/* OMP constructs' SIMD clone supporting code. Copyright (C) 2005-2018 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "alloc-pool.h" #include "tree-pass.h" #include "ssa.h" #include "cgraph.h" #include "pretty-print.h" #include "diagnostic-core.h" #include "fold-const.h" #include "stor-layout.h" #include "cfganal.h" #include "gimplify.h" #include "gimple-iterator.h" #include "gimplify-me.h" #include "gimple-walk.h" #include "langhooks.h" #include "tree-cfg.h" #include "tree-into-ssa.h" #include "tree-dfa.h" #include "cfgloop.h" #include "symbol-summary.h" #include "ipa-param-manipulation.h" #include "tree-eh.h" #include "varasm.h" #include "stringpool.h" #include "attribs.h" #include "omp-simd-clone.h" /* Return the number of elements in vector type VECTYPE, which is associated with a SIMD clone. At present these always have a constant length. */ static unsigned HOST_WIDE_INT simd_clone_subparts (tree vectype) { return TYPE_VECTOR_SUBPARTS (vectype).to_constant (); } /* Allocate a fresh `simd_clone' and return it. NARGS is the number of arguments to reserve space for. */ static struct cgraph_simd_clone * simd_clone_struct_alloc (int nargs) { struct cgraph_simd_clone *clone_info; size_t len = (sizeof (struct cgraph_simd_clone) + nargs * sizeof (struct cgraph_simd_clone_arg)); clone_info = (struct cgraph_simd_clone *) ggc_internal_cleared_alloc (len); return clone_info; } /* Make a copy of the `struct cgraph_simd_clone' in FROM to TO. */ static inline void simd_clone_struct_copy (struct cgraph_simd_clone *to, struct cgraph_simd_clone *from) { memcpy (to, from, (sizeof (struct cgraph_simd_clone) + ((from->nargs - from->inbranch) * sizeof (struct cgraph_simd_clone_arg)))); } /* Return vector of parameter types of function FNDECL. This uses TYPE_ARG_TYPES if available, otherwise falls back to types of DECL_ARGUMENTS types. */ static vec simd_clone_vector_of_formal_parm_types (tree fndecl) { if (TYPE_ARG_TYPES (TREE_TYPE (fndecl))) return ipa_get_vector_of_formal_parm_types (TREE_TYPE (fndecl)); vec args = ipa_get_vector_of_formal_parms (fndecl); unsigned int i; tree arg; FOR_EACH_VEC_ELT (args, i, arg) args[i] = TREE_TYPE (args[i]); return args; } /* Given a simd function in NODE, extract the simd specific information from the OMP clauses passed in CLAUSES, and return the struct cgraph_simd_clone * if it should be cloned. *INBRANCH_SPECIFIED is set to TRUE if the `inbranch' or `notinbranch' clause specified, otherwise set to FALSE. */ static struct cgraph_simd_clone * simd_clone_clauses_extract (struct cgraph_node *node, tree clauses, bool *inbranch_specified) { vec args = simd_clone_vector_of_formal_parm_types (node->decl); tree t; int n; *inbranch_specified = false; n = args.length (); if (n > 0 && args.last () == void_type_node) n--; /* Allocate one more than needed just in case this is an in-branch clone which will require a mask argument. */ struct cgraph_simd_clone *clone_info = simd_clone_struct_alloc (n + 1); clone_info->nargs = n; if (!clauses) goto out; clauses = TREE_VALUE (clauses); if (!clauses || TREE_CODE (clauses) != OMP_CLAUSE) goto out; for (t = clauses; t; t = OMP_CLAUSE_CHAIN (t)) { switch (OMP_CLAUSE_CODE (t)) { case OMP_CLAUSE_INBRANCH: clone_info->inbranch = 1; *inbranch_specified = true; break; case OMP_CLAUSE_NOTINBRANCH: clone_info->inbranch = 0; *inbranch_specified = true; break; case OMP_CLAUSE_SIMDLEN: clone_info->simdlen = TREE_INT_CST_LOW (OMP_CLAUSE_SIMDLEN_EXPR (t)); break; case OMP_CLAUSE_LINEAR: { tree decl = OMP_CLAUSE_DECL (t); tree step = OMP_CLAUSE_LINEAR_STEP (t); int argno = TREE_INT_CST_LOW (decl); if (OMP_CLAUSE_LINEAR_VARIABLE_STRIDE (t)) { enum cgraph_simd_clone_arg_type arg_type; if (TREE_CODE (args[argno]) == REFERENCE_TYPE) switch (OMP_CLAUSE_LINEAR_KIND (t)) { case OMP_CLAUSE_LINEAR_REF: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP; break; case OMP_CLAUSE_LINEAR_UVAL: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP; break; case OMP_CLAUSE_LINEAR_VAL: case OMP_CLAUSE_LINEAR_DEFAULT: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP; break; default: gcc_unreachable (); } else arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP; clone_info->args[argno].arg_type = arg_type; clone_info->args[argno].linear_step = tree_to_shwi (step); gcc_assert (clone_info->args[argno].linear_step >= 0 && clone_info->args[argno].linear_step < n); } else { if (POINTER_TYPE_P (args[argno])) step = fold_convert (ssizetype, step); if (!tree_fits_shwi_p (step)) { warning_at (OMP_CLAUSE_LOCATION (t), 0, "ignoring large linear step"); args.release (); return NULL; } else if (integer_zerop (step)) { warning_at (OMP_CLAUSE_LOCATION (t), 0, "ignoring zero linear step"); args.release (); return NULL; } else { enum cgraph_simd_clone_arg_type arg_type; if (TREE_CODE (args[argno]) == REFERENCE_TYPE) switch (OMP_CLAUSE_LINEAR_KIND (t)) { case OMP_CLAUSE_LINEAR_REF: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP; break; case OMP_CLAUSE_LINEAR_UVAL: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP; break; case OMP_CLAUSE_LINEAR_VAL: case OMP_CLAUSE_LINEAR_DEFAULT: arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP; break; default: gcc_unreachable (); } else arg_type = SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP; clone_info->args[argno].arg_type = arg_type; clone_info->args[argno].linear_step = tree_to_shwi (step); } } break; } case OMP_CLAUSE_UNIFORM: { tree decl = OMP_CLAUSE_DECL (t); int argno = tree_to_uhwi (decl); clone_info->args[argno].arg_type = SIMD_CLONE_ARG_TYPE_UNIFORM; break; } case OMP_CLAUSE_ALIGNED: { /* Ignore aligned (x) for declare simd, for the ABI we really need an alignment specified. */ if (OMP_CLAUSE_ALIGNED_ALIGNMENT (t) == NULL_TREE) break; tree decl = OMP_CLAUSE_DECL (t); int argno = tree_to_uhwi (decl); clone_info->args[argno].alignment = TREE_INT_CST_LOW (OMP_CLAUSE_ALIGNED_ALIGNMENT (t)); break; } default: break; } } out: if (TYPE_ATOMIC (TREE_TYPE (TREE_TYPE (node->decl)))) { warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "ignoring %<#pragma omp declare simd%> on function " "with %<_Atomic%> qualified return type"); args.release (); return NULL; } for (unsigned int argno = 0; argno < clone_info->nargs; argno++) if (TYPE_ATOMIC (args[argno]) && clone_info->args[argno].arg_type != SIMD_CLONE_ARG_TYPE_UNIFORM) { warning_at (DECL_SOURCE_LOCATION (node->decl), 0, "ignoring %<#pragma omp declare simd%> on function " "with %<_Atomic%> qualified non-% argument"); args.release (); return NULL; } args.release (); return clone_info; } /* Given a SIMD clone in NODE, calculate the characteristic data type and return the coresponding type. The characteristic data type is computed as described in the Intel Vector ABI. */ static tree simd_clone_compute_base_data_type (struct cgraph_node *node, struct cgraph_simd_clone *clone_info) { tree type = integer_type_node; tree fndecl = node->decl; /* a) For non-void function, the characteristic data type is the return type. */ if (TREE_CODE (TREE_TYPE (TREE_TYPE (fndecl))) != VOID_TYPE) type = TREE_TYPE (TREE_TYPE (fndecl)); /* b) If the function has any non-uniform, non-linear parameters, then the characteristic data type is the type of the first such parameter. */ else { vec map = simd_clone_vector_of_formal_parm_types (fndecl); for (unsigned int i = 0; i < clone_info->nargs; ++i) if (clone_info->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR) { type = map[i]; break; } map.release (); } /* c) If the characteristic data type determined by a) or b) above is struct, union, or class type which is pass-by-value (except for the type that maps to the built-in complex data type), the characteristic data type is int. */ if (RECORD_OR_UNION_TYPE_P (type) && !aggregate_value_p (type, NULL) && TREE_CODE (type) != COMPLEX_TYPE) return integer_type_node; /* d) If none of the above three classes is applicable, the characteristic data type is int. */ return type; /* e) For Intel Xeon Phi native and offload compilation, if the resulting characteristic data type is 8-bit or 16-bit integer data type, the characteristic data type is int. */ /* Well, we don't handle Xeon Phi yet. */ } static tree simd_clone_mangle (struct cgraph_node *node, struct cgraph_simd_clone *clone_info) { char vecsize_mangle = clone_info->vecsize_mangle; char mask = clone_info->inbranch ? 'M' : 'N'; unsigned int simdlen = clone_info->simdlen; unsigned int n; pretty_printer pp; gcc_assert (vecsize_mangle && simdlen); pp_string (&pp, "_ZGV"); pp_character (&pp, vecsize_mangle); pp_character (&pp, mask); pp_decimal_int (&pp, simdlen); for (n = 0; n < clone_info->nargs; ++n) { struct cgraph_simd_clone_arg arg = clone_info->args[n]; switch (arg.arg_type) { case SIMD_CLONE_ARG_TYPE_UNIFORM: pp_character (&pp, 'u'); break; case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP: pp_character (&pp, 'l'); goto mangle_linear; case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP: pp_character (&pp, 'R'); goto mangle_linear; case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: pp_character (&pp, 'L'); goto mangle_linear; case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: pp_character (&pp, 'U'); goto mangle_linear; mangle_linear: gcc_assert (arg.linear_step != 0); if (arg.linear_step > 1) pp_unsigned_wide_integer (&pp, arg.linear_step); else if (arg.linear_step < 0) { pp_character (&pp, 'n'); pp_unsigned_wide_integer (&pp, (-(unsigned HOST_WIDE_INT) arg.linear_step)); } break; case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP: pp_string (&pp, "ls"); pp_unsigned_wide_integer (&pp, arg.linear_step); break; case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP: pp_string (&pp, "Rs"); pp_unsigned_wide_integer (&pp, arg.linear_step); break; case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: pp_string (&pp, "Ls"); pp_unsigned_wide_integer (&pp, arg.linear_step); break; case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP: pp_string (&pp, "Us"); pp_unsigned_wide_integer (&pp, arg.linear_step); break; default: pp_character (&pp, 'v'); } if (arg.alignment) { pp_character (&pp, 'a'); pp_decimal_int (&pp, arg.alignment); } } pp_underscore (&pp); const char *str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)); if (*str == '*') ++str; pp_string (&pp, str); str = pp_formatted_text (&pp); /* If there already is a SIMD clone with the same mangled name, don't add another one. This can happen e.g. for #pragma omp declare simd #pragma omp declare simd simdlen(8) int foo (int, int); if the simdlen is assumed to be 8 for the first one, etc. */ for (struct cgraph_node *clone = node->simd_clones; clone; clone = clone->simdclone->next_clone) if (id_equal (DECL_ASSEMBLER_NAME (clone->decl), str)) return NULL_TREE; return get_identifier (str); } /* Create a simd clone of OLD_NODE and return it. */ static struct cgraph_node * simd_clone_create (struct cgraph_node *old_node) { struct cgraph_node *new_node; if (old_node->definition) { if (!old_node->has_gimple_body_p ()) return NULL; old_node->get_body (); new_node = old_node->create_version_clone_with_body (vNULL, NULL, NULL, false, NULL, NULL, "simdclone"); } else { tree old_decl = old_node->decl; tree new_decl = copy_node (old_node->decl); DECL_NAME (new_decl) = clone_function_name (old_decl, "simdclone"); SET_DECL_ASSEMBLER_NAME (new_decl, DECL_NAME (new_decl)); SET_DECL_RTL (new_decl, NULL); DECL_STATIC_CONSTRUCTOR (new_decl) = 0; DECL_STATIC_DESTRUCTOR (new_decl) = 0; new_node = old_node->create_version_clone (new_decl, vNULL, NULL); if (old_node->in_other_partition) new_node->in_other_partition = 1; } if (new_node == NULL) return new_node; DECL_BUILT_IN_CLASS (new_node->decl) = NOT_BUILT_IN; DECL_FUNCTION_CODE (new_node->decl) = (enum built_in_function) 0; TREE_PUBLIC (new_node->decl) = TREE_PUBLIC (old_node->decl); DECL_COMDAT (new_node->decl) = DECL_COMDAT (old_node->decl); DECL_WEAK (new_node->decl) = DECL_WEAK (old_node->decl); DECL_EXTERNAL (new_node->decl) = DECL_EXTERNAL (old_node->decl); DECL_VISIBILITY_SPECIFIED (new_node->decl) = DECL_VISIBILITY_SPECIFIED (old_node->decl); DECL_VISIBILITY (new_node->decl) = DECL_VISIBILITY (old_node->decl); DECL_DLLIMPORT_P (new_node->decl) = DECL_DLLIMPORT_P (old_node->decl); if (DECL_ONE_ONLY (old_node->decl)) make_decl_one_only (new_node->decl, DECL_ASSEMBLER_NAME (new_node->decl)); /* The method cgraph_version_clone_with_body () will force the new symbol local. Undo this, and inherit external visibility from the old node. */ new_node->local.local = old_node->local.local; new_node->externally_visible = old_node->externally_visible; return new_node; } /* Adjust the return type of the given function to its appropriate vector counterpart. Returns a simd array to be used throughout the function as a return value. */ static tree simd_clone_adjust_return_type (struct cgraph_node *node) { tree fndecl = node->decl; tree orig_rettype = TREE_TYPE (TREE_TYPE (fndecl)); unsigned int veclen; tree t; /* Adjust the function return type. */ if (orig_rettype == void_type_node) return NULL_TREE; TREE_TYPE (fndecl) = build_distinct_type_copy (TREE_TYPE (fndecl)); t = TREE_TYPE (TREE_TYPE (fndecl)); if (INTEGRAL_TYPE_P (t) || POINTER_TYPE_P (t)) veclen = node->simdclone->vecsize_int; else veclen = node->simdclone->vecsize_float; veclen /= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (t)); if (veclen > node->simdclone->simdlen) veclen = node->simdclone->simdlen; if (POINTER_TYPE_P (t)) t = pointer_sized_int_node; if (veclen == node->simdclone->simdlen) t = build_vector_type (t, node->simdclone->simdlen); else { t = build_vector_type (t, veclen); t = build_array_type_nelts (t, node->simdclone->simdlen / veclen); } TREE_TYPE (TREE_TYPE (fndecl)) = t; if (!node->definition) return NULL_TREE; t = DECL_RESULT (fndecl); /* Adjust the DECL_RESULT. */ gcc_assert (TREE_TYPE (t) != void_type_node); TREE_TYPE (t) = TREE_TYPE (TREE_TYPE (fndecl)); relayout_decl (t); tree atype = build_array_type_nelts (orig_rettype, node->simdclone->simdlen); if (veclen != node->simdclone->simdlen) return build1 (VIEW_CONVERT_EXPR, atype, t); /* Set up a SIMD array to use as the return value. */ tree retval = create_tmp_var_raw (atype, "retval"); gimple_add_tmp_var (retval); return retval; } /* Each vector argument has a corresponding array to be used locally as part of the eventual loop. Create such temporary array and return it. PREFIX is the prefix to be used for the temporary. TYPE is the inner element type. SIMDLEN is the number of elements. */ static tree create_tmp_simd_array (const char *prefix, tree type, int simdlen) { tree atype = build_array_type_nelts (type, simdlen); tree avar = create_tmp_var_raw (atype, prefix); gimple_add_tmp_var (avar); return avar; } /* Modify the function argument types to their corresponding vector counterparts if appropriate. Also, create one array for each simd argument to be used locally when using the function arguments as part of the loop. NODE is the function whose arguments are to be adjusted. Returns an adjustment vector that will be filled describing how the argument types will be adjusted. */ static ipa_parm_adjustment_vec simd_clone_adjust_argument_types (struct cgraph_node *node) { vec args; ipa_parm_adjustment_vec adjustments; if (node->definition) args = ipa_get_vector_of_formal_parms (node->decl); else args = simd_clone_vector_of_formal_parm_types (node->decl); adjustments.create (args.length ()); unsigned i, j, veclen; struct ipa_parm_adjustment adj; struct cgraph_simd_clone *sc = node->simdclone; for (i = 0; i < sc->nargs; ++i) { memset (&adj, 0, sizeof (adj)); tree parm = args[i]; tree parm_type = node->definition ? TREE_TYPE (parm) : parm; adj.base_index = i; adj.base = parm; sc->args[i].orig_arg = node->definition ? parm : NULL_TREE; sc->args[i].orig_type = parm_type; switch (sc->args[i].arg_type) { default: /* No adjustment necessary for scalar arguments. */ adj.op = IPA_PARM_OP_COPY; break; case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP: if (node->definition) sc->args[i].simd_array = create_tmp_simd_array (IDENTIFIER_POINTER (DECL_NAME (parm)), TREE_TYPE (parm_type), sc->simdlen); adj.op = IPA_PARM_OP_COPY; break; case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_VECTOR: if (INTEGRAL_TYPE_P (parm_type) || POINTER_TYPE_P (parm_type)) veclen = sc->vecsize_int; else veclen = sc->vecsize_float; veclen /= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (parm_type)); if (veclen > sc->simdlen) veclen = sc->simdlen; adj.arg_prefix = "simd"; if (POINTER_TYPE_P (parm_type)) adj.type = build_vector_type (pointer_sized_int_node, veclen); else adj.type = build_vector_type (parm_type, veclen); sc->args[i].vector_type = adj.type; for (j = veclen; j < sc->simdlen; j += veclen) { adjustments.safe_push (adj); if (j == veclen) { memset (&adj, 0, sizeof (adj)); adj.op = IPA_PARM_OP_NEW; adj.arg_prefix = "simd"; adj.base_index = i; adj.type = sc->args[i].vector_type; } } if (node->definition) sc->args[i].simd_array = create_tmp_simd_array (DECL_NAME (parm) ? IDENTIFIER_POINTER (DECL_NAME (parm)) : NULL, parm_type, sc->simdlen); } adjustments.safe_push (adj); } if (sc->inbranch) { tree base_type = simd_clone_compute_base_data_type (sc->origin, sc); memset (&adj, 0, sizeof (adj)); adj.op = IPA_PARM_OP_NEW; adj.arg_prefix = "mask"; adj.base_index = i; if (INTEGRAL_TYPE_P (base_type) || POINTER_TYPE_P (base_type)) veclen = sc->vecsize_int; else veclen = sc->vecsize_float; veclen /= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (base_type)); if (veclen > sc->simdlen) veclen = sc->simdlen; if (sc->mask_mode != VOIDmode) adj.type = lang_hooks.types.type_for_mode (sc->mask_mode, 1); else if (POINTER_TYPE_P (base_type)) adj.type = build_vector_type (pointer_sized_int_node, veclen); else adj.type = build_vector_type (base_type, veclen); adjustments.safe_push (adj); for (j = veclen; j < sc->simdlen; j += veclen) adjustments.safe_push (adj); /* We have previously allocated one extra entry for the mask. Use it and fill it. */ sc->nargs++; if (sc->mask_mode != VOIDmode) base_type = boolean_type_node; if (node->definition) { sc->args[i].orig_arg = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL, base_type); if (sc->mask_mode == VOIDmode) sc->args[i].simd_array = create_tmp_simd_array ("mask", base_type, sc->simdlen); else if (veclen < sc->simdlen) sc->args[i].simd_array = create_tmp_simd_array ("mask", adj.type, sc->simdlen / veclen); else sc->args[i].simd_array = NULL_TREE; } sc->args[i].orig_type = base_type; sc->args[i].arg_type = SIMD_CLONE_ARG_TYPE_MASK; } if (node->definition) ipa_modify_formal_parameters (node->decl, adjustments); else { tree new_arg_types = NULL_TREE, new_reversed; bool last_parm_void = false; if (args.length () > 0 && args.last () == void_type_node) last_parm_void = true; gcc_assert (TYPE_ARG_TYPES (TREE_TYPE (node->decl))); j = adjustments.length (); for (i = 0; i < j; i++) { struct ipa_parm_adjustment *adj = &adjustments[i]; tree ptype; if (adj->op == IPA_PARM_OP_COPY) ptype = args[adj->base_index]; else ptype = adj->type; new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types); } new_reversed = nreverse (new_arg_types); if (last_parm_void) { if (new_reversed) TREE_CHAIN (new_arg_types) = void_list_node; else new_reversed = void_list_node; } tree new_type = build_distinct_type_copy (TREE_TYPE (node->decl)); TYPE_ARG_TYPES (new_type) = new_reversed; TREE_TYPE (node->decl) = new_type; adjustments.release (); } args.release (); return adjustments; } /* Initialize and copy the function arguments in NODE to their corresponding local simd arrays. Returns a fresh gimple_seq with the instruction sequence generated. */ static gimple_seq simd_clone_init_simd_arrays (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments) { gimple_seq seq = NULL; unsigned i = 0, j = 0, k; for (tree arg = DECL_ARGUMENTS (node->decl); arg; arg = DECL_CHAIN (arg), i++, j++) { if (adjustments[j].op == IPA_PARM_OP_COPY || POINTER_TYPE_P (TREE_TYPE (arg))) continue; node->simdclone->args[i].vector_arg = arg; tree array = node->simdclone->args[i].simd_array; if (node->simdclone->mask_mode != VOIDmode && node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_MASK) { if (array == NULL_TREE) continue; unsigned int l = tree_to_uhwi (TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (array)))); for (k = 0; k <= l; k++) { if (k) { arg = DECL_CHAIN (arg); j++; } tree t = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (array)), array, size_int (k), NULL, NULL); t = build2 (MODIFY_EXPR, TREE_TYPE (t), t, arg); gimplify_and_add (t, &seq); } continue; } if (simd_clone_subparts (TREE_TYPE (arg)) == node->simdclone->simdlen) { tree ptype = build_pointer_type (TREE_TYPE (TREE_TYPE (array))); tree ptr = build_fold_addr_expr (array); tree t = build2 (MEM_REF, TREE_TYPE (arg), ptr, build_int_cst (ptype, 0)); t = build2 (MODIFY_EXPR, TREE_TYPE (t), t, arg); gimplify_and_add (t, &seq); } else { unsigned int simdlen = simd_clone_subparts (TREE_TYPE (arg)); tree ptype = build_pointer_type (TREE_TYPE (TREE_TYPE (array))); for (k = 0; k < node->simdclone->simdlen; k += simdlen) { tree ptr = build_fold_addr_expr (array); int elemsize; if (k) { arg = DECL_CHAIN (arg); j++; } tree elemtype = TREE_TYPE (TREE_TYPE (arg)); elemsize = GET_MODE_SIZE (SCALAR_TYPE_MODE (elemtype)); tree t = build2 (MEM_REF, TREE_TYPE (arg), ptr, build_int_cst (ptype, k * elemsize)); t = build2 (MODIFY_EXPR, TREE_TYPE (t), t, arg); gimplify_and_add (t, &seq); } } } return seq; } /* Callback info for ipa_simd_modify_stmt_ops below. */ struct modify_stmt_info { ipa_parm_adjustment_vec adjustments; gimple *stmt; /* True if the parent statement was modified by ipa_simd_modify_stmt_ops. */ bool modified; }; /* Callback for walk_gimple_op. Adjust operands from a given statement as specified in the adjustments vector in the callback data. */ static tree ipa_simd_modify_stmt_ops (tree *tp, int *walk_subtrees, void *data) { struct walk_stmt_info *wi = (struct walk_stmt_info *) data; struct modify_stmt_info *info = (struct modify_stmt_info *) wi->info; tree *orig_tp = tp; if (TREE_CODE (*tp) == ADDR_EXPR) tp = &TREE_OPERAND (*tp, 0); struct ipa_parm_adjustment *cand = NULL; if (TREE_CODE (*tp) == PARM_DECL) cand = ipa_get_adjustment_candidate (&tp, NULL, info->adjustments, true); else { if (TYPE_P (*tp)) *walk_subtrees = 0; } tree repl = NULL_TREE; if (cand) repl = unshare_expr (cand->new_decl); else { if (tp != orig_tp) { *walk_subtrees = 0; bool modified = info->modified; info->modified = false; walk_tree (tp, ipa_simd_modify_stmt_ops, wi, wi->pset); if (!info->modified) { info->modified = modified; return NULL_TREE; } info->modified = modified; repl = *tp; } else return NULL_TREE; } if (tp != orig_tp) { repl = build_fold_addr_expr (repl); gimple *stmt; if (is_gimple_debug (info->stmt)) { tree vexpr = make_node (DEBUG_EXPR_DECL); stmt = gimple_build_debug_source_bind (vexpr, repl, NULL); DECL_ARTIFICIAL (vexpr) = 1; TREE_TYPE (vexpr) = TREE_TYPE (repl); SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (repl))); repl = vexpr; } else { stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (repl)), repl); repl = gimple_assign_lhs (stmt); } gimple_stmt_iterator gsi = gsi_for_stmt (info->stmt); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); *orig_tp = repl; } else if (!useless_type_conversion_p (TREE_TYPE (*tp), TREE_TYPE (repl))) { tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*tp), repl); *tp = vce; } else *tp = repl; info->modified = true; return NULL_TREE; } /* Traverse the function body and perform all modifications as described in ADJUSTMENTS. At function return, ADJUSTMENTS will be modified such that the replacement/reduction value will now be an offset into the corresponding simd_array. This function will replace all function argument uses with their corresponding simd array elements, and ajust the return values accordingly. */ static void ipa_simd_modify_function_body (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments, tree retval_array, tree iter) { basic_block bb; unsigned int i, j, l; /* Re-use the adjustments array, but this time use it to replace every function argument use to an offset into the corresponding simd_array. */ for (i = 0, j = 0; i < node->simdclone->nargs; ++i, ++j) { if (!node->simdclone->args[i].vector_arg) continue; tree basetype = TREE_TYPE (node->simdclone->args[i].orig_arg); tree vectype = TREE_TYPE (node->simdclone->args[i].vector_arg); adjustments[j].new_decl = build4 (ARRAY_REF, basetype, node->simdclone->args[i].simd_array, iter, NULL_TREE, NULL_TREE); if (adjustments[j].op == IPA_PARM_OP_NONE && simd_clone_subparts (vectype) < node->simdclone->simdlen) j += node->simdclone->simdlen / simd_clone_subparts (vectype) - 1; } l = adjustments.length (); tree name; FOR_EACH_SSA_NAME (i, name, cfun) { if (SSA_NAME_VAR (name) && TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL) { for (j = 0; j < l; j++) if (SSA_NAME_VAR (name) == adjustments[j].base && adjustments[j].new_decl) { tree base_var; if (adjustments[j].new_ssa_base == NULL_TREE) { base_var = copy_var_decl (adjustments[j].base, DECL_NAME (adjustments[j].base), TREE_TYPE (adjustments[j].base)); adjustments[j].new_ssa_base = base_var; } else base_var = adjustments[j].new_ssa_base; if (SSA_NAME_IS_DEFAULT_DEF (name)) { bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); gimple_stmt_iterator gsi = gsi_after_labels (bb); tree new_decl = unshare_expr (adjustments[j].new_decl); set_ssa_default_def (cfun, adjustments[j].base, NULL_TREE); SET_SSA_NAME_VAR_OR_IDENTIFIER (name, base_var); SSA_NAME_IS_DEFAULT_DEF (name) = 0; gimple *stmt = gimple_build_assign (name, new_decl); gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); } else SET_SSA_NAME_VAR_OR_IDENTIFIER (name, base_var); } } } struct modify_stmt_info info; info.adjustments = adjustments; FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl)) { gimple_stmt_iterator gsi; gsi = gsi_start_bb (bb); while (!gsi_end_p (gsi)) { gimple *stmt = gsi_stmt (gsi); info.stmt = stmt; struct walk_stmt_info wi; memset (&wi, 0, sizeof (wi)); info.modified = false; wi.info = &info; walk_gimple_op (stmt, ipa_simd_modify_stmt_ops, &wi); if (greturn *return_stmt = dyn_cast (stmt)) { tree retval = gimple_return_retval (return_stmt); edge e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); e->flags |= EDGE_FALLTHRU; if (!retval) { gsi_remove (&gsi, true); continue; } /* Replace `return foo' with `retval_array[iter] = foo'. */ tree ref = build4 (ARRAY_REF, TREE_TYPE (retval), retval_array, iter, NULL, NULL); stmt = gimple_build_assign (ref, retval); gsi_replace (&gsi, stmt, true); info.modified = true; } if (info.modified) { update_stmt (stmt); /* If the above changed the var of a debug bind into something different, remove the debug stmt. We could also for all the replaced parameters add VAR_DECLs for debug info purposes, add debug stmts for those to be the simd array accesses and replace debug stmt var operand with that var. Debugging of vectorized loops doesn't work too well, so don't bother for now. */ if ((gimple_debug_bind_p (stmt) && !DECL_P (gimple_debug_bind_get_var (stmt))) || (gimple_debug_source_bind_p (stmt) && !DECL_P (gimple_debug_source_bind_get_var (stmt)))) { gsi_remove (&gsi, true); continue; } if (maybe_clean_eh_stmt (stmt)) gimple_purge_dead_eh_edges (gimple_bb (stmt)); } gsi_next (&gsi); } } } /* Helper function of simd_clone_adjust, return linear step addend of Ith argument. */ static tree simd_clone_linear_addend (struct cgraph_node *node, unsigned int i, tree addtype, basic_block entry_bb) { tree ptype = NULL_TREE; switch (node->simdclone->args[i].arg_type) { case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: return build_int_cst (addtype, node->simdclone->args[i].linear_step); case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP: ptype = TREE_TYPE (node->simdclone->args[i].orig_arg); break; case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP: ptype = TREE_TYPE (TREE_TYPE (node->simdclone->args[i].orig_arg)); break; default: gcc_unreachable (); } unsigned int idx = node->simdclone->args[i].linear_step; tree arg = node->simdclone->args[idx].orig_arg; gcc_assert (is_gimple_reg_type (TREE_TYPE (arg))); gimple_stmt_iterator gsi = gsi_after_labels (entry_bb); gimple *g; tree ret; if (is_gimple_reg (arg)) ret = get_or_create_ssa_default_def (cfun, arg); else { g = gimple_build_assign (make_ssa_name (TREE_TYPE (arg)), arg); gsi_insert_before (&gsi, g, GSI_SAME_STMT); ret = gimple_assign_lhs (g); } if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE) { g = gimple_build_assign (make_ssa_name (TREE_TYPE (TREE_TYPE (arg))), build_simple_mem_ref (ret)); gsi_insert_before (&gsi, g, GSI_SAME_STMT); ret = gimple_assign_lhs (g); } if (!useless_type_conversion_p (addtype, TREE_TYPE (ret))) { g = gimple_build_assign (make_ssa_name (addtype), NOP_EXPR, ret); gsi_insert_before (&gsi, g, GSI_SAME_STMT); ret = gimple_assign_lhs (g); } if (POINTER_TYPE_P (ptype)) { tree size = TYPE_SIZE_UNIT (TREE_TYPE (ptype)); if (size && TREE_CODE (size) == INTEGER_CST) { g = gimple_build_assign (make_ssa_name (addtype), MULT_EXPR, ret, fold_convert (addtype, size)); gsi_insert_before (&gsi, g, GSI_SAME_STMT); ret = gimple_assign_lhs (g); } } return ret; } /* Adjust the argument types in NODE to their appropriate vector counterparts. */ static void simd_clone_adjust (struct cgraph_node *node) { push_cfun (DECL_STRUCT_FUNCTION (node->decl)); targetm.simd_clone.adjust (node); tree retval = simd_clone_adjust_return_type (node); ipa_parm_adjustment_vec adjustments = simd_clone_adjust_argument_types (node); push_gimplify_context (); gimple_seq seq = simd_clone_init_simd_arrays (node, adjustments); /* Adjust all uses of vector arguments accordingly. Adjust all return values accordingly. */ tree iter = create_tmp_var (unsigned_type_node, "iter"); tree iter1 = make_ssa_name (iter); tree iter2 = NULL_TREE; ipa_simd_modify_function_body (node, adjustments, retval, iter1); adjustments.release (); /* Initialize the iteration variable. */ basic_block entry_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); basic_block body_bb = split_block_after_labels (entry_bb)->dest; gimple_stmt_iterator gsi = gsi_after_labels (entry_bb); /* Insert the SIMD array and iv initialization at function entry. */ gsi_insert_seq_before (&gsi, seq, GSI_NEW_STMT); pop_gimplify_context (NULL); gimple *g; basic_block incr_bb = NULL; struct loop *loop = NULL; /* Create a new BB right before the original exit BB, to hold the iteration increment and the condition/branch. */ if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)) { basic_block orig_exit = EDGE_PRED (EXIT_BLOCK_PTR_FOR_FN (cfun), 0)->src; incr_bb = create_empty_bb (orig_exit); incr_bb->count = profile_count::zero (); add_bb_to_loop (incr_bb, body_bb->loop_father); while (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)) { edge e = EDGE_PRED (EXIT_BLOCK_PTR_FOR_FN (cfun), 0); redirect_edge_succ (e, incr_bb); incr_bb->count += e->count (); } } else if (node->simdclone->inbranch) { incr_bb = create_empty_bb (entry_bb); incr_bb->count = profile_count::zero (); add_bb_to_loop (incr_bb, body_bb->loop_father); } if (incr_bb) { make_single_succ_edge (incr_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); gsi = gsi_last_bb (incr_bb); iter2 = make_ssa_name (iter); g = gimple_build_assign (iter2, PLUS_EXPR, iter1, build_int_cst (unsigned_type_node, 1)); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); /* Mostly annotate the loop for the vectorizer (the rest is done below). */ loop = alloc_loop (); cfun->has_force_vectorize_loops = true; loop->safelen = node->simdclone->simdlen; loop->force_vectorize = true; loop->header = body_bb; } /* Branch around the body if the mask applies. */ if (node->simdclone->inbranch) { gsi = gsi_last_bb (loop->header); tree mask_array = node->simdclone->args[node->simdclone->nargs - 1].simd_array; tree mask; if (node->simdclone->mask_mode != VOIDmode) { tree shift_cnt; if (mask_array == NULL_TREE) { tree arg = node->simdclone->args[node->simdclone->nargs - 1].vector_arg; mask = get_or_create_ssa_default_def (cfun, arg); shift_cnt = iter1; } else { tree maskt = TREE_TYPE (mask_array); int c = tree_to_uhwi (TYPE_MAX_VALUE (TYPE_DOMAIN (maskt))); c = node->simdclone->simdlen / (c + 1); int s = exact_log2 (c); gcc_assert (s > 0); c--; tree idx = make_ssa_name (TREE_TYPE (iter1)); g = gimple_build_assign (idx, RSHIFT_EXPR, iter1, build_int_cst (NULL_TREE, s)); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); mask = make_ssa_name (TREE_TYPE (TREE_TYPE (mask_array))); tree aref = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (mask_array)), mask_array, idx, NULL, NULL); g = gimple_build_assign (mask, aref); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); shift_cnt = make_ssa_name (TREE_TYPE (iter1)); g = gimple_build_assign (shift_cnt, BIT_AND_EXPR, iter1, build_int_cst (TREE_TYPE (iter1), c)); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); } g = gimple_build_assign (make_ssa_name (TREE_TYPE (mask)), RSHIFT_EXPR, mask, shift_cnt); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); mask = gimple_assign_lhs (g); g = gimple_build_assign (make_ssa_name (TREE_TYPE (mask)), BIT_AND_EXPR, mask, build_int_cst (TREE_TYPE (mask), 1)); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); mask = gimple_assign_lhs (g); } else { mask = make_ssa_name (TREE_TYPE (TREE_TYPE (mask_array))); tree aref = build4 (ARRAY_REF, TREE_TYPE (TREE_TYPE (mask_array)), mask_array, iter1, NULL, NULL); g = gimple_build_assign (mask, aref); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); int bitsize = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (aref))); if (!INTEGRAL_TYPE_P (TREE_TYPE (aref))) { aref = build1 (VIEW_CONVERT_EXPR, build_nonstandard_integer_type (bitsize, 0), mask); mask = make_ssa_name (TREE_TYPE (aref)); g = gimple_build_assign (mask, aref); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); } } g = gimple_build_cond (EQ_EXPR, mask, build_zero_cst (TREE_TYPE (mask)), NULL, NULL); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); edge e = make_edge (loop->header, incr_bb, EDGE_TRUE_VALUE); e->probability = profile_probability::unlikely ().guessed (); incr_bb->count += e->count (); edge fallthru = FALLTHRU_EDGE (loop->header); fallthru->flags = EDGE_FALSE_VALUE; fallthru->probability = profile_probability::likely ().guessed (); } basic_block latch_bb = NULL; basic_block new_exit_bb = NULL; /* Generate the condition. */ if (incr_bb) { gsi = gsi_last_bb (incr_bb); g = gimple_build_cond (LT_EXPR, iter2, build_int_cst (unsigned_type_node, node->simdclone->simdlen), NULL, NULL); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); edge e = split_block (incr_bb, gsi_stmt (gsi)); latch_bb = e->dest; new_exit_bb = split_block_after_labels (latch_bb)->dest; loop->latch = latch_bb; redirect_edge_succ (FALLTHRU_EDGE (latch_bb), body_bb); edge new_e = make_edge (incr_bb, new_exit_bb, EDGE_FALSE_VALUE); /* FIXME: Do we need to distribute probabilities for the conditional? */ new_e->probability = profile_probability::guessed_never (); /* The successor of incr_bb is already pointing to latch_bb; just change the flags. make_edge (incr_bb, latch_bb, EDGE_TRUE_VALUE); */ FALLTHRU_EDGE (incr_bb)->flags = EDGE_TRUE_VALUE; } gphi *phi = create_phi_node (iter1, body_bb); edge preheader_edge = find_edge (entry_bb, body_bb); edge latch_edge = NULL; add_phi_arg (phi, build_zero_cst (unsigned_type_node), preheader_edge, UNKNOWN_LOCATION); if (incr_bb) { latch_edge = single_succ_edge (latch_bb); add_phi_arg (phi, iter2, latch_edge, UNKNOWN_LOCATION); /* Generate the new return. */ gsi = gsi_last_bb (new_exit_bb); if (retval && TREE_CODE (retval) == VIEW_CONVERT_EXPR && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) retval = TREE_OPERAND (retval, 0); else if (retval) { retval = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (TREE_TYPE (node->decl)), retval); retval = force_gimple_operand_gsi (&gsi, retval, true, NULL, false, GSI_CONTINUE_LINKING); } g = gimple_build_return (retval); gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING); } /* Handle aligned clauses by replacing default defs of the aligned uniform args with __builtin_assume_aligned (arg_N(D), alignment) lhs. Handle linear by adding PHIs. */ for (unsigned i = 0; i < node->simdclone->nargs; i++) if (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_UNIFORM && (TREE_ADDRESSABLE (node->simdclone->args[i].orig_arg) || !is_gimple_reg_type (TREE_TYPE (node->simdclone->args[i].orig_arg)))) { tree orig_arg = node->simdclone->args[i].orig_arg; if (is_gimple_reg_type (TREE_TYPE (orig_arg))) iter1 = make_ssa_name (TREE_TYPE (orig_arg)); else { iter1 = create_tmp_var_raw (TREE_TYPE (orig_arg)); gimple_add_tmp_var (iter1); } gsi = gsi_after_labels (entry_bb); g = gimple_build_assign (iter1, orig_arg); gsi_insert_before (&gsi, g, GSI_NEW_STMT); gsi = gsi_after_labels (body_bb); g = gimple_build_assign (orig_arg, iter1); gsi_insert_before (&gsi, g, GSI_NEW_STMT); } else if (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_UNIFORM && DECL_BY_REFERENCE (node->simdclone->args[i].orig_arg) && TREE_CODE (TREE_TYPE (node->simdclone->args[i].orig_arg)) == REFERENCE_TYPE && TREE_ADDRESSABLE (TREE_TYPE (TREE_TYPE (node->simdclone->args[i].orig_arg)))) { tree orig_arg = node->simdclone->args[i].orig_arg; tree def = ssa_default_def (cfun, orig_arg); if (def && !has_zero_uses (def)) { iter1 = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (orig_arg))); gimple_add_tmp_var (iter1); gsi = gsi_after_labels (entry_bb); g = gimple_build_assign (iter1, build_simple_mem_ref (def)); gsi_insert_before (&gsi, g, GSI_NEW_STMT); gsi = gsi_after_labels (body_bb); g = gimple_build_assign (build_simple_mem_ref (def), iter1); gsi_insert_before (&gsi, g, GSI_NEW_STMT); } } else if (node->simdclone->args[i].alignment && node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_UNIFORM && (node->simdclone->args[i].alignment & (node->simdclone->args[i].alignment - 1)) == 0 && TREE_CODE (TREE_TYPE (node->simdclone->args[i].orig_arg)) == POINTER_TYPE) { unsigned int alignment = node->simdclone->args[i].alignment; tree orig_arg = node->simdclone->args[i].orig_arg; tree def = ssa_default_def (cfun, orig_arg); if (def && !has_zero_uses (def)) { tree fn = builtin_decl_explicit (BUILT_IN_ASSUME_ALIGNED); gimple_seq seq = NULL; bool need_cvt = false; gcall *call = gimple_build_call (fn, 2, def, size_int (alignment)); g = call; if (!useless_type_conversion_p (TREE_TYPE (orig_arg), ptr_type_node)) need_cvt = true; tree t = make_ssa_name (need_cvt ? ptr_type_node : orig_arg); gimple_call_set_lhs (g, t); gimple_seq_add_stmt_without_update (&seq, g); if (need_cvt) { t = make_ssa_name (orig_arg); g = gimple_build_assign (t, NOP_EXPR, gimple_call_lhs (g)); gimple_seq_add_stmt_without_update (&seq, g); } gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq); entry_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); node->create_edge (cgraph_node::get_create (fn), call, entry_bb->count); imm_use_iterator iter; use_operand_p use_p; gimple *use_stmt; tree repl = gimple_get_lhs (g); FOR_EACH_IMM_USE_STMT (use_stmt, iter, def) if (is_gimple_debug (use_stmt) || use_stmt == call) continue; else FOR_EACH_IMM_USE_ON_STMT (use_p, iter) SET_USE (use_p, repl); } } else if ((node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP) || (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP) || (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP) || (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP)) { tree orig_arg = node->simdclone->args[i].orig_arg; gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (orig_arg)) || POINTER_TYPE_P (TREE_TYPE (orig_arg))); tree def = NULL_TREE; if (TREE_ADDRESSABLE (orig_arg)) { def = make_ssa_name (TREE_TYPE (orig_arg)); iter1 = make_ssa_name (TREE_TYPE (orig_arg)); if (incr_bb) iter2 = make_ssa_name (TREE_TYPE (orig_arg)); gsi = gsi_after_labels (entry_bb); g = gimple_build_assign (def, orig_arg); gsi_insert_before (&gsi, g, GSI_NEW_STMT); } else { def = ssa_default_def (cfun, orig_arg); if (!def || has_zero_uses (def)) def = NULL_TREE; else { iter1 = make_ssa_name (orig_arg); if (incr_bb) iter2 = make_ssa_name (orig_arg); } } if (def) { phi = create_phi_node (iter1, body_bb); add_phi_arg (phi, def, preheader_edge, UNKNOWN_LOCATION); if (incr_bb) { add_phi_arg (phi, iter2, latch_edge, UNKNOWN_LOCATION); enum tree_code code = INTEGRAL_TYPE_P (TREE_TYPE (orig_arg)) ? PLUS_EXPR : POINTER_PLUS_EXPR; tree addtype = INTEGRAL_TYPE_P (TREE_TYPE (orig_arg)) ? TREE_TYPE (orig_arg) : sizetype; tree addcst = simd_clone_linear_addend (node, i, addtype, entry_bb); gsi = gsi_last_bb (incr_bb); g = gimple_build_assign (iter2, code, iter1, addcst); gsi_insert_before (&gsi, g, GSI_SAME_STMT); } imm_use_iterator iter; use_operand_p use_p; gimple *use_stmt; if (TREE_ADDRESSABLE (orig_arg)) { gsi = gsi_after_labels (body_bb); g = gimple_build_assign (orig_arg, iter1); gsi_insert_before (&gsi, g, GSI_NEW_STMT); } else FOR_EACH_IMM_USE_STMT (use_stmt, iter, def) if (use_stmt == phi) continue; else FOR_EACH_IMM_USE_ON_STMT (use_p, iter) SET_USE (use_p, iter1); } } else if (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP || (node->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP)) { tree orig_arg = node->simdclone->args[i].orig_arg; tree def = ssa_default_def (cfun, orig_arg); gcc_assert (!TREE_ADDRESSABLE (orig_arg) && TREE_CODE (TREE_TYPE (orig_arg)) == REFERENCE_TYPE); if (def && !has_zero_uses (def)) { tree rtype = TREE_TYPE (TREE_TYPE (orig_arg)); iter1 = make_ssa_name (orig_arg); if (incr_bb) iter2 = make_ssa_name (orig_arg); tree iter3 = make_ssa_name (rtype); tree iter4 = make_ssa_name (rtype); tree iter5 = incr_bb ? make_ssa_name (rtype) : NULL_TREE; gsi = gsi_after_labels (entry_bb); gimple *load = gimple_build_assign (iter3, build_simple_mem_ref (def)); gsi_insert_before (&gsi, load, GSI_NEW_STMT); tree array = node->simdclone->args[i].simd_array; TREE_ADDRESSABLE (array) = 1; tree ptr = build_fold_addr_expr (array); phi = create_phi_node (iter1, body_bb); add_phi_arg (phi, ptr, preheader_edge, UNKNOWN_LOCATION); if (incr_bb) { add_phi_arg (phi, iter2, latch_edge, UNKNOWN_LOCATION); g = gimple_build_assign (iter2, POINTER_PLUS_EXPR, iter1, TYPE_SIZE_UNIT (TREE_TYPE (iter3))); gsi = gsi_last_bb (incr_bb); gsi_insert_before (&gsi, g, GSI_SAME_STMT); } phi = create_phi_node (iter4, body_bb); add_phi_arg (phi, iter3, preheader_edge, UNKNOWN_LOCATION); if (incr_bb) { add_phi_arg (phi, iter5, latch_edge, UNKNOWN_LOCATION); enum tree_code code = INTEGRAL_TYPE_P (TREE_TYPE (iter3)) ? PLUS_EXPR : POINTER_PLUS_EXPR; tree addtype = INTEGRAL_TYPE_P (TREE_TYPE (iter3)) ? TREE_TYPE (iter3) : sizetype; tree addcst = simd_clone_linear_addend (node, i, addtype, entry_bb); g = gimple_build_assign (iter5, code, iter4, addcst); gsi = gsi_last_bb (incr_bb); gsi_insert_before (&gsi, g, GSI_SAME_STMT); } g = gimple_build_assign (build_simple_mem_ref (iter1), iter4); gsi = gsi_after_labels (body_bb); gsi_insert_before (&gsi, g, GSI_SAME_STMT); imm_use_iterator iter; use_operand_p use_p; gimple *use_stmt; FOR_EACH_IMM_USE_STMT (use_stmt, iter, def) if (use_stmt == load) continue; else FOR_EACH_IMM_USE_ON_STMT (use_p, iter) SET_USE (use_p, iter1); if (!TYPE_READONLY (rtype) && incr_bb) { tree v = make_ssa_name (rtype); tree aref = build4 (ARRAY_REF, rtype, array, size_zero_node, NULL_TREE, NULL_TREE); gsi = gsi_after_labels (new_exit_bb); g = gimple_build_assign (v, aref); gsi_insert_before (&gsi, g, GSI_SAME_STMT); g = gimple_build_assign (build_simple_mem_ref (def), v); gsi_insert_before (&gsi, g, GSI_SAME_STMT); } } } calculate_dominance_info (CDI_DOMINATORS); if (loop) add_loop (loop, loop->header->loop_father); update_ssa (TODO_update_ssa); pop_cfun (); } /* If the function in NODE is tagged as an elemental SIMD function, create the appropriate SIMD clones. */ void expand_simd_clones (struct cgraph_node *node) { tree attr = lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (node->decl)); if (attr == NULL_TREE || node->global.inlined_to || lookup_attribute ("noclone", DECL_ATTRIBUTES (node->decl))) return; /* Ignore #pragma omp declare simd extern int foo (); in C, there we don't know the argument types at all. */ if (!node->definition && TYPE_ARG_TYPES (TREE_TYPE (node->decl)) == NULL_TREE) return; /* Call this before creating clone_info, as it might ggc_collect. */ if (node->definition && node->has_gimple_body_p ()) node->get_body (); do { /* Start with parsing the "omp declare simd" attribute(s). */ bool inbranch_clause_specified; struct cgraph_simd_clone *clone_info = simd_clone_clauses_extract (node, TREE_VALUE (attr), &inbranch_clause_specified); if (clone_info == NULL) continue; int orig_simdlen = clone_info->simdlen; tree base_type = simd_clone_compute_base_data_type (node, clone_info); /* The target can return 0 (no simd clones should be created), 1 (just one ISA of simd clones should be created) or higher count of ISA variants. In that case, clone_info is initialized for the first ISA variant. */ int count = targetm.simd_clone.compute_vecsize_and_simdlen (node, clone_info, base_type, 0); if (count == 0) continue; /* Loop over all COUNT ISA variants, and if !INBRANCH_CLAUSE_SPECIFIED, also create one inbranch and one !inbranch clone of it. */ for (int i = 0; i < count * 2; i++) { struct cgraph_simd_clone *clone = clone_info; if (inbranch_clause_specified && (i & 1) != 0) continue; if (i != 0) { clone = simd_clone_struct_alloc (clone_info->nargs + ((i & 1) != 0)); simd_clone_struct_copy (clone, clone_info); /* Undo changes targetm.simd_clone.compute_vecsize_and_simdlen and simd_clone_adjust_argument_types did to the first clone's info. */ clone->nargs -= clone_info->inbranch; clone->simdlen = orig_simdlen; /* And call the target hook again to get the right ISA. */ targetm.simd_clone.compute_vecsize_and_simdlen (node, clone, base_type, i / 2); if ((i & 1) != 0) clone->inbranch = 1; } /* simd_clone_mangle might fail if such a clone has been created already. */ tree id = simd_clone_mangle (node, clone); if (id == NULL_TREE) continue; /* Only when we are sure we want to create the clone actually clone the function (or definitions) or create another extern FUNCTION_DECL (for prototypes without definitions). */ struct cgraph_node *n = simd_clone_create (node); if (n == NULL) continue; n->simdclone = clone; clone->origin = node; clone->next_clone = NULL; if (node->simd_clones == NULL) { clone->prev_clone = n; node->simd_clones = n; } else { clone->prev_clone = node->simd_clones->simdclone->prev_clone; clone->prev_clone->simdclone->next_clone = n; node->simd_clones->simdclone->prev_clone = n; } symtab->change_decl_assembler_name (n->decl, id); /* And finally adjust the return type, parameters and for definitions also function body. */ if (node->definition) simd_clone_adjust (n); else { simd_clone_adjust_return_type (n); simd_clone_adjust_argument_types (n); } } } while ((attr = lookup_attribute ("omp declare simd", TREE_CHAIN (attr)))); } /* Entry point for IPA simd clone creation pass. */ static unsigned int ipa_omp_simd_clone (void) { struct cgraph_node *node; FOR_EACH_FUNCTION (node) expand_simd_clones (node); return 0; } namespace { const pass_data pass_data_omp_simd_clone = { SIMPLE_IPA_PASS, /* type */ "simdclone", /* name */ OPTGROUP_OMP, /* optinfo_flags */ TV_NONE, /* tv_id */ ( PROP_ssa | PROP_cfg ), /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ 0, /* todo_flags_finish */ }; class pass_omp_simd_clone : public simple_ipa_opt_pass { public: pass_omp_simd_clone(gcc::context *ctxt) : simple_ipa_opt_pass(pass_data_omp_simd_clone, ctxt) {} /* opt_pass methods: */ virtual bool gate (function *); virtual unsigned int execute (function *) { return ipa_omp_simd_clone (); } }; bool pass_omp_simd_clone::gate (function *) { return targetm.simd_clone.compute_vecsize_and_simdlen != NULL; } } // anon namespace simple_ipa_opt_pass * make_pass_omp_simd_clone (gcc::context *ctxt) { return new pass_omp_simd_clone (ctxt); }