, etc). It is also a gcc_jit_rvalue; use
gcc_jit_lvalue_as_rvalue to cast. */
typedef struct gcc_jit_lvalue gcc_jit_lvalue;
/* A gcc_jit_param is a function parameter, used when creating a
gcc_jit_function. It is also a gcc_jit_lvalue (and thus also an
rvalue); use gcc_jit_param_as_lvalue to convert. */
typedef struct gcc_jit_param gcc_jit_param;
/* A gcc_jit_case is for use when building multiway branches via
gcc_jit_block_end_with_switch and represents a range of integer
values (or an individual integer value) together with an associated
destination block. */
typedef struct gcc_jit_case gcc_jit_case;
/* Acquire a JIT-compilation context. */
extern gcc_jit_context *
gcc_jit_context_acquire (void);
/* Release the context. After this call, it's no longer valid to use
the ctxt. */
extern void
gcc_jit_context_release (gcc_jit_context *ctxt);
/* Options present in the initial release of libgccjit.
These were handled using enums. */
/* Options taking string values. */
enum gcc_jit_str_option
{
/* The name of the program, for use as a prefix when printing error
messages to stderr. If NULL, or default, "libgccjit.so" is used. */
GCC_JIT_STR_OPTION_PROGNAME,
GCC_JIT_NUM_STR_OPTIONS
};
/* Options taking int values. */
enum gcc_jit_int_option
{
/* How much to optimize the code.
Valid values are 0-3, corresponding to GCC's command-line options
-O0 through -O3.
The default value is 0 (unoptimized). */
GCC_JIT_INT_OPTION_OPTIMIZATION_LEVEL,
GCC_JIT_NUM_INT_OPTIONS
};
/* Options taking boolean values.
These all default to "false". */
enum gcc_jit_bool_option
{
/* If true, gcc_jit_context_compile will attempt to do the right
thing so that if you attach a debugger to the process, it will
be able to inspect variables and step through your code.
Note that you can't step through code unless you set up source
location information for the code (by creating and passing in
gcc_jit_location instances). */
GCC_JIT_BOOL_OPTION_DEBUGINFO,
/* If true, gcc_jit_context_compile will dump its initial "tree"
representation of your code to stderr (before any
optimizations). */
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE,
/* If true, gcc_jit_context_compile will dump the "gimple"
representation of your code to stderr, before any optimizations
are performed. The dump resembles C code. */
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
/* If true, gcc_jit_context_compile will dump the final
generated code to stderr, in the form of assembly language. */
GCC_JIT_BOOL_OPTION_DUMP_GENERATED_CODE,
/* If true, gcc_jit_context_compile will print information to stderr
on the actions it is performing, followed by a profile showing
the time taken and memory usage of each phase.
*/
GCC_JIT_BOOL_OPTION_DUMP_SUMMARY,
/* If true, gcc_jit_context_compile will dump copious
amount of information on what it's doing to various
files within a temporary directory. Use
GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES (see below) to
see the results. The files are intended to be human-readable,
but the exact files and their formats are subject to change.
*/
GCC_JIT_BOOL_OPTION_DUMP_EVERYTHING,
/* If true, libgccjit will aggressively run its garbage collector, to
shake out bugs (greatly slowing down the compile). This is likely
to only be of interest to developers *of* the library. It is
used when running the selftest suite. */
GCC_JIT_BOOL_OPTION_SELFCHECK_GC,
/* If true, gcc_jit_context_release will not clean up
intermediate files written to the filesystem, and will display
their location on stderr. */
GCC_JIT_BOOL_OPTION_KEEP_INTERMEDIATES,
GCC_JIT_NUM_BOOL_OPTIONS
};
/* Set a string option on the given context.
The context takes a copy of the string, so the
(const char *) buffer is not needed anymore after the call
returns. */
extern void
gcc_jit_context_set_str_option (gcc_jit_context *ctxt,
enum gcc_jit_str_option opt,
const char *value);
/* Set an int option on the given context. */
extern void
gcc_jit_context_set_int_option (gcc_jit_context *ctxt,
enum gcc_jit_int_option opt,
int value);
/* Set a boolean option on the given context.
Zero is "false" (the default), non-zero is "true". */
extern void
gcc_jit_context_set_bool_option (gcc_jit_context *ctxt,
enum gcc_jit_bool_option opt,
int value);
/* Options added after the initial release of libgccjit.
These are handled by providing an entrypoint per option,
rather than by extending the enum gcc_jit_*_option,
so that client code that use these new options can be identified
from binary metadata. */
/* By default, libgccjit will issue an error about unreachable blocks
within a function.
This option can be used to disable that error.
This entrypoint was added in LIBGCCJIT_ABI_2; you can test for
its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_set_bool_allow_unreachable_blocks
*/
extern void
gcc_jit_context_set_bool_allow_unreachable_blocks (gcc_jit_context *ctxt,
int bool_value);
/* Pre-canned feature macro to indicate the presence of
gcc_jit_context_set_bool_allow_unreachable_blocks. This can be
tested for with #ifdef. */
#define LIBGCCJIT_HAVE_gcc_jit_context_set_bool_allow_unreachable_blocks
/* Implementation detail:
libgccjit internally generates assembler, and uses "driver" code
for converting it to other formats (e.g. shared libraries).
By default, libgccjit will use an embedded copy of the driver
code.
This option can be used to instead invoke an external driver executable
as a subprocess.
This entrypoint was added in LIBGCCJIT_ABI_5; you can test for
its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_set_bool_use_external_driver
*/
extern void
gcc_jit_context_set_bool_use_external_driver (gcc_jit_context *ctxt,
int bool_value);
/* Pre-canned feature macro to indicate the presence of
gcc_jit_context_set_bool_use_external_driver. This can be
tested for with #ifdef. */
#define LIBGCCJIT_HAVE_gcc_jit_context_set_bool_use_external_driver
/* Add an arbitrary gcc command-line option to the context.
The context takes a copy of the string, so the
(const char *) optname is not needed anymore after the call
returns.
Note that only some options are likely to be meaningful; there is no
"frontend" within libgccjit, so typically only those affecting
optimization and code-generation are likely to be useful.
This entrypoint was added in LIBGCCJIT_ABI_1; you can test for
its presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_add_command_line_option
*/
extern void
gcc_jit_context_add_command_line_option (gcc_jit_context *ctxt,
const char *optname);
/* Pre-canned feature-test macro for detecting the presence of
gcc_jit_context_add_command_line_option within libgccjit.h. */
#define LIBGCCJIT_HAVE_gcc_jit_context_add_command_line_option
/* Compile the context to in-memory machine code.
This can be called more that once on a given context,
although any errors that occur will block further compilation. */
extern gcc_jit_result *
gcc_jit_context_compile (gcc_jit_context *ctxt);
/* Kinds of ahead-of-time compilation, for use with
gcc_jit_context_compile_to_file. */
enum gcc_jit_output_kind
{
/* Compile the context to an assembler file. */
GCC_JIT_OUTPUT_KIND_ASSEMBLER,
/* Compile the context to an object file. */
GCC_JIT_OUTPUT_KIND_OBJECT_FILE,
/* Compile the context to a dynamic library. */
GCC_JIT_OUTPUT_KIND_DYNAMIC_LIBRARY,
/* Compile the context to an executable. */
GCC_JIT_OUTPUT_KIND_EXECUTABLE
};
/* Compile the context to a file of the given kind.
This can be called more that once on a given context,
although any errors that occur will block further compilation. */
extern void
gcc_jit_context_compile_to_file (gcc_jit_context *ctxt,
enum gcc_jit_output_kind output_kind,
const char *output_path);
/* To help with debugging: dump a C-like representation to the given path,
describing what's been set up on the context.
If "update_locations" is true, then also set up gcc_jit_location
information throughout the context, pointing at the dump file as if it
were a source file. This may be of use in conjunction with
GCC_JIT_BOOL_OPTION_DEBUGINFO to allow stepping through the code in a
debugger. */
extern void
gcc_jit_context_dump_to_file (gcc_jit_context *ctxt,
const char *path,
int update_locations);
/* To help with debugging; enable ongoing logging of the context's
activity to the given FILE *.
The caller remains responsible for closing "logfile".
Params "flags" and "verbosity" are reserved for future use, and
must both be 0 for now. */
extern void
gcc_jit_context_set_logfile (gcc_jit_context *ctxt,
FILE *logfile,
int flags,
int verbosity);
/* To be called after any API call, this gives the first error message
that occurred on the context.
The returned string is valid for the rest of the lifetime of the
context.
If no errors occurred, this will be NULL. */
extern const char *
gcc_jit_context_get_first_error (gcc_jit_context *ctxt);
/* To be called after any API call, this gives the last error message
that occurred on the context.
If no errors occurred, this will be NULL.
If non-NULL, the returned string is only guaranteed to be valid until
the next call to libgccjit relating to this context. */
extern const char *
gcc_jit_context_get_last_error (gcc_jit_context *ctxt);
/* Locate a given function within the built machine code.
This will need to be cast to a function pointer of the
correct type before it can be called. */
extern void *
gcc_jit_result_get_code (gcc_jit_result *result,
const char *funcname);
/* Locate a given global within the built machine code.
It must have been created using GCC_JIT_GLOBAL_EXPORTED.
This is a ptr to the global, so e.g. for an int this is an int *. */
extern void *
gcc_jit_result_get_global (gcc_jit_result *result,
const char *name);
/* Once we're done with the code, this unloads the built .so file.
This cleans up the result; after calling this, it's no longer
valid to use the result. */
extern void
gcc_jit_result_release (gcc_jit_result *result);
/**********************************************************************
Functions for creating "contextual" objects.
All objects created by these functions share the lifetime of the context
they are created within, and are automatically cleaned up for you when
you call gcc_jit_context_release on the context.
Note that this means you can't use references to them after you've
released their context.
All (const char *) string arguments passed to these functions are
copied, so you don't need to keep them around.
You create code by adding a sequence of statements to blocks.
**********************************************************************/
/**********************************************************************
The base class of "contextual" object.
**********************************************************************/
/* Which context is "obj" within? */
extern gcc_jit_context *
gcc_jit_object_get_context (gcc_jit_object *obj);
/* Get a human-readable description of this object.
The string buffer is created the first time this is called on a given
object, and persists until the object's context is released. */
extern const char *
gcc_jit_object_get_debug_string (gcc_jit_object *obj);
/**********************************************************************
Debugging information.
**********************************************************************/
/* Creating source code locations for use by the debugger.
Line and column numbers are 1-based. */
extern gcc_jit_location *
gcc_jit_context_new_location (gcc_jit_context *ctxt,
const char *filename,
int line,
int column);
/* Upcasting from location to object. */
extern gcc_jit_object *
gcc_jit_location_as_object (gcc_jit_location *loc);
/**********************************************************************
Types.
**********************************************************************/
/* Upcasting from type to object. */
extern gcc_jit_object *
gcc_jit_type_as_object (gcc_jit_type *type);
/* Access to specific types. */
enum gcc_jit_types
{
/* C's "void" type. */
GCC_JIT_TYPE_VOID,
/* "void *". */
GCC_JIT_TYPE_VOID_PTR,
/* C++'s bool type; also C99's "_Bool" type, aka "bool" if using
stdbool.h. */
GCC_JIT_TYPE_BOOL,
/* Various integer types. */
/* C's "char" (of some signedness) and the variants where the
signedness is specified. */
GCC_JIT_TYPE_CHAR,
GCC_JIT_TYPE_SIGNED_CHAR,
GCC_JIT_TYPE_UNSIGNED_CHAR,
/* C's "short" and "unsigned short". */
GCC_JIT_TYPE_SHORT, /* signed */
GCC_JIT_TYPE_UNSIGNED_SHORT,
/* C's "int" and "unsigned int". */
GCC_JIT_TYPE_INT, /* signed */
GCC_JIT_TYPE_UNSIGNED_INT,
/* C's "long" and "unsigned long". */
GCC_JIT_TYPE_LONG, /* signed */
GCC_JIT_TYPE_UNSIGNED_LONG,
/* C99's "long long" and "unsigned long long". */
GCC_JIT_TYPE_LONG_LONG, /* signed */
GCC_JIT_TYPE_UNSIGNED_LONG_LONG,
/* Floating-point types */
GCC_JIT_TYPE_FLOAT,
GCC_JIT_TYPE_DOUBLE,
GCC_JIT_TYPE_LONG_DOUBLE,
/* C type: (const char *). */
GCC_JIT_TYPE_CONST_CHAR_PTR,
/* The C "size_t" type. */
GCC_JIT_TYPE_SIZE_T,
/* C type: (FILE *) */
GCC_JIT_TYPE_FILE_PTR,
/* Complex numbers. */
GCC_JIT_TYPE_COMPLEX_FLOAT,
GCC_JIT_TYPE_COMPLEX_DOUBLE,
GCC_JIT_TYPE_COMPLEX_LONG_DOUBLE
};
extern gcc_jit_type *
gcc_jit_context_get_type (gcc_jit_context *ctxt,
enum gcc_jit_types type_);
/* Get the integer type of the given size and signedness. */
extern gcc_jit_type *
gcc_jit_context_get_int_type (gcc_jit_context *ctxt,
int num_bytes, int is_signed);
/* Constructing new types. */
/* Given type "T", get type "T*". */
extern gcc_jit_type *
gcc_jit_type_get_pointer (gcc_jit_type *type);
/* Given type "T", get type "const T". */
extern gcc_jit_type *
gcc_jit_type_get_const (gcc_jit_type *type);
/* Given type "T", get type "volatile T". */
extern gcc_jit_type *
gcc_jit_type_get_volatile (gcc_jit_type *type);
/* Given type "T", get type "T[N]" (for a constant N). */
extern gcc_jit_type *
gcc_jit_context_new_array_type (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_type *element_type,
int num_elements);
/* Struct-handling. */
/* Create a field, for use within a struct or union. */
extern gcc_jit_field *
gcc_jit_context_new_field (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_type *type,
const char *name);
/* Upcasting from field to object. */
extern gcc_jit_object *
gcc_jit_field_as_object (gcc_jit_field *field);
/* Create a struct type from an array of fields. */
extern gcc_jit_struct *
gcc_jit_context_new_struct_type (gcc_jit_context *ctxt,
gcc_jit_location *loc,
const char *name,
int num_fields,
gcc_jit_field **fields);
/* Create an opaque struct type. */
extern gcc_jit_struct *
gcc_jit_context_new_opaque_struct (gcc_jit_context *ctxt,
gcc_jit_location *loc,
const char *name);
/* Upcast a struct to a type. */
extern gcc_jit_type *
gcc_jit_struct_as_type (gcc_jit_struct *struct_type);
/* Populating the fields of a formerly-opaque struct type.
This can only be called once on a given struct type. */
extern void
gcc_jit_struct_set_fields (gcc_jit_struct *struct_type,
gcc_jit_location *loc,
int num_fields,
gcc_jit_field **fields);
/* Unions work similarly to structs. */
extern gcc_jit_type *
gcc_jit_context_new_union_type (gcc_jit_context *ctxt,
gcc_jit_location *loc,
const char *name,
int num_fields,
gcc_jit_field **fields);
/* Function pointers. */
extern gcc_jit_type *
gcc_jit_context_new_function_ptr_type (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_type *return_type,
int num_params,
gcc_jit_type **param_types,
int is_variadic);
/**********************************************************************
Constructing functions.
**********************************************************************/
/* Create a function param. */
extern gcc_jit_param *
gcc_jit_context_new_param (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_type *type,
const char *name);
/* Upcasting from param to object. */
extern gcc_jit_object *
gcc_jit_param_as_object (gcc_jit_param *param);
/* Upcasting from param to lvalue. */
extern gcc_jit_lvalue *
gcc_jit_param_as_lvalue (gcc_jit_param *param);
/* Upcasting from param to rvalue. */
extern gcc_jit_rvalue *
gcc_jit_param_as_rvalue (gcc_jit_param *param);
/* Kinds of function. */
enum gcc_jit_function_kind
{
/* Function is defined by the client code and visible
by name outside of the JIT. */
GCC_JIT_FUNCTION_EXPORTED,
/* Function is defined by the client code, but is invisible
outside of the JIT. Analogous to a "static" function. */
GCC_JIT_FUNCTION_INTERNAL,
/* Function is not defined by the client code; we're merely
referring to it. Analogous to using an "extern" function from a
header file. */
GCC_JIT_FUNCTION_IMPORTED,
/* Function is only ever inlined into other functions, and is
invisible outside of the JIT.
Analogous to prefixing with "inline" and adding
__attribute__((always_inline)).
Inlining will only occur when the optimization level is
above 0; when optimization is off, this is essentially the
same as GCC_JIT_FUNCTION_INTERNAL. */
GCC_JIT_FUNCTION_ALWAYS_INLINE
};
/* Create a function. */
extern gcc_jit_function *
gcc_jit_context_new_function (gcc_jit_context *ctxt,
gcc_jit_location *loc,
enum gcc_jit_function_kind kind,
gcc_jit_type *return_type,
const char *name,
int num_params,
gcc_jit_param **params,
int is_variadic);
/* Create a reference to a builtin function (sometimes called
intrinsic functions). */
extern gcc_jit_function *
gcc_jit_context_get_builtin_function (gcc_jit_context *ctxt,
const char *name);
/* Upcasting from function to object. */
extern gcc_jit_object *
gcc_jit_function_as_object (gcc_jit_function *func);
/* Get a specific param of a function by index. */
extern gcc_jit_param *
gcc_jit_function_get_param (gcc_jit_function *func, int index);
/* Emit the function in graphviz format. */
extern void
gcc_jit_function_dump_to_dot (gcc_jit_function *func,
const char *path);
/* Create a block.
The name can be NULL, or you can give it a meaningful name, which
may show up in dumps of the internal representation, and in error
messages. */
extern gcc_jit_block *
gcc_jit_function_new_block (gcc_jit_function *func,
const char *name);
/* Upcasting from block to object. */
extern gcc_jit_object *
gcc_jit_block_as_object (gcc_jit_block *block);
/* Which function is this block within? */
extern gcc_jit_function *
gcc_jit_block_get_function (gcc_jit_block *block);
/**********************************************************************
lvalues, rvalues and expressions.
**********************************************************************/
enum gcc_jit_global_kind
{
/* Global is defined by the client code and visible
by name outside of this JIT context via gcc_jit_result_get_global. */
GCC_JIT_GLOBAL_EXPORTED,
/* Global is defined by the client code, but is invisible
outside of this JIT context. Analogous to a "static" global. */
GCC_JIT_GLOBAL_INTERNAL,
/* Global is not defined by the client code; we're merely
referring to it. Analogous to using an "extern" global from a
header file. */
GCC_JIT_GLOBAL_IMPORTED
};
extern gcc_jit_lvalue *
gcc_jit_context_new_global (gcc_jit_context *ctxt,
gcc_jit_location *loc,
enum gcc_jit_global_kind kind,
gcc_jit_type *type,
const char *name);
/* Upcasting. */
extern gcc_jit_object *
gcc_jit_lvalue_as_object (gcc_jit_lvalue *lvalue);
extern gcc_jit_rvalue *
gcc_jit_lvalue_as_rvalue (gcc_jit_lvalue *lvalue);
extern gcc_jit_object *
gcc_jit_rvalue_as_object (gcc_jit_rvalue *rvalue);
extern gcc_jit_type *
gcc_jit_rvalue_get_type (gcc_jit_rvalue *rvalue);
/* Integer constants. */
extern gcc_jit_rvalue *
gcc_jit_context_new_rvalue_from_int (gcc_jit_context *ctxt,
gcc_jit_type *numeric_type,
int value);
extern gcc_jit_rvalue *
gcc_jit_context_new_rvalue_from_long (gcc_jit_context *ctxt,
gcc_jit_type *numeric_type,
long value);
extern gcc_jit_rvalue *
gcc_jit_context_zero (gcc_jit_context *ctxt,
gcc_jit_type *numeric_type);
extern gcc_jit_rvalue *
gcc_jit_context_one (gcc_jit_context *ctxt,
gcc_jit_type *numeric_type);
/* Floating-point constants. */
extern gcc_jit_rvalue *
gcc_jit_context_new_rvalue_from_double (gcc_jit_context *ctxt,
gcc_jit_type *numeric_type,
double value);
/* Pointers. */
extern gcc_jit_rvalue *
gcc_jit_context_new_rvalue_from_ptr (gcc_jit_context *ctxt,
gcc_jit_type *pointer_type,
void *value);
extern gcc_jit_rvalue *
gcc_jit_context_null (gcc_jit_context *ctxt,
gcc_jit_type *pointer_type);
/* String literals. */
extern gcc_jit_rvalue *
gcc_jit_context_new_string_literal (gcc_jit_context *ctxt,
const char *value);
enum gcc_jit_unary_op
{
/* Negate an arithmetic value; analogous to:
-(EXPR)
in C. */
GCC_JIT_UNARY_OP_MINUS,
/* Bitwise negation of an integer value (one's complement); analogous
to:
~(EXPR)
in C. */
GCC_JIT_UNARY_OP_BITWISE_NEGATE,
/* Logical negation of an arithmetic or pointer value; analogous to:
!(EXPR)
in C. */
GCC_JIT_UNARY_OP_LOGICAL_NEGATE,
/* Absolute value of an arithmetic expression; analogous to:
abs (EXPR)
in C. */
GCC_JIT_UNARY_OP_ABS
};
extern gcc_jit_rvalue *
gcc_jit_context_new_unary_op (gcc_jit_context *ctxt,
gcc_jit_location *loc,
enum gcc_jit_unary_op op,
gcc_jit_type *result_type,
gcc_jit_rvalue *rvalue);
enum gcc_jit_binary_op
{
/* Addition of arithmetic values; analogous to:
(EXPR_A) + (EXPR_B)
in C.
For pointer addition, use gcc_jit_context_new_array_access. */
GCC_JIT_BINARY_OP_PLUS,
/* Subtraction of arithmetic values; analogous to:
(EXPR_A) - (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_MINUS,
/* Multiplication of a pair of arithmetic values; analogous to:
(EXPR_A) * (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_MULT,
/* Quotient of division of arithmetic values; analogous to:
(EXPR_A) / (EXPR_B)
in C.
The result type affects the kind of division: if the result type is
integer-based, then the result is truncated towards zero, whereas
a floating-point result type indicates floating-point division. */
GCC_JIT_BINARY_OP_DIVIDE,
/* Remainder of division of arithmetic values; analogous to:
(EXPR_A) % (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_MODULO,
/* Bitwise AND; analogous to:
(EXPR_A) & (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_BITWISE_AND,
/* Bitwise exclusive OR; analogous to:
(EXPR_A) ^ (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_BITWISE_XOR,
/* Bitwise inclusive OR; analogous to:
(EXPR_A) | (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_BITWISE_OR,
/* Logical AND; analogous to:
(EXPR_A) && (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_LOGICAL_AND,
/* Logical OR; analogous to:
(EXPR_A) || (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_LOGICAL_OR,
/* Left shift; analogous to:
(EXPR_A) << (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_LSHIFT,
/* Right shift; analogous to:
(EXPR_A) >> (EXPR_B)
in C. */
GCC_JIT_BINARY_OP_RSHIFT
};
extern gcc_jit_rvalue *
gcc_jit_context_new_binary_op (gcc_jit_context *ctxt,
gcc_jit_location *loc,
enum gcc_jit_binary_op op,
gcc_jit_type *result_type,
gcc_jit_rvalue *a, gcc_jit_rvalue *b);
/* (Comparisons are treated as separate from "binary_op" to save
you having to specify the result_type). */
enum gcc_jit_comparison
{
/* (EXPR_A) == (EXPR_B). */
GCC_JIT_COMPARISON_EQ,
/* (EXPR_A) != (EXPR_B). */
GCC_JIT_COMPARISON_NE,
/* (EXPR_A) < (EXPR_B). */
GCC_JIT_COMPARISON_LT,
/* (EXPR_A) <=(EXPR_B). */
GCC_JIT_COMPARISON_LE,
/* (EXPR_A) > (EXPR_B). */
GCC_JIT_COMPARISON_GT,
/* (EXPR_A) >= (EXPR_B). */
GCC_JIT_COMPARISON_GE
};
extern gcc_jit_rvalue *
gcc_jit_context_new_comparison (gcc_jit_context *ctxt,
gcc_jit_location *loc,
enum gcc_jit_comparison op,
gcc_jit_rvalue *a, gcc_jit_rvalue *b);
/* Function calls. */
/* Call of a specific function. */
extern gcc_jit_rvalue *
gcc_jit_context_new_call (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_function *func,
int numargs , gcc_jit_rvalue **args);
/* Call through a function pointer. */
extern gcc_jit_rvalue *
gcc_jit_context_new_call_through_ptr (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_rvalue *fn_ptr,
int numargs, gcc_jit_rvalue **args);
/* Type-coercion.
Currently only a limited set of conversions are possible:
int <-> float
int <-> bool */
extern gcc_jit_rvalue *
gcc_jit_context_new_cast (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_rvalue *rvalue,
gcc_jit_type *type);
extern gcc_jit_lvalue *
gcc_jit_context_new_array_access (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_rvalue *ptr,
gcc_jit_rvalue *index);
/* Field access is provided separately for both lvalues and rvalues. */
/* Accessing a field of an lvalue of struct type, analogous to:
(EXPR).field = ...;
in C. */
extern gcc_jit_lvalue *
gcc_jit_lvalue_access_field (gcc_jit_lvalue *struct_or_union,
gcc_jit_location *loc,
gcc_jit_field *field);
/* Accessing a field of an rvalue of struct type, analogous to:
(EXPR).field
in C. */
extern gcc_jit_rvalue *
gcc_jit_rvalue_access_field (gcc_jit_rvalue *struct_or_union,
gcc_jit_location *loc,
gcc_jit_field *field);
/* Accessing a field of an rvalue of pointer type, analogous to:
(EXPR)->field
in C, itself equivalent to (*EXPR).FIELD */
extern gcc_jit_lvalue *
gcc_jit_rvalue_dereference_field (gcc_jit_rvalue *ptr,
gcc_jit_location *loc,
gcc_jit_field *field);
/* Dereferencing a pointer; analogous to:
*(EXPR)
*/
extern gcc_jit_lvalue *
gcc_jit_rvalue_dereference (gcc_jit_rvalue *rvalue,
gcc_jit_location *loc);
/* Taking the address of an lvalue; analogous to:
&(EXPR)
in C. */
extern gcc_jit_rvalue *
gcc_jit_lvalue_get_address (gcc_jit_lvalue *lvalue,
gcc_jit_location *loc);
extern gcc_jit_lvalue *
gcc_jit_function_new_local (gcc_jit_function *func,
gcc_jit_location *loc,
gcc_jit_type *type,
const char *name);
/**********************************************************************
Statement-creation.
**********************************************************************/
/* Add evaluation of an rvalue, discarding the result
(e.g. a function call that "returns" void).
This is equivalent to this C code:
(void)expression;
*/
extern void
gcc_jit_block_add_eval (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_rvalue *rvalue);
/* Add evaluation of an rvalue, assigning the result to the given
lvalue.
This is roughly equivalent to this C code:
lvalue = rvalue;
*/
extern void
gcc_jit_block_add_assignment (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_lvalue *lvalue,
gcc_jit_rvalue *rvalue);
/* Add evaluation of an rvalue, using the result to modify an
lvalue.
This is analogous to "+=" and friends:
lvalue += rvalue;
lvalue *= rvalue;
lvalue /= rvalue;
etc */
extern void
gcc_jit_block_add_assignment_op (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_lvalue *lvalue,
enum gcc_jit_binary_op op,
gcc_jit_rvalue *rvalue);
/* Add a no-op textual comment to the internal representation of the
code. It will be optimized away, but will be visible in the dumps
seen via
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_TREE
and
GCC_JIT_BOOL_OPTION_DUMP_INITIAL_GIMPLE,
and thus may be of use when debugging how your project's internal
representation gets converted to the libgccjit IR. */
extern void
gcc_jit_block_add_comment (gcc_jit_block *block,
gcc_jit_location *loc,
const char *text);
/* Terminate a block by adding evaluation of an rvalue, branching on the
result to the appropriate successor block.
This is roughly equivalent to this C code:
if (boolval)
goto on_true;
else
goto on_false;
block, boolval, on_true, and on_false must be non-NULL. */
extern void
gcc_jit_block_end_with_conditional (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_rvalue *boolval,
gcc_jit_block *on_true,
gcc_jit_block *on_false);
/* Terminate a block by adding a jump to the given target block.
This is roughly equivalent to this C code:
goto target;
*/
extern void
gcc_jit_block_end_with_jump (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_block *target);
/* Terminate a block by adding evaluation of an rvalue, returning the value.
This is roughly equivalent to this C code:
return expression;
*/
extern void
gcc_jit_block_end_with_return (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_rvalue *rvalue);
/* Terminate a block by adding a valueless return, for use within a function
with "void" return type.
This is equivalent to this C code:
return;
*/
extern void
gcc_jit_block_end_with_void_return (gcc_jit_block *block,
gcc_jit_location *loc);
/* Create a new gcc_jit_case instance for use in a switch statement.
min_value and max_value must be constants of integer type.
This API entrypoint was added in LIBGCCJIT_ABI_3; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_SWITCH_STATEMENTS
*/
extern gcc_jit_case *
gcc_jit_context_new_case (gcc_jit_context *ctxt,
gcc_jit_rvalue *min_value,
gcc_jit_rvalue *max_value,
gcc_jit_block *dest_block);
/* Upcasting from case to object.
This API entrypoint was added in LIBGCCJIT_ABI_3; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_SWITCH_STATEMENTS
*/
extern gcc_jit_object *
gcc_jit_case_as_object (gcc_jit_case *case_);
/* Terminate a block by adding evalation of an rvalue, then performing
a multiway branch.
This is roughly equivalent to this C code:
switch (expr)
{
default:
goto default_block;
case C0.min_value ... C0.max_value:
goto C0.dest_block;
case C1.min_value ... C1.max_value:
goto C1.dest_block;
...etc...
case C[N - 1].min_value ... C[N - 1].max_value:
goto C[N - 1].dest_block;
}
block, expr, default_block and cases must all be non-NULL.
expr must be of the same integer type as all of the min_value
and max_value within the cases.
num_cases must be >= 0.
The ranges of the cases must not overlap (or have duplicate
values).
This API entrypoint was added in LIBGCCJIT_ABI_3; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_SWITCH_STATEMENTS
*/
extern void
gcc_jit_block_end_with_switch (gcc_jit_block *block,
gcc_jit_location *loc,
gcc_jit_rvalue *expr,
gcc_jit_block *default_block,
int num_cases,
gcc_jit_case **cases);
/* Pre-canned feature macro to indicate the presence of
gcc_jit_block_end_with_switch, gcc_jit_case_as_object, and
gcc_jit_context_new_case.
This can be tested for with #ifdef. */
#define LIBGCCJIT_HAVE_SWITCH_STATEMENTS
/**********************************************************************
Nested contexts.
**********************************************************************/
/* Given an existing JIT context, create a child context.
The child inherits a copy of all option-settings from the parent.
The child can reference objects created within the parent, but not
vice-versa.
The lifetime of the child context must be bounded by that of the
parent: you should release a child context before releasing the parent
context.
If you use a function from a parent context within a child context,
you have to compile the parent context before you can compile the
child context, and the gcc_jit_result of the parent context must
outlive the gcc_jit_result of the child context.
This allows caching of shared initializations. For example, you could
create types and declarations of global functions in a parent context
once within a process, and then create child contexts whenever a
function or loop becomes hot. Each such child context can be used for
JIT-compiling just one function or loop, but can reference types
and helper functions created within the parent context.
Contexts can be arbitrarily nested, provided the above rules are
followed, but it's probably not worth going above 2 or 3 levels, and
there will likely be a performance hit for such nesting. */
extern gcc_jit_context *
gcc_jit_context_new_child_context (gcc_jit_context *parent_ctxt);
/**********************************************************************
Implementation support.
**********************************************************************/
/* Write C source code into "path" that can be compiled into a
self-contained executable (i.e. with libgccjit as the only dependency).
The generated code will attempt to replay the API calls that have been
made into the given context.
This may be useful when debugging the library or client code, for
reducing a complicated recipe for reproducing a bug into a simpler
form.
Typically you need to supply the option "-Wno-unused-variable" when
compiling the generated file (since the result of each API call is
assigned to a unique variable within the generated C source, and not
all are necessarily then used). */
extern void
gcc_jit_context_dump_reproducer_to_file (gcc_jit_context *ctxt,
const char *path);
/* Enable the dumping of a specific set of internal state from the
compilation, capturing the result in-memory as a buffer.
Parameter "dumpname" corresponds to the equivalent gcc command-line
option, without the "-fdump-" prefix.
For example, to get the equivalent of "-fdump-tree-vrp1", supply
"tree-vrp1".
The context directly stores the dumpname as a (const char *), so the
passed string must outlive the context.
gcc_jit_context_compile and gcc_jit_context_to_file
will capture the dump as a dynamically-allocated buffer, writing
it to ``*out_ptr``.
The caller becomes responsible for calling
free (*out_ptr)
each time that gcc_jit_context_compile or gcc_jit_context_to_file
are called. *out_ptr will be written to, either with the address of a
buffer, or with NULL if an error occurred.
This API entrypoint is likely to be less stable than the others.
In particular, both the precise dumpnames, and the format and content
of the dumps are subject to change.
It exists primarily for writing the library's own test suite. */
extern void
gcc_jit_context_enable_dump (gcc_jit_context *ctxt,
const char *dumpname,
char **out_ptr);
/**********************************************************************
Timing support.
**********************************************************************/
/* The timing API was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
#define LIBGCCJIT_HAVE_TIMING_API
typedef struct gcc_jit_timer gcc_jit_timer;
/* Create a gcc_jit_timer instance, and start timing.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern gcc_jit_timer *
gcc_jit_timer_new (void);
/* Release a gcc_jit_timer instance.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern void
gcc_jit_timer_release (gcc_jit_timer *timer);
/* Associate a gcc_jit_timer instance with a context.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern void
gcc_jit_context_set_timer (gcc_jit_context *ctxt,
gcc_jit_timer *timer);
/* Get the timer associated with a context (if any).
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern gcc_jit_timer *
gcc_jit_context_get_timer (gcc_jit_context *ctxt);
/* Push the given item onto the timing stack.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern void
gcc_jit_timer_push (gcc_jit_timer *timer,
const char *item_name);
/* Pop the top item from the timing stack.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern void
gcc_jit_timer_pop (gcc_jit_timer *timer,
const char *item_name);
/* Print timing information to the given stream about activity since
the timer was started.
This API entrypoint was added in LIBGCCJIT_ABI_4; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_TIMING_API
*/
extern void
gcc_jit_timer_print (gcc_jit_timer *timer,
FILE *f_out);
#define LIBGCCJIT_HAVE_gcc_jit_rvalue_set_bool_require_tail_call
/* Mark/clear a call as needing tail-call optimization.
This API entrypoint was added in LIBGCCJIT_ABI_6; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_rvalue_set_bool_require_tail_call
*/
extern void
gcc_jit_rvalue_set_bool_require_tail_call (gcc_jit_rvalue *call,
int require_tail_call);
#define LIBGCCJIT_HAVE_gcc_jit_type_get_aligned
/* Given type "T", get type:
T __attribute__ ((aligned (ALIGNMENT_IN_BYTES)))
The alignment must be a power of two.
This API entrypoint was added in LIBGCCJIT_ABI_7; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_type_get_aligned
*/
extern gcc_jit_type *
gcc_jit_type_get_aligned (gcc_jit_type *type,
size_t alignment_in_bytes);
#define LIBGCCJIT_HAVE_gcc_jit_type_get_vector
/* Given type "T", get type:
T __attribute__ ((vector_size (sizeof(T) * num_units))
T must be integral/floating point; num_units must be a power of two.
This API entrypoint was added in LIBGCCJIT_ABI_8; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_type_get_vector
*/
extern gcc_jit_type *
gcc_jit_type_get_vector (gcc_jit_type *type, size_t num_units);
#define LIBGCCJIT_HAVE_gcc_jit_function_get_address
/* Get the address of a function as an rvalue, of function pointer
type.
This API entrypoint was added in LIBGCCJIT_ABI_9; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_function_get_address
*/
extern gcc_jit_rvalue *
gcc_jit_function_get_address (gcc_jit_function *fn,
gcc_jit_location *loc);
#define LIBGCCJIT_HAVE_gcc_jit_context_new_rvalue_from_vector
/* Build a vector rvalue from an array of elements.
"vec_type" should be a vector type, created using gcc_jit_type_get_vector.
This API entrypoint was added in LIBGCCJIT_ABI_10; you can test for its
presence using
#ifdef LIBGCCJIT_HAVE_gcc_jit_context_new_rvalue_from_vector
*/
extern gcc_jit_rvalue *
gcc_jit_context_new_rvalue_from_vector (gcc_jit_context *ctxt,
gcc_jit_location *loc,
gcc_jit_type *vec_type,
size_t num_elements,
gcc_jit_rvalue **elements);
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* LIBGCCJIT_H */