/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include #include #include enum isl_fold isl_fold_type_negate(enum isl_fold type) { switch (type) { case isl_fold_min: return isl_fold_max; case isl_fold_max: return isl_fold_min; case isl_fold_list: return isl_fold_list; } isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort()); } static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_space *dim, int n) { isl_qpolynomial_fold *fold; if (!dim) goto error; isl_assert(dim->ctx, n >= 0, goto error); fold = isl_calloc(dim->ctx, struct isl_qpolynomial_fold, sizeof(struct isl_qpolynomial_fold) + (n - 1) * sizeof(struct isl_qpolynomial *)); if (!fold) goto error; fold->ref = 1; fold->size = n; fold->n = 0; fold->type = type; fold->dim = dim; return fold; error: isl_space_free(dim); return NULL; } isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold) { return fold ? fold->dim->ctx : NULL; } __isl_give isl_space *isl_qpolynomial_fold_get_domain_space( __isl_keep isl_qpolynomial_fold *fold) { return fold ? isl_space_copy(fold->dim) : NULL; } __isl_give isl_space *isl_qpolynomial_fold_get_space( __isl_keep isl_qpolynomial_fold *fold) { isl_space *space; if (!fold) return NULL; space = isl_space_copy(fold->dim); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); return space; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold || !dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i], isl_space_copy(dim)); if (!fold->qp[i]) goto error; } isl_space_free(fold->dim); fold->dim = dim; return fold; error: isl_qpolynomial_fold_free(fold); isl_space_free(dim); return NULL; } /* Reset the space of "fold". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space, __isl_take isl_space *domain) { isl_space_free(space); return isl_qpolynomial_fold_reset_domain_space(fold, domain); } int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!fold) return -1; if (fold->n == 0 || n == 0) return 0; for (i = 0; i < fold->n; ++i) { int involves = isl_qpolynomial_involves_dims(fold->qp[i], type, first, n); if (involves < 0 || involves) return involves; } return 0; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned pos, const char *s) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i], type, pos, s); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!fold) return NULL; if (n == 0) return fold; set_type = type == isl_dim_in ? isl_dim_set : type; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i], type, first, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!fold) return NULL; if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type)) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_insert_dims(fold->dim, type, first, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i], type, first, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } /* Determine the sign of the constant quasipolynomial "qp". * * Return * -1 if qp <= 0 * 1 if qp >= 0 * 0 if unknown * * For qp == 0, we can return either -1 or 1. In practice, we return 1. * For qp == NaN, the sign is undefined, so we return 0. */ static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp) { struct isl_upoly_cst *cst; if (isl_qpolynomial_is_nan(qp)) return 0; cst = isl_upoly_as_cst(qp->upoly); if (!cst) return 0; return isl_int_sgn(cst->n) < 0 ? -1 : 1; } static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set, __isl_keep isl_qpolynomial *qp) { enum isl_lp_result res; isl_vec *aff; isl_int opt; int sgn = 0; aff = isl_qpolynomial_extract_affine(qp); if (!aff) return 0; isl_int_init(opt); res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0], &opt, NULL, NULL); if (res == isl_lp_error) goto done; if (res == isl_lp_empty || (res == isl_lp_ok && !isl_int_is_neg(opt))) { sgn = 1; goto done; } res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0], &opt, NULL, NULL); if (res == isl_lp_ok && !isl_int_is_pos(opt)) sgn = -1; done: isl_int_clear(opt); isl_vec_free(aff); return sgn; } /* Determine, if possible, the sign of the quasipolynomial "qp" on * the domain "set". * * If qp is a constant, then the problem is trivial. * If qp is linear, then we check if the minimum of the corresponding * affine constraint is non-negative or if the maximum is non-positive. * * Otherwise, we check if the outermost variable "v" has a lower bound "l" * in "set". If so, we write qp(v,v') as * * q(v,v') * (v - l) + r(v') * * if q(v,v') and r(v') have the same known sign, then the original * quasipolynomial has the same sign as well. * * Return * -1 if qp <= 0 * 1 if qp >= 0 * 0 if unknown */ static int isl_qpolynomial_sign(__isl_keep isl_set *set, __isl_keep isl_qpolynomial *qp) { int d; int i; int is; struct isl_upoly_rec *rec; isl_vec *v; isl_int l; enum isl_lp_result res; int sgn = 0; is = isl_qpolynomial_is_cst(qp, NULL, NULL); if (is < 0) return 0; if (is) return isl_qpolynomial_cst_sign(qp); is = isl_qpolynomial_is_affine(qp); if (is < 0) return 0; if (is) return isl_qpolynomial_aff_sign(set, qp); if (qp->div->n_row > 0) return 0; rec = isl_upoly_as_rec(qp->upoly); if (!rec) return 0; d = isl_space_dim(qp->dim, isl_dim_all); v = isl_vec_alloc(set->ctx, 2 + d); if (!v) return 0; isl_seq_clr(v->el + 1, 1 + d); isl_int_set_si(v->el[0], 1); isl_int_set_si(v->el[2 + qp->upoly->var], 1); isl_int_init(l); res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL); if (res == isl_lp_ok) { isl_qpolynomial *min; isl_qpolynomial *base; isl_qpolynomial *r, *q; isl_qpolynomial *t; min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l); base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim), qp->upoly->var, 1); r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, isl_upoly_copy(rec->p[rec->n - 1])); q = isl_qpolynomial_copy(r); for (i = rec->n - 2; i >= 0; --i) { r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min)); t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, isl_upoly_copy(rec->p[i])); r = isl_qpolynomial_add(r, t); if (i == 0) break; q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base)); q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r)); } if (isl_qpolynomial_is_zero(q)) sgn = isl_qpolynomial_sign(set, r); else if (isl_qpolynomial_is_zero(r)) sgn = isl_qpolynomial_sign(set, q); else { int sgn_q, sgn_r; sgn_r = isl_qpolynomial_sign(set, r); sgn_q = isl_qpolynomial_sign(set, q); if (sgn_r == sgn_q) sgn = sgn_r; } isl_qpolynomial_free(min); isl_qpolynomial_free(base); isl_qpolynomial_free(q); isl_qpolynomial_free(r); } isl_int_clear(l); isl_vec_free(v); return sgn; } /* Combine "fold1" and "fold2" into a single reduction, eliminating * those elements of one reduction that are already covered by the other * reduction on "set". * * If "fold1" or "fold2" is an empty reduction, then return * the other reduction. * If "fold1" or "fold2" is a NaN, then return this NaN. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain( __isl_keep isl_set *set, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i, j; int n1; struct isl_qpolynomial_fold *res = NULL; int better; if (!fold1 || !fold2) goto error; isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), goto error); better = fold1->type == isl_fold_max ? -1 : 1; if (isl_qpolynomial_fold_is_empty(fold1) || isl_qpolynomial_fold_is_nan(fold2)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2) || isl_qpolynomial_fold_is_nan(fold1)) { isl_qpolynomial_fold_free(fold2); return fold1; } res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), fold1->n + fold2->n); if (!res) goto error; for (i = 0; i < fold1->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } n1 = res->n; for (i = 0; i < fold2->n; ++i) { for (j = n1 - 1; j >= 0; --j) { isl_qpolynomial *d; int sgn, equal; equal = isl_qpolynomial_plain_is_equal(res->qp[j], fold2->qp[i]); if (equal < 0) goto error; if (equal) break; d = isl_qpolynomial_sub( isl_qpolynomial_copy(res->qp[j]), isl_qpolynomial_copy(fold2->qp[i])); sgn = isl_qpolynomial_sign(set, d); isl_qpolynomial_free(d); if (sgn == 0) continue; if (sgn != better) break; isl_qpolynomial_free(res->qp[j]); if (j != n1 - 1) res->qp[j] = res->qp[n1 - 1]; n1--; if (n1 != res->n - 1) res->qp[n1] = res->qp[res->n - 1]; res->n--; } if (j >= 0) continue; res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp) { int i; if (!fold || !qp) goto error; if (isl_qpolynomial_is_zero(qp)) { isl_qpolynomial_free(qp); return fold; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_add(fold->qp[i], isl_qpolynomial_copy(qp)); if (!fold->qp[i]) goto error; } isl_qpolynomial_free(qp); return fold; error: isl_qpolynomial_fold_free(fold); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain( __isl_keep isl_set *dom, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i; isl_qpolynomial_fold *res = NULL; if (!fold1 || !fold2) goto error; if (isl_qpolynomial_fold_is_empty(fold1)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2)) { isl_qpolynomial_fold_free(fold2); return fold1; } if (fold1->n == 1 && fold2->n != 1) return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1); if (fold2->n == 1) { res = isl_qpolynomial_fold_add_qpolynomial(fold1, isl_qpolynomial_copy(fold2->qp[0])); isl_qpolynomial_fold_free(fold2); return res; } res = isl_qpolynomial_fold_add_qpolynomial( isl_qpolynomial_fold_copy(fold1), isl_qpolynomial_copy(fold2->qp[0])); for (i = 1; i < fold2->n; ++i) { isl_qpolynomial_fold *res_i; res_i = isl_qpolynomial_fold_add_qpolynomial( isl_qpolynomial_fold_copy(fold1), isl_qpolynomial_copy(fold2->qp[i])); res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i); } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq) { int i; if (!fold || !eq) goto error; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i], isl_basic_set_copy(eq)); if (!fold->qp[i]) goto error; } isl_basic_set_free(eq); return fold; error: isl_basic_set_free(eq); isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) { int i; if (!fold || !context) goto error; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_gist(fold->qp[i], isl_set_copy(context)); if (!fold->qp[i]) goto error; } isl_set_free(context); return fold; error: isl_set_free(context); isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) { isl_space *space = isl_qpolynomial_fold_get_domain_space(fold); isl_set *dom_context = isl_set_universe(space); dom_context = isl_set_intersect_params(dom_context, context); return isl_qpolynomial_fold_gist(fold, dom_context); } #define HAS_TYPE #undef PW #define PW isl_pw_qpolynomial_fold #undef EL #define EL isl_qpolynomial_fold #undef EL_IS_ZERO #define EL_IS_ZERO is_empty #undef ZERO #define ZERO zero #undef IS_ZERO #define IS_ZERO is_zero #undef FIELD #define FIELD fold #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 1 #define NO_NEG #define NO_SUB #define NO_PULLBACK #include #undef UNION #define UNION isl_union_pw_qpolynomial_fold #undef PART #define PART isl_pw_qpolynomial_fold #undef PARTS #define PARTS pw_qpolynomial_fold #define NO_SUB #include #include __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type, __isl_take isl_space *dim) { return qpolynomial_fold_alloc(type, dim, 0); } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_qpolynomial *qp) { isl_qpolynomial_fold *fold; if (!qp) return NULL; fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1); if (!fold) goto error; fold->qp[0] = qp; fold->n++; return fold; error: isl_qpolynomial_fold_free(fold); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy( __isl_keep isl_qpolynomial_fold *fold) { if (!fold) return NULL; fold->ref++; return fold; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup( __isl_keep isl_qpolynomial_fold *fold) { int i; isl_qpolynomial_fold *dup; if (!fold) return NULL; dup = qpolynomial_fold_alloc(fold->type, isl_space_copy(fold->dim), fold->n); if (!dup) return NULL; dup->n = fold->n; for (i = 0; i < fold->n; ++i) { dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]); if (!dup->qp[i]) goto error; } return dup; error: isl_qpolynomial_fold_free(dup); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow( __isl_take isl_qpolynomial_fold *fold) { if (!fold) return NULL; if (fold->ref == 1) return fold; fold->ref--; return isl_qpolynomial_fold_dup(fold); } void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold) { int i; if (!fold) return; if (--fold->ref > 0) return; for (i = 0; i < fold->n; ++i) isl_qpolynomial_free(fold->qp[i]); isl_space_free(fold->dim); free(fold); } int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return -1; return fold->n == 0; } /* Does "fold" represent max(NaN) or min(NaN)? */ isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return isl_bool_error; if (fold->n != 1) return isl_bool_false; return isl_qpolynomial_is_nan(fold->qp[0]); } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold( __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i; struct isl_qpolynomial_fold *res = NULL; if (!fold1 || !fold2) goto error; isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), goto error); if (isl_qpolynomial_fold_is_empty(fold1)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2)) { isl_qpolynomial_fold_free(fold2); return fold1; } res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), fold1->n + fold2->n); if (!res) goto error; for (i = 0; i < fold1->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } for (i = 0; i < fold2->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( __isl_take isl_pw_qpolynomial_fold *pw1, __isl_take isl_pw_qpolynomial_fold *pw2) { int i, j, n; struct isl_pw_qpolynomial_fold *res; isl_set *set; if (!pw1 || !pw2) goto error; isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error); if (isl_pw_qpolynomial_fold_is_zero(pw1)) { isl_pw_qpolynomial_fold_free(pw1); return pw2; } if (isl_pw_qpolynomial_fold_is_zero(pw2)) { isl_pw_qpolynomial_fold_free(pw2); return pw1; } if (pw1->type != pw2->type) isl_die(pw1->dim->ctx, isl_error_invalid, "fold types don't match", goto error); n = (pw1->n + 1) * (pw2->n + 1); res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim), pw1->type, n); for (i = 0; i < pw1->n; ++i) { set = isl_set_copy(pw1->p[i].set); for (j = 0; j < pw2->n; ++j) { struct isl_set *common; isl_qpolynomial_fold *sum; set = isl_set_subtract(set, isl_set_copy(pw2->p[j].set)); common = isl_set_intersect(isl_set_copy(pw1->p[i].set), isl_set_copy(pw2->p[j].set)); if (isl_set_plain_is_empty(common)) { isl_set_free(common); continue; } sum = isl_qpolynomial_fold_fold_on_domain(common, isl_qpolynomial_fold_copy(pw1->p[i].fold), isl_qpolynomial_fold_copy(pw2->p[j].fold)); res = isl_pw_qpolynomial_fold_add_piece(res, common, sum); } res = isl_pw_qpolynomial_fold_add_piece(res, set, isl_qpolynomial_fold_copy(pw1->p[i].fold)); } for (j = 0; j < pw2->n; ++j) { set = isl_set_copy(pw2->p[j].set); for (i = 0; i < pw1->n; ++i) set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set)); res = isl_pw_qpolynomial_fold_add_piece(res, set, isl_qpolynomial_fold_copy(pw2->p[j].fold)); } isl_pw_qpolynomial_fold_free(pw1); isl_pw_qpolynomial_fold_free(pw2); return res; error: isl_pw_qpolynomial_fold_free(pw1); isl_pw_qpolynomial_fold_free(pw2); return NULL; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( __isl_take isl_union_pw_qpolynomial_fold *u, __isl_take isl_pw_qpolynomial_fold *part) { struct isl_hash_table_entry *entry; u = isl_union_pw_qpolynomial_fold_cow(u); if (!part || !u) goto error; isl_assert(u->space->ctx, isl_space_match(part->dim, isl_dim_param, u->space, isl_dim_param), goto error); entry = isl_union_pw_qpolynomial_fold_find_part_entry(u, part->dim, 1); if (!entry) goto error; if (!entry->data) entry->data = part; else { entry->data = isl_pw_qpolynomial_fold_fold(entry->data, isl_pw_qpolynomial_fold_copy(part)); if (!entry->data) goto error; isl_pw_qpolynomial_fold_free(part); } return u; error: isl_pw_qpolynomial_fold_free(part); isl_union_pw_qpolynomial_fold_free(u); return NULL; } static isl_stat fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user) { isl_union_pw_qpolynomial_fold **u; u = (isl_union_pw_qpolynomial_fold **)user; *u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part); return isl_stat_ok; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold( __isl_take isl_union_pw_qpolynomial_fold *u1, __isl_take isl_union_pw_qpolynomial_fold *u2) { u1 = isl_union_pw_qpolynomial_fold_cow(u1); if (!u1 || !u2) goto error; if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2, &fold_part, &u1) < 0) goto error; isl_union_pw_qpolynomial_fold_free(u2); return u1; error: isl_union_pw_qpolynomial_fold_free(u1); isl_union_pw_qpolynomial_fold_free(u2); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial( enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp) { int i; isl_pw_qpolynomial_fold *pwf; if (!pwqp) return NULL; pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim), type, pwqp->n); for (i = 0; i < pwqp->n; ++i) pwf = isl_pw_qpolynomial_fold_add_piece(pwf, isl_set_copy(pwqp->p[i].set), isl_qpolynomial_fold_alloc(type, isl_qpolynomial_copy(pwqp->p[i].qp))); isl_pw_qpolynomial_free(pwqp); return pwf; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2) { return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2); } /* Compare two quasi-polynomial reductions. * * Return -1 if "fold1" is "smaller" than "fold2", 1 if "fold1" is "greater" * than "fold2" and 0 if they are equal. */ int isl_qpolynomial_fold_plain_cmp(__isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2) { int i; if (fold1 == fold2) return 0; if (!fold1) return -1; if (!fold2) return 1; if (fold1->n != fold2->n) return fold1->n - fold2->n; for (i = 0; i < fold1->n; ++i) { int cmp; cmp = isl_qpolynomial_plain_cmp(fold1->qp[i], fold2->qp[i]); if (cmp != 0) return cmp; } return 0; } int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2) { int i; if (!fold1 || !fold2) return -1; if (fold1->n != fold2->n) return 0; /* We probably want to sort the qps first... */ for (i = 0; i < fold1->n; ++i) { int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]); if (eq < 0 || !eq) return eq; } return 1; } __isl_give isl_val *isl_qpolynomial_fold_eval( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt) { isl_ctx *ctx; isl_val *v; if (!fold || !pnt) goto error; ctx = isl_point_get_ctx(pnt); isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error); isl_assert(pnt->dim->ctx, fold->type == isl_fold_max || fold->type == isl_fold_min, goto error); if (fold->n == 0) v = isl_val_zero(ctx); else { int i; v = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]), isl_point_copy(pnt)); for (i = 1; i < fold->n; ++i) { isl_val *v_i; v_i = isl_qpolynomial_eval( isl_qpolynomial_copy(fold->qp[i]), isl_point_copy(pnt)); if (fold->type == isl_fold_max) v = isl_val_max(v, v_i); else v = isl_val_min(v, v_i); } } isl_qpolynomial_fold_free(fold); isl_point_free(pnt); return v; error: isl_qpolynomial_fold_free(fold); isl_point_free(pnt); return NULL; } size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf) { int i; size_t n = 0; for (i = 0; i < pwf->n; ++i) n += pwf->p[i].fold->n; return n; } __isl_give isl_val *isl_qpolynomial_fold_opt_on_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max) { int i; isl_val *opt; if (!set || !fold) goto error; if (fold->n == 0) { opt = isl_val_zero(isl_set_get_ctx(set)); isl_set_free(set); isl_qpolynomial_fold_free(fold); return opt; } opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]), isl_set_copy(set), max); for (i = 1; i < fold->n; ++i) { isl_val *opt_i; opt_i = isl_qpolynomial_opt_on_domain( isl_qpolynomial_copy(fold->qp[i]), isl_set_copy(set), max); if (max) opt = isl_val_max(opt, opt_i); else opt = isl_val_min(opt, opt_i); } isl_set_free(set); isl_qpolynomial_fold_free(fold); return opt; error: isl_set_free(set); isl_qpolynomial_fold_free(fold); return NULL; } /* Check whether for each quasi-polynomial in "fold2" there is * a quasi-polynomial in "fold1" that dominates it on "set". */ static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set, __isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2) { int i, j; int covers; if (!set || !fold1 || !fold2) return -1; covers = fold1->type == isl_fold_max ? 1 : -1; for (i = 0; i < fold2->n; ++i) { for (j = 0; j < fold1->n; ++j) { isl_qpolynomial *d; int sgn; d = isl_qpolynomial_sub( isl_qpolynomial_copy(fold1->qp[j]), isl_qpolynomial_copy(fold2->qp[i])); sgn = isl_qpolynomial_sign(set, d); isl_qpolynomial_free(d); if (sgn == covers) break; } if (j >= fold1->n) return 0; } return 1; } /* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains * that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates * that of pwf2. */ int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1, __isl_keep isl_pw_qpolynomial_fold *pwf2) { int i, j; isl_set *dom1, *dom2; int is_subset; if (!pwf1 || !pwf2) return -1; if (pwf2->n == 0) return 1; if (pwf1->n == 0) return 0; dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1)); dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2)); is_subset = isl_set_is_subset(dom2, dom1); isl_set_free(dom1); isl_set_free(dom2); if (is_subset < 0 || !is_subset) return is_subset; for (i = 0; i < pwf2->n; ++i) { for (j = 0; j < pwf1->n; ++j) { int is_empty; isl_set *common; int covers; common = isl_set_intersect(isl_set_copy(pwf1->p[j].set), isl_set_copy(pwf2->p[i].set)); is_empty = isl_set_is_empty(common); if (is_empty < 0 || is_empty) { isl_set_free(common); if (is_empty < 0) return -1; continue; } covers = qpolynomial_fold_covers_on_domain(common, pwf1->p[j].fold, pwf2->p[i].fold); isl_set_free(common); if (covers < 0 || !covers) return covers; } } return 1; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph) { int i; isl_ctx *ctx; if (!fold || !morph) goto error; ctx = fold->dim->ctx; isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error); fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; isl_space_free(fold->dim); fold->dim = isl_space_copy(morph->ran->dim); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i], isl_morph_copy(morph)); if (!fold->qp[i]) goto error; } isl_morph_free(morph); return fold; error: isl_qpolynomial_fold_free(fold); isl_morph_free(morph); return NULL; } enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return isl_fold_list; return fold->type; } enum isl_fold isl_union_pw_qpolynomial_fold_get_type( __isl_keep isl_union_pw_qpolynomial_fold *upwf) { if (!upwf) return isl_fold_list; return upwf->type; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) { int i; if (!fold || !dim) goto error; if (isl_space_is_equal(fold->dim, dim)) { isl_space_free(dim); return fold; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; isl_space_free(fold->dim); fold->dim = isl_space_copy(dim); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_lift(fold->qp[i], isl_space_copy(dim)); if (!fold->qp[i]) goto error; } isl_space_free(dim); return fold; error: isl_qpolynomial_fold_free(fold); isl_space_free(dim); return NULL; } isl_stat isl_qpolynomial_fold_foreach_qpolynomial( __isl_keep isl_qpolynomial_fold *fold, isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user) { int i; if (!fold) return isl_stat_error; for (i = 0; i < fold->n; ++i) if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (n == 0) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_move_dims(fold->dim, dst_type, dst_pos, src_type, src_pos, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i], dst_type, dst_pos, src_type, src_pos, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } /* For each 0 <= i < "n", replace variable "first" + i of type "type" * in fold->qp[k] by subs[i]. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs) { int i; if (n == 0) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i], type, first, n, subs); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } static isl_stat add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user) { isl_ctx *ctx; isl_pw_qpolynomial_fold *pwf; isl_union_pw_qpolynomial_fold **upwf; struct isl_hash_table_entry *entry; upwf = (isl_union_pw_qpolynomial_fold **)user; ctx = pwqp->dim->ctx; entry = isl_union_pw_qpolynomial_fold_find_part_entry(*upwf, pwqp->dim, 1); if (!entry) goto error; pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp); if (!entry->data) entry->data = pwf; else { entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf); if (!entry->data) return isl_stat_error; if (isl_pw_qpolynomial_fold_is_zero(entry->data)) *upwf = isl_union_pw_qpolynomial_fold_remove_part_entry( *upwf, entry); } return isl_stat_ok; error: isl_pw_qpolynomial_free(pwqp); return isl_stat_error; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_pw_qpolynomial *upwqp) { upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, isl_union_pw_qpolynomial_get_space(upwqp)); upwqp = isl_union_pw_qpolynomial_align_params(upwqp, isl_union_pw_qpolynomial_fold_get_space(upwf)); upwf = isl_union_pw_qpolynomial_fold_cow(upwf); if (!upwf || !upwqp) goto error; if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp, &upwf) < 0) goto error; isl_union_pw_qpolynomial_free(upwqp); return upwf; error: isl_union_pw_qpolynomial_fold_free(upwf); isl_union_pw_qpolynomial_free(upwqp); return NULL; } static int join_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2) { int m; m = isl_space_match(dim1, isl_dim_param, dim2, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(dim1, isl_dim_out, dim2, isl_dim_in); } /* Compute the intersection of the range of the map and the domain * of the piecewise quasipolynomial reduction and then compute a bound * on the associated quasipolynomial reduction over all elements * in this intersection. * * We first introduce some unconstrained dimensions in the * piecewise quasipolynomial, intersect the resulting domain * with the wrapped map and the compute the sum. */ __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold( __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight) { isl_ctx *ctx; isl_set *dom; isl_space *map_dim; isl_space *pwf_dim; unsigned n_in; int ok; ctx = isl_map_get_ctx(map); if (!ctx) goto error; map_dim = isl_map_get_space(map); pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); ok = join_compatible(map_dim, pwf_dim); isl_space_free(map_dim); isl_space_free(pwf_dim); if (!ok) isl_die(ctx, isl_error_invalid, "incompatible dimensions", goto error); n_in = isl_map_dim(map, isl_dim_in); pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in); dom = isl_map_wrap(map); pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf, isl_set_get_space(dom)); pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom); pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); return pwf; error: isl_map_free(map); isl_pw_qpolynomial_fold_free(pwf); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold( __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight) { return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight); } struct isl_apply_fold_data { isl_union_pw_qpolynomial_fold *upwf; isl_union_pw_qpolynomial_fold *res; isl_map *map; int tight; }; static isl_stat pw_qpolynomial_fold_apply( __isl_take isl_pw_qpolynomial_fold *pwf, void *user) { isl_space *map_dim; isl_space *pwf_dim; struct isl_apply_fold_data *data = user; int ok; map_dim = isl_map_get_space(data->map); pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); ok = join_compatible(map_dim, pwf_dim); isl_space_free(map_dim); isl_space_free(pwf_dim); if (ok) { pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map), pwf, data->tight ? &data->tight : NULL); data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( data->res, pwf); } else isl_pw_qpolynomial_fold_free(pwf); return isl_stat_ok; } static isl_stat map_apply(__isl_take isl_map *map, void *user) { struct isl_apply_fold_data *data = user; isl_stat r; data->map = map; r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( data->upwf, &pw_qpolynomial_fold_apply, data); isl_map_free(map); return r; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold( __isl_take isl_union_map *umap, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) { isl_space *dim; enum isl_fold type; struct isl_apply_fold_data data; upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, isl_union_map_get_space(umap)); umap = isl_union_map_align_params(umap, isl_union_pw_qpolynomial_fold_get_space(upwf)); data.upwf = upwf; data.tight = tight ? 1 : 0; dim = isl_union_pw_qpolynomial_fold_get_space(upwf); type = isl_union_pw_qpolynomial_fold_get_type(upwf); data.res = isl_union_pw_qpolynomial_fold_zero(dim, type); if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0) goto error; isl_union_map_free(umap); isl_union_pw_qpolynomial_fold_free(upwf); if (tight) *tight = data.tight; return data.res; error: isl_union_map_free(umap); isl_union_pw_qpolynomial_fold_free(upwf); isl_union_pw_qpolynomial_fold_free(data.res); return NULL; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold( __isl_take isl_union_set *uset, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) { return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight); } /* Reorder the dimension of "fold" according to the given reordering. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold || !r) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i], isl_reordering_copy(r)); if (!fold->qp[i]) goto error; } fold = isl_qpolynomial_fold_reset_domain_space(fold, isl_space_copy(r->dim)); isl_reordering_free(r); return fold; error: isl_qpolynomial_fold_free(fold); isl_reordering_free(r); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int( __isl_take isl_qpolynomial_fold *fold, isl_int v) { int i; if (isl_int_is_one(v)) return fold; if (fold && isl_int_is_zero(v)) { isl_qpolynomial_fold *zero; isl_space *dim = isl_space_copy(fold->dim); zero = isl_qpolynomial_fold_empty(fold->type, dim); isl_qpolynomial_fold_free(fold); return zero; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; if (isl_int_is_neg(v)) fold->type = isl_fold_type_negate(fold->type); for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale( __isl_take isl_qpolynomial_fold *fold, isl_int v) { return isl_qpolynomial_fold_mul_isl_int(fold, v); } /* Multiply "fold" by "v". */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v) { int i; if (!fold || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return fold; } if (isl_val_is_zero(v)) { isl_qpolynomial_fold *zero; isl_space *space = isl_qpolynomial_fold_get_domain_space(fold); zero = isl_qpolynomial_fold_empty(fold->type, space); isl_qpolynomial_fold_free(fold); isl_val_free(v); return zero; } if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid, "expecting rational factor", goto error); fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; if (isl_val_is_neg(v)) fold->type = isl_fold_type_negate(fold->type); for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_scale_val(fold->qp[i], isl_val_copy(v)); if (!fold->qp[i]) goto error; } isl_val_free(v); return fold; error: isl_val_free(v); isl_qpolynomial_fold_free(fold); return NULL; } /* Divide "fold" by "v". */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v) { if (!fold || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return fold; } if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); return isl_qpolynomial_fold_scale_val(fold, isl_val_inv(v)); error: isl_val_free(v); isl_qpolynomial_fold_free(fold); return NULL; }