/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include "isl_sample.h" #include #include "isl_equalities.h" #include #include #include #include #include #include #include #include /* Given a basic set "bset", construct a basic set U such that for * each element x in U, the whole unit box positioned at x is inside * the given basic set. * Note that U may not contain all points that satisfy this property. * * We simply add the sum of all negative coefficients to the constant * term. This ensures that if x satisfies the resulting constraints, * then x plus any sum of unit vectors satisfies the original constraints. */ static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset) { int i, j, k; struct isl_basic_set *unit_box = NULL; unsigned total; if (!bset) goto error; if (bset->n_eq != 0) { isl_space *space = isl_basic_set_get_space(bset); isl_basic_set_free(bset); return isl_basic_set_empty(space); } total = isl_basic_set_total_dim(bset); unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, 0, bset->n_ineq); for (i = 0; i < bset->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(unit_box); if (k < 0) goto error; isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total); for (j = 0; j < total; ++j) { if (isl_int_is_nonneg(unit_box->ineq[k][1 + j])) continue; isl_int_add(unit_box->ineq[k][0], unit_box->ineq[k][0], unit_box->ineq[k][1 + j]); } } isl_basic_set_free(bset); return unit_box; error: isl_basic_set_free(bset); isl_basic_set_free(unit_box); return NULL; } /* Find an integer point in "bset", preferably one that is * close to minimizing "f". * * We first check if we can easily put unit boxes inside bset. * If so, we take the best base point of any of the unit boxes we can find * and round it up to the nearest integer. * If not, we simply pick any integer point in "bset". */ static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f) { enum isl_lp_result res; struct isl_basic_set *unit_box; struct isl_vec *sol; unit_box = unit_box_base_points(isl_basic_set_copy(bset)); res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one, NULL, NULL, &sol); if (res == isl_lp_ok) { isl_basic_set_free(unit_box); return isl_vec_ceil(sol); } isl_basic_set_free(unit_box); return isl_basic_set_sample_vec(isl_basic_set_copy(bset)); } /* Restrict "bset" to those points with values for f in the interval [l, u]. */ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, isl_int *f, isl_int l, isl_int u) { int k; unsigned total; total = isl_basic_set_total_dim(bset); bset = isl_basic_set_extend_constraints(bset, 0, 2); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_cpy(bset->ineq[k], f, 1 + total); isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_neg(bset->ineq[k], f, 1 + total); isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u); return bset; error: isl_basic_set_free(bset); return NULL; } /* Find an integer point in "bset" that minimizes f (in any) such that * the value of f lies inside the interval [l, u]. * Return this integer point if it can be found. * Otherwise, return sol. * * We perform a number of steps until l > u. * In each step, we look for an integer point with value in either * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)]. * The choice depends on whether we have found an integer point in the * previous step. If so, we look for the next point in half of the remaining * interval. * If we find a point, the current solution is updated and u is set * to its value minus 1. * If no point can be found, we update l to the upper bound of the interval * we checked (u or l+floor(u-l-1/2)) plus 1. */ static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset, isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u) { isl_int tmp; int divide = 1; isl_int_init(tmp); while (isl_int_le(l, u)) { struct isl_basic_set *slice; struct isl_vec *sample; if (!divide) isl_int_set(tmp, u); else { isl_int_sub(tmp, u, l); isl_int_fdiv_q_ui(tmp, tmp, 2); isl_int_add(tmp, tmp, l); } slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp); sample = isl_basic_set_sample_vec(slice); if (!sample) { isl_vec_free(sol); sol = NULL; break; } if (sample->size > 0) { isl_vec_free(sol); sol = sample; isl_seq_inner_product(f, sol->el, sol->size, opt); isl_int_sub_ui(u, *opt, 1); divide = 1; } else { isl_vec_free(sample); if (!divide) break; isl_int_add_ui(l, tmp, 1); divide = 0; } } isl_int_clear(tmp); return sol; } /* Find an integer point in "bset" that minimizes f (if any). * If sol_p is not NULL then the integer point is returned in *sol_p. * The optimal value of f is returned in *opt. * * The algorithm maintains a currently best solution and an interval [l, u] * of values of f for which integer solutions could potentially still be found. * The initial value of the best solution so far is any solution. * The initial value of l is minimal value of f over the rationals * (rounded up to the nearest integer). * The initial value of u is the value of f at the initial solution minus 1. * * We then call solve_ilp_search to perform a binary search on the interval. */ static enum isl_lp_result solve_ilp(struct isl_basic_set *bset, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { enum isl_lp_result res; isl_int l, u; struct isl_vec *sol; res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one, opt, NULL, &sol); if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) { if (sol_p) *sol_p = sol; else isl_vec_free(sol); return isl_lp_ok; } isl_vec_free(sol); if (res == isl_lp_error || res == isl_lp_empty) return res; sol = initial_solution(bset, f); if (!sol) return isl_lp_error; if (sol->size == 0) { isl_vec_free(sol); return isl_lp_empty; } if (res == isl_lp_unbounded) { isl_vec_free(sol); return isl_lp_unbounded; } isl_int_init(l); isl_int_init(u); isl_int_set(l, *opt); isl_seq_inner_product(f, sol->el, sol->size, opt); isl_int_sub_ui(u, *opt, 1); sol = solve_ilp_search(bset, f, opt, sol, l, u); if (!sol) res = isl_lp_error; isl_int_clear(l); isl_int_clear(u); if (sol_p) *sol_p = sol; else isl_vec_free(sol); return res; } static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { unsigned dim; enum isl_lp_result res; struct isl_mat *T = NULL; struct isl_vec *v; bset = isl_basic_set_copy(bset); dim = isl_basic_set_total_dim(bset); v = isl_vec_alloc(bset->ctx, 1 + dim); if (!v) goto error; isl_seq_cpy(v->el, f, 1 + dim); bset = isl_basic_set_remove_equalities(bset, &T, NULL); v = isl_vec_mat_product(v, isl_mat_copy(T)); if (!v) goto error; res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p); isl_vec_free(v); if (res == isl_lp_ok && sol_p) { *sol_p = isl_mat_vec_product(T, *sol_p); if (!*sol_p) res = isl_lp_error; } else isl_mat_free(T); isl_basic_set_free(bset); return res; error: isl_mat_free(T); isl_basic_set_free(bset); return isl_lp_error; } /* Find an integer point in "bset" that minimizes (or maximizes if max is set) * f (if any). * If sol_p is not NULL then the integer point is returned in *sol_p. * The optimal value of f is returned in *opt. * * If there is any equality among the points in "bset", then we first * project it out. Otherwise, we continue with solve_ilp above. */ enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { unsigned dim; enum isl_lp_result res; if (!bset) return isl_lp_error; if (sol_p) *sol_p = NULL; isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); if (isl_basic_set_plain_is_empty(bset)) return isl_lp_empty; if (bset->n_eq) return solve_ilp_with_eq(bset, max, f, opt, sol_p); dim = isl_basic_set_total_dim(bset); if (max) isl_seq_neg(f, f, 1 + dim); res = solve_ilp(bset, f, opt, sol_p); if (max) { isl_seq_neg(f, f, 1 + dim); isl_int_neg(*opt, *opt); } return res; error: isl_basic_set_free(bset); return isl_lp_error; } static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj, isl_int *opt) { enum isl_lp_result res; if (!obj) return isl_lp_error; bset = isl_basic_set_copy(bset); bset = isl_basic_set_underlying_set(bset); res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL); isl_basic_set_free(bset); return res; } static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset) { int i; isl_ctx *ctx = isl_basic_set_get_ctx(bset); isl_mat *div; div = isl_mat_alloc(ctx, bset->n_div, 1 + 1 + isl_basic_set_total_dim(bset)); if (!div) return NULL; for (i = 0; i < bset->n_div; ++i) isl_seq_cpy(div->row[i], bset->div[i], div->n_col); return div; } enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj, isl_int *opt) { int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; isl_mat *bset_div = NULL; isl_mat *div = NULL; enum isl_lp_result res; int bset_n_div, obj_n_div; if (!bset || !obj) return isl_lp_error; ctx = isl_aff_get_ctx(obj); if (!isl_space_is_equal(bset->dim, obj->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", return isl_lp_error); if (!isl_int_is_one(obj->v->el[0])) isl_die(ctx, isl_error_unsupported, "expecting integer affine expression", return isl_lp_error); bset_n_div = isl_basic_set_dim(bset, isl_dim_div); obj_n_div = isl_aff_dim(obj, isl_dim_div); if (bset_n_div == 0 && obj_n_div == 0) return basic_set_opt(bset, max, obj, opt); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset_div = extract_divs(bset); exp1 = isl_alloc_array(ctx, int, bset_n_div); exp2 = isl_alloc_array(ctx, int, obj_n_div); if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2)) goto error; div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2); bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1); obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2); res = basic_set_opt(bset, max, obj, opt); isl_mat_free(bset_div); isl_mat_free(div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return res; error: isl_mat_free(div); isl_mat_free(bset_div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return isl_lp_error; } /* Compute the minimum (maximum if max is set) of the integer affine * expression obj over the points in set and put the result in *opt. * * The parameters are assumed to have been aligned. */ static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj, isl_int *opt) { int i; enum isl_lp_result res; int empty = 1; isl_int opt_i; if (!set || !obj) return isl_lp_error; if (set->n == 0) return isl_lp_empty; res = isl_basic_set_opt(set->p[0], max, obj, opt); if (res == isl_lp_error || res == isl_lp_unbounded) return res; if (set->n == 1) return res; if (res == isl_lp_ok) empty = 0; isl_int_init(opt_i); for (i = 1; i < set->n; ++i) { res = isl_basic_set_opt(set->p[i], max, obj, &opt_i); if (res == isl_lp_error || res == isl_lp_unbounded) { isl_int_clear(opt_i); return res; } if (res == isl_lp_empty) continue; empty = 0; if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt)) isl_int_set(*opt, opt_i); } isl_int_clear(opt_i); return empty ? isl_lp_empty : isl_lp_ok; } /* Compute the minimum (maximum if max is set) of the integer affine * expression obj over the points in set and put the result in *opt. */ enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj, isl_int *opt) { enum isl_lp_result res; if (!set || !obj) return isl_lp_error; if (isl_space_match(set->dim, isl_dim_param, obj->ls->dim, isl_dim_param)) return isl_set_opt_aligned(set, max, obj, opt); set = isl_set_copy(set); obj = isl_aff_copy(obj); set = isl_set_align_params(set, isl_aff_get_domain_space(obj)); obj = isl_aff_align_params(obj, isl_set_get_space(set)); res = isl_set_opt_aligned(set, max, obj, opt); isl_set_free(set); isl_aff_free(obj); return res; } enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj, isl_int *opt) { return isl_basic_set_opt(bset, 1, obj, opt); } enum isl_lp_result isl_set_max(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt) { return isl_set_opt(set, 1, obj, opt); } enum isl_lp_result isl_set_min(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt) { return isl_set_opt(set, 0, obj, opt); } /* Convert the result of a function that returns an isl_lp_result * to an isl_val. The numerator of "v" is set to the optimal value * if lp_res is isl_lp_ok. "max" is set if a maximum was computed. * * Return "v" with denominator set to 1 if lp_res is isl_lp_ok. * Return NULL on error. * Return a NaN if lp_res is isl_lp_empty. * Return infinity or negative infinity if lp_res is isl_lp_unbounded, * depending on "max". */ static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res, __isl_take isl_val *v, int max) { isl_ctx *ctx; if (lp_res == isl_lp_ok) { isl_int_set_si(v->d, 1); return isl_val_normalize(v); } ctx = isl_val_get_ctx(v); isl_val_free(v); if (lp_res == isl_lp_error) return NULL; if (lp_res == isl_lp_empty) return isl_val_nan(ctx); if (max) return isl_val_infty(ctx); else return isl_val_neginfty(ctx); } /* Return the minimum (maximum if max is set) of the integer affine * expression "obj" over the points in "bset". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Call isl_basic_set_opt and translate the results. */ __isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_basic_set_opt(bset, max, obj, &res->n); return convert_lp_result(lp_res, res, max); } /* Return the maximum of the integer affine * expression "obj" over the points in "bset". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_val(bset, 1, obj); } /* Return the minimum (maximum if max is set) of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "set" is empty. * * Call isl_set_opt and translate the results. */ __isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!set || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_set_opt(set, max, obj, &res->n); return convert_lp_result(lp_res, res, max); } /* Return the minimum of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "set" is empty. */ __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj) { return isl_set_opt_val(set, 0, obj); } /* Return the maximum of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "set" is empty. */ __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj) { return isl_set_opt_val(set, 1, obj); } /* Return the optimum (min or max depending on "max") of "v1" and "v2", * where either may be NaN, signifying an uninitialized value. * That is, if either is NaN, then return the other one. */ static __isl_give isl_val *val_opt(__isl_take isl_val *v1, __isl_take isl_val *v2, int max) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v1); return v2; } if (isl_val_is_nan(v2)) { isl_val_free(v2); return v1; } if (max) return isl_val_max(v1, v2); else return isl_val_min(v1, v2); error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Internal data structure for isl_set_opt_pw_aff. * * "max" is set if the maximum should be computed. * "set" is the set over which the optimum should be computed. * "res" contains the current optimum and is initialized to NaN. */ struct isl_set_opt_data { int max; isl_set *set; isl_val *res; }; /* Update the optimum in data->res with respect to the affine function * "aff" defined over "set". */ static isl_stat piece_opt(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user) { struct isl_set_opt_data *data = user; isl_val *opt; set = isl_set_intersect(set, isl_set_copy(data->set)); opt = isl_set_opt_val(set, data->max, aff); isl_set_free(set); isl_aff_free(aff); data->res = val_opt(data->res, opt, data->max); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Return the minimum (maximum if "max" is set) of the integer piecewise affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if the intersection of "set" with the domain of "obj" is empty. * * Initialize the result to NaN and then update it for each of the pieces * in "obj". */ static __isl_give isl_val *isl_set_opt_pw_aff(__isl_keep isl_set *set, int max, __isl_keep isl_pw_aff *obj) { struct isl_set_opt_data data = { max, set }; data.res = isl_val_nan(isl_set_get_ctx(set)); if (isl_pw_aff_foreach_piece(obj, &piece_opt, &data) < 0) return isl_val_free(data.res); return data.res; } /* Internal data structure for isl_union_set_opt_union_pw_aff. * * "max" is set if the maximum should be computed. * "obj" is the objective function that needs to be optimized. * "res" contains the current optimum and is initialized to NaN. */ struct isl_union_set_opt_data { int max; isl_union_pw_aff *obj; isl_val *res; }; /* Update the optimum in data->res with the optimum over "set". * Do so by first extracting the matching objective function * from data->obj. */ static isl_stat set_opt(__isl_take isl_set *set, void *user) { struct isl_union_set_opt_data *data = user; isl_space *space; isl_pw_aff *pa; isl_val *opt; space = isl_set_get_space(set); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); pa = isl_union_pw_aff_extract_pw_aff(data->obj, space); opt = isl_set_opt_pw_aff(set, data->max, pa); isl_pw_aff_free(pa); isl_set_free(set); data->res = val_opt(data->res, opt, data->max); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Return the minimum (maximum if "max" is set) of the integer piecewise affine * expression "obj" over the points in "uset". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if the intersection of "uset" with the domain of "obj" is empty. * * Initialize the result to NaN and then update it for each of the sets * in "uset". */ static __isl_give isl_val *isl_union_set_opt_union_pw_aff( __isl_keep isl_union_set *uset, int max, __isl_keep isl_union_pw_aff *obj) { struct isl_union_set_opt_data data = { max, obj }; data.res = isl_val_nan(isl_union_set_get_ctx(uset)); if (isl_union_set_foreach_set(uset, &set_opt, &data) < 0) return isl_val_free(data.res); return data.res; } /* Return a list of minima (maxima if "max" is set) over the points in "uset" * for each of the expressions in "obj". * * An element in the list is infinity or negative infinity if the optimal * value of the corresponding expression is unbounded and * NaN if the intersection of "uset" with the domain of the expression * is empty. * * Iterate over all the expressions in "obj" and collect the results. */ static __isl_give isl_multi_val *isl_union_set_opt_multi_union_pw_aff( __isl_keep isl_union_set *uset, int max, __isl_keep isl_multi_union_pw_aff *obj) { int i, n; isl_multi_val *mv; if (!uset || !obj) return NULL; n = isl_multi_union_pw_aff_dim(obj, isl_dim_set); mv = isl_multi_val_zero(isl_multi_union_pw_aff_get_space(obj)); for (i = 0; i < n; ++i) { isl_val *v; isl_union_pw_aff *upa; upa = isl_multi_union_pw_aff_get_union_pw_aff(obj, i); v = isl_union_set_opt_union_pw_aff(uset, max, upa); isl_union_pw_aff_free(upa); mv = isl_multi_val_set_val(mv, i, v); } return mv; } /* Return a list of minima over the points in "uset" * for each of the expressions in "obj". * * An element in the list is infinity or negative infinity if the optimal * value of the corresponding expression is unbounded and * NaN if the intersection of "uset" with the domain of the expression * is empty. */ __isl_give isl_multi_val *isl_union_set_min_multi_union_pw_aff( __isl_keep isl_union_set *uset, __isl_keep isl_multi_union_pw_aff *obj) { return isl_union_set_opt_multi_union_pw_aff(uset, 0, obj); }