/* * Copyright 2011 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include isl_ctx *isl_local_space_get_ctx(__isl_keep isl_local_space *ls) { return ls ? ls->dim->ctx : NULL; } /* Return a hash value that digests "ls". */ uint32_t isl_local_space_get_hash(__isl_keep isl_local_space *ls) { uint32_t hash, space_hash, div_hash; if (!ls) return 0; hash = isl_hash_init(); space_hash = isl_space_get_hash(ls->dim); isl_hash_hash(hash, space_hash); div_hash = isl_mat_get_hash(ls->div); isl_hash_hash(hash, div_hash); return hash; } __isl_give isl_local_space *isl_local_space_alloc_div(__isl_take isl_space *dim, __isl_take isl_mat *div) { isl_ctx *ctx; isl_local_space *ls = NULL; if (!dim || !div) goto error; ctx = isl_space_get_ctx(dim); ls = isl_calloc_type(ctx, struct isl_local_space); if (!ls) goto error; ls->ref = 1; ls->dim = dim; ls->div = div; return ls; error: isl_mat_free(div); isl_space_free(dim); isl_local_space_free(ls); return NULL; } __isl_give isl_local_space *isl_local_space_alloc(__isl_take isl_space *dim, unsigned n_div) { isl_ctx *ctx; isl_mat *div; unsigned total; if (!dim) return NULL; total = isl_space_dim(dim, isl_dim_all); ctx = isl_space_get_ctx(dim); div = isl_mat_alloc(ctx, n_div, 1 + 1 + total + n_div); return isl_local_space_alloc_div(dim, div); } __isl_give isl_local_space *isl_local_space_from_space(__isl_take isl_space *dim) { return isl_local_space_alloc(dim, 0); } __isl_give isl_local_space *isl_local_space_copy(__isl_keep isl_local_space *ls) { if (!ls) return NULL; ls->ref++; return ls; } __isl_give isl_local_space *isl_local_space_dup(__isl_keep isl_local_space *ls) { if (!ls) return NULL; return isl_local_space_alloc_div(isl_space_copy(ls->dim), isl_mat_copy(ls->div)); } __isl_give isl_local_space *isl_local_space_cow(__isl_take isl_local_space *ls) { if (!ls) return NULL; if (ls->ref == 1) return ls; ls->ref--; return isl_local_space_dup(ls); } __isl_null isl_local_space *isl_local_space_free( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (--ls->ref > 0) return NULL; isl_space_free(ls->dim); isl_mat_free(ls->div); free(ls); return NULL; } /* Is the local space that of a parameter domain? */ isl_bool isl_local_space_is_params(__isl_keep isl_local_space *ls) { if (!ls) return isl_bool_error; return isl_space_is_params(ls->dim); } /* Is the local space that of a set? */ isl_bool isl_local_space_is_set(__isl_keep isl_local_space *ls) { return ls ? isl_space_is_set(ls->dim) : isl_bool_error; } /* Do "ls1" and "ls2" have the same space? */ isl_bool isl_local_space_has_equal_space(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2) { if (!ls1 || !ls2) return isl_bool_error; return isl_space_is_equal(ls1->dim, ls2->dim); } /* Return true if the two local spaces are identical, with identical * expressions for the integer divisions. */ isl_bool isl_local_space_is_equal(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2) { isl_bool equal; equal = isl_local_space_has_equal_space(ls1, ls2); if (equal < 0 || !equal) return equal; if (!isl_local_space_divs_known(ls1)) return isl_bool_false; if (!isl_local_space_divs_known(ls2)) return isl_bool_false; return isl_mat_is_equal(ls1->div, ls2->div); } /* Compare two isl_local_spaces. * * Return -1 if "ls1" is "smaller" than "ls2", 1 if "ls1" is "greater" * than "ls2" and 0 if they are equal. */ int isl_local_space_cmp(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2) { int cmp; if (ls1 == ls2) return 0; if (!ls1) return -1; if (!ls2) return 1; cmp = isl_space_cmp(ls1->dim, ls2->dim); if (cmp != 0) return cmp; return isl_local_cmp(ls1->div, ls2->div); } int isl_local_space_dim(__isl_keep isl_local_space *ls, enum isl_dim_type type) { if (!ls) return 0; if (type == isl_dim_div) return ls->div->n_row; if (type == isl_dim_all) return isl_space_dim(ls->dim, isl_dim_all) + ls->div->n_row; return isl_space_dim(ls->dim, type); } unsigned isl_local_space_offset(__isl_keep isl_local_space *ls, enum isl_dim_type type) { isl_space *dim; if (!ls) return 0; dim = ls->dim; switch (type) { case isl_dim_cst: return 0; case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; case isl_dim_div: return 1 + dim->nparam + dim->n_in + dim->n_out; default: return 0; } } /* Return the position of the dimension of the given type and name * in "ls". * Return -1 if no such dimension can be found. */ int isl_local_space_find_dim_by_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, const char *name) { if (!ls) return -1; if (type == isl_dim_div) return -1; return isl_space_find_dim_by_name(ls->dim, type, name); } /* Does the given dimension have a name? */ isl_bool isl_local_space_has_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_has_dim_name(ls->dim, type, pos) : isl_bool_error; } const char *isl_local_space_get_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_get_dim_name(ls->dim, type, pos) : NULL; } isl_bool isl_local_space_has_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_has_dim_id(ls->dim, type, pos) : isl_bool_error; } __isl_give isl_id *isl_local_space_get_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_get_dim_id(ls->dim, type, pos) : NULL; } __isl_give isl_aff *isl_local_space_get_div(__isl_keep isl_local_space *ls, int pos) { isl_aff *aff; if (!ls) return NULL; if (pos < 0 || pos >= ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return NULL); if (isl_int_is_zero(ls->div->row[pos][0])) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "expression of div unknown", return NULL); if (!isl_local_space_is_set(ls)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot represent divs of map spaces", return NULL); aff = isl_aff_alloc(isl_local_space_copy(ls)); if (!aff) return NULL; isl_seq_cpy(aff->v->el, ls->div->row[pos], aff->v->size); return aff; } __isl_give isl_space *isl_local_space_get_space(__isl_keep isl_local_space *ls) { if (!ls) return NULL; return isl_space_copy(ls->dim); } /* Replace the identifier of the tuple of type "type" by "id". */ __isl_give isl_local_space *isl_local_space_set_tuple_id( __isl_take isl_local_space *ls, enum isl_dim_type type, __isl_take isl_id *id) { ls = isl_local_space_cow(ls); if (!ls) goto error; ls->dim = isl_space_set_tuple_id(ls->dim, type, id); if (!ls->dim) return isl_local_space_free(ls); return ls; error: isl_id_free(id); return NULL; } __isl_give isl_local_space *isl_local_space_set_dim_name( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, const char *s) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_set_dim_name(ls->dim, type, pos, s); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_set_dim_id( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { ls = isl_local_space_cow(ls); if (!ls) goto error; ls->dim = isl_space_set_dim_id(ls->dim, type, pos, id); if (!ls->dim) return isl_local_space_free(ls); return ls; error: isl_id_free(id); return NULL; } __isl_give isl_local_space *isl_local_space_reset_space( __isl_take isl_local_space *ls, __isl_take isl_space *dim) { ls = isl_local_space_cow(ls); if (!ls || !dim) goto error; isl_space_free(ls->dim); ls->dim = dim; return ls; error: isl_local_space_free(ls); isl_space_free(dim); return NULL; } /* Reorder the columns of the given div definitions according to the * given reordering. * The order of the divs themselves is assumed not to change. */ static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div, __isl_take isl_reordering *r) { int i, j; isl_mat *mat; int extra; if (!div || !r) goto error; extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len; mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra); if (!mat) goto error; for (i = 0; i < div->n_row; ++i) { isl_seq_cpy(mat->row[i], div->row[i], 2); isl_seq_clr(mat->row[i] + 2, mat->n_col - 2); for (j = 0; j < r->len; ++j) isl_int_set(mat->row[i][2 + r->pos[j]], div->row[i][2 + j]); } isl_reordering_free(r); isl_mat_free(div); return mat; error: isl_reordering_free(r); isl_mat_free(div); return NULL; } /* Reorder the dimensions of "ls" according to the given reordering. * The reordering r is assumed to have been extended with the local * variables, leaving them in the same order. */ __isl_give isl_local_space *isl_local_space_realign( __isl_take isl_local_space *ls, __isl_take isl_reordering *r) { ls = isl_local_space_cow(ls); if (!ls || !r) goto error; ls->div = reorder_divs(ls->div, isl_reordering_copy(r)); if (!ls->div) goto error; ls = isl_local_space_reset_space(ls, isl_space_copy(r->dim)); isl_reordering_free(r); return ls; error: isl_local_space_free(ls); isl_reordering_free(r); return NULL; } __isl_give isl_local_space *isl_local_space_add_div( __isl_take isl_local_space *ls, __isl_take isl_vec *div) { ls = isl_local_space_cow(ls); if (!ls || !div) goto error; if (ls->div->n_col != div->size) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "incompatible dimensions", goto error); ls->div = isl_mat_add_zero_cols(ls->div, 1); ls->div = isl_mat_add_rows(ls->div, 1); if (!ls->div) goto error; isl_seq_cpy(ls->div->row[ls->div->n_row - 1], div->el, div->size); isl_int_set_si(ls->div->row[ls->div->n_row - 1][div->size], 0); isl_vec_free(div); return ls; error: isl_local_space_free(ls); isl_vec_free(div); return NULL; } __isl_give isl_local_space *isl_local_space_replace_divs( __isl_take isl_local_space *ls, __isl_take isl_mat *div) { ls = isl_local_space_cow(ls); if (!ls || !div) goto error; isl_mat_free(ls->div); ls->div = div; return ls; error: isl_mat_free(div); isl_local_space_free(ls); return NULL; } /* Copy row "s" of "src" to row "d" of "dst", applying the expansion * defined by "exp". */ static void expand_row(__isl_keep isl_mat *dst, int d, __isl_keep isl_mat *src, int s, int *exp) { int i; unsigned c = src->n_col - src->n_row; isl_seq_cpy(dst->row[d], src->row[s], c); isl_seq_clr(dst->row[d] + c, dst->n_col - c); for (i = 0; i < s; ++i) isl_int_set(dst->row[d][c + exp[i]], src->row[s][c + i]); } /* Compare (known) divs. * Return non-zero if at least one of the two divs is unknown. * In particular, if both divs are unknown, we respect their * current order. Otherwise, we sort the known div after the unknown * div only if the known div depends on the unknown div. */ static int cmp_row(isl_int *row_i, isl_int *row_j, int i, int j, unsigned n_row, unsigned n_col) { int li, lj; int unknown_i, unknown_j; unknown_i = isl_int_is_zero(row_i[0]); unknown_j = isl_int_is_zero(row_j[0]); if (unknown_i && unknown_j) return i - j; if (unknown_i) li = n_col - n_row + i; else li = isl_seq_last_non_zero(row_i, n_col); if (unknown_j) lj = n_col - n_row + j; else lj = isl_seq_last_non_zero(row_j, n_col); if (li != lj) return li - lj; return isl_seq_cmp(row_i, row_j, n_col); } /* Call cmp_row for divs in a matrix. */ int isl_mat_cmp_div(__isl_keep isl_mat *div, int i, int j) { return cmp_row(div->row[i], div->row[j], i, j, div->n_row, div->n_col); } /* Call cmp_row for divs in a basic map. */ static int bmap_cmp_row(__isl_keep isl_basic_map *bmap, int i, int j, unsigned total) { return cmp_row(bmap->div[i], bmap->div[j], i, j, bmap->n_div, total); } /* Sort the divs in "bmap". * * We first make sure divs are placed after divs on which they depend. * Then we perform a simple insertion sort based on the same ordering * that is used in isl_merge_divs. */ __isl_give isl_basic_map *isl_basic_map_sort_divs( __isl_take isl_basic_map *bmap) { int i, j; unsigned total; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; if (bmap->n_div <= 1) return bmap; total = 2 + isl_basic_map_total_dim(bmap); for (i = 1; i < bmap->n_div; ++i) { for (j = i - 1; j >= 0; --j) { if (bmap_cmp_row(bmap, j, j + 1, total) <= 0) break; isl_basic_map_swap_div(bmap, j, j + 1); } } return bmap; } /* Sort the divs in the basic maps of "map". */ __isl_give isl_map *isl_map_sort_divs(__isl_take isl_map *map) { return isl_map_inline_foreach_basic_map(map, &isl_basic_map_sort_divs); } /* Combine the two lists of divs into a single list. * For each row i in div1, exp1[i] is set to the position of the corresponding * row in the result. Similarly for div2 and exp2. * This function guarantees * exp1[i] >= i * exp1[i+1] > exp1[i] * For optimal merging, the two input list should have been sorted. */ __isl_give isl_mat *isl_merge_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2, int *exp1, int *exp2) { int i, j, k; isl_mat *div = NULL; unsigned d; if (!div1 || !div2) return NULL; d = div1->n_col - div1->n_row; div = isl_mat_alloc(div1->ctx, 1 + div1->n_row + div2->n_row, d + div1->n_row + div2->n_row); if (!div) return NULL; for (i = 0, j = 0, k = 0; i < div1->n_row && j < div2->n_row; ++k) { int cmp; expand_row(div, k, div1, i, exp1); expand_row(div, k + 1, div2, j, exp2); cmp = isl_mat_cmp_div(div, k, k + 1); if (cmp == 0) { exp1[i++] = k; exp2[j++] = k; } else if (cmp < 0) { exp1[i++] = k; } else { exp2[j++] = k; isl_seq_cpy(div->row[k], div->row[k + 1], div->n_col); } } for (; i < div1->n_row; ++i, ++k) { expand_row(div, k, div1, i, exp1); exp1[i] = k; } for (; j < div2->n_row; ++j, ++k) { expand_row(div, k, div2, j, exp2); exp2[j] = k; } div->n_row = k; div->n_col = d + k; return div; } /* Swap divs "a" and "b" in "ls". */ __isl_give isl_local_space *isl_local_space_swap_div( __isl_take isl_local_space *ls, int a, int b) { int offset; ls = isl_local_space_cow(ls); if (!ls) return NULL; if (a < 0 || a >= ls->div->n_row || b < 0 || b >= ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return isl_local_space_free(ls)); offset = ls->div->n_col - ls->div->n_row; ls->div = isl_mat_swap_cols(ls->div, offset + a, offset + b); ls->div = isl_mat_swap_rows(ls->div, a, b); if (!ls->div) return isl_local_space_free(ls); return ls; } /* Construct a local space that contains all the divs in either * "ls1" or "ls2". */ __isl_give isl_local_space *isl_local_space_intersect( __isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2) { isl_ctx *ctx; int *exp1 = NULL; int *exp2 = NULL; isl_mat *div; int equal; if (!ls1 || !ls2) goto error; ctx = isl_local_space_get_ctx(ls1); if (!isl_space_is_equal(ls1->dim, ls2->dim)) isl_die(ctx, isl_error_invalid, "spaces should be identical", goto error); if (ls2->div->n_row == 0) { isl_local_space_free(ls2); return ls1; } if (ls1->div->n_row == 0) { isl_local_space_free(ls1); return ls2; } exp1 = isl_alloc_array(ctx, int, ls1->div->n_row); exp2 = isl_alloc_array(ctx, int, ls2->div->n_row); if (!exp1 || !exp2) goto error; div = isl_merge_divs(ls1->div, ls2->div, exp1, exp2); if (!div) goto error; equal = isl_mat_is_equal(ls1->div, div); if (equal < 0) goto error; if (!equal) ls1 = isl_local_space_cow(ls1); if (!ls1) goto error; free(exp1); free(exp2); isl_local_space_free(ls2); isl_mat_free(ls1->div); ls1->div = div; return ls1; error: free(exp1); free(exp2); isl_local_space_free(ls1); isl_local_space_free(ls2); return NULL; } /* Does "ls" have an explicit representation for div "div"? */ isl_bool isl_local_space_div_is_known(__isl_keep isl_local_space *ls, int div) { if (!ls) return isl_bool_error; return isl_local_div_is_known(ls->div, div); } /* Does "ls" have an explicit representation for all local variables? */ isl_bool isl_local_space_divs_known(__isl_keep isl_local_space *ls) { int i; if (!ls) return isl_bool_error; for (i = 0; i < ls->div->n_row; ++i) { isl_bool known = isl_local_space_div_is_known(ls, i); if (known < 0 || !known) return known; } return isl_bool_true; } __isl_give isl_local_space *isl_local_space_domain( __isl_take isl_local_space *ls) { ls = isl_local_space_drop_dims(ls, isl_dim_out, 0, isl_local_space_dim(ls, isl_dim_out)); ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_range( __isl_take isl_local_space *ls) { ls = isl_local_space_drop_dims(ls, isl_dim_in, 0, isl_local_space_dim(ls, isl_dim_in)); ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_range(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Construct a local space for a map that has the given local * space as domain and that has a zero-dimensional range. */ __isl_give isl_local_space *isl_local_space_from_domain( __isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_from_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_add_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n) { int pos; if (!ls) return NULL; pos = isl_local_space_dim(ls, type); return isl_local_space_insert_dims(ls, type, pos, n); } /* Remove common factor of non-constant terms and denominator. */ static void normalize_div(__isl_keep isl_local_space *ls, int div) { isl_ctx *ctx = ls->div->ctx; unsigned total = ls->div->n_col - 2; isl_seq_gcd(ls->div->row[div] + 2, total, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, ls->div->row[div][0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_seq_scale_down(ls->div->row[div] + 2, ls->div->row[div] + 2, ctx->normalize_gcd, total); isl_int_divexact(ls->div->row[div][0], ls->div->row[div][0], ctx->normalize_gcd); isl_int_fdiv_q(ls->div->row[div][1], ls->div->row[div][1], ctx->normalize_gcd); } /* Exploit the equalities in "eq" to simplify the expressions of * the integer divisions in "ls". * The integer divisions in "ls" are assumed to appear as regular * dimensions in "eq". */ __isl_give isl_local_space *isl_local_space_substitute_equalities( __isl_take isl_local_space *ls, __isl_take isl_basic_set *eq) { int i, j, k; unsigned total; unsigned n_div; if (!ls || !eq) goto error; total = isl_space_dim(eq->dim, isl_dim_all); if (isl_local_space_dim(ls, isl_dim_all) != total) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", goto error); total++; n_div = eq->n_div; for (i = 0; i < eq->n_eq; ++i) { j = isl_seq_last_non_zero(eq->eq[i], total + n_div); if (j < 0 || j == 0 || j >= total) continue; for (k = 0; k < ls->div->n_row; ++k) { if (isl_int_is_zero(ls->div->row[k][1 + j])) continue; ls = isl_local_space_cow(ls); if (!ls) goto error; ls->div = isl_mat_cow(ls->div); if (!ls->div) goto error; isl_seq_elim(ls->div->row[k] + 1, eq->eq[i], j, total, &ls->div->row[k][0]); normalize_div(ls, k); } } isl_basic_set_free(eq); return ls; error: isl_basic_set_free(eq); isl_local_space_free(ls); return NULL; } /* Plug in the affine expressions "subs" of length "subs_len" (including * the denominator and the constant term) into the variable at position "pos" * of the "n" div expressions starting at "first". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division starting at "first" with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) */ __isl_give isl_local_space *isl_local_space_substitute_seq( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, isl_int *subs, int subs_len, int first, int n) { int i; isl_int v; if (n == 0) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->div = isl_mat_cow(ls->div); if (!ls->div) return isl_local_space_free(ls); if (first + n > ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return isl_local_space_free(ls)); pos += isl_local_space_offset(ls, type); isl_int_init(v); for (i = first; i < first + n; ++i) { if (isl_int_is_zero(ls->div->row[i][1 + pos])) continue; isl_seq_substitute(ls->div->row[i], pos, subs, ls->div->n_col, subs_len, v); normalize_div(ls, i); } isl_int_clear(v); return ls; } /* Plug in "subs" for dimension "type", "pos" in the integer divisions * of "ls". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) */ __isl_give isl_local_space *isl_local_space_substitute( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { ls = isl_local_space_cow(ls); if (!ls || !subs) return isl_local_space_free(ls); if (!isl_space_is_equal(ls->dim, subs->ls->dim)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", return isl_local_space_free(ls)); if (isl_local_space_dim(subs->ls, isl_dim_div) != 0) isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported, "cannot handle divs yet", return isl_local_space_free(ls)); return isl_local_space_substitute_seq(ls, type, pos, subs->v->el, subs->v->size, 0, ls->div->n_row); } int isl_local_space_is_named_or_nested(__isl_keep isl_local_space *ls, enum isl_dim_type type) { if (!ls) return -1; return isl_space_is_named_or_nested(ls->dim, type); } __isl_give isl_local_space *isl_local_space_drop_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, type)) return ls; ctx = isl_local_space_get_ctx(ls); if (first + n > isl_local_space_dim(ls, type)) isl_die(ctx, isl_error_invalid, "range out of bounds", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; if (type == isl_dim_div) { ls->div = isl_mat_drop_rows(ls->div, first, n); } else { ls->dim = isl_space_drop_dims(ls->dim, type, first, n); if (!ls->dim) return isl_local_space_free(ls); } first += 1 + isl_local_space_offset(ls, type); ls->div = isl_mat_drop_cols(ls->div, first, n); if (!ls->div) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_insert_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, type)) return ls; ctx = isl_local_space_get_ctx(ls); if (first > isl_local_space_dim(ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; if (type == isl_dim_div) { ls->div = isl_mat_insert_zero_rows(ls->div, first, n); } else { ls->dim = isl_space_insert_dims(ls->dim, type, first, n); if (!ls->dim) return isl_local_space_free(ls); } first += 1 + isl_local_space_offset(ls, type); ls->div = isl_mat_insert_zero_cols(ls->div, first, n); if (!ls->div) return isl_local_space_free(ls); return ls; } /* Check if the constraints pointed to by "constraint" is a div * constraint corresponding to div "div" in "ls". * * That is, if div = floor(f/m), then check if the constraint is * * f - m d >= 0 * or * -(f-(m-1)) + m d >= 0 */ int isl_local_space_is_div_constraint(__isl_keep isl_local_space *ls, isl_int *constraint, unsigned div) { unsigned pos; if (!ls) return -1; if (isl_int_is_zero(ls->div->row[div][0])) return 0; pos = isl_local_space_offset(ls, isl_dim_div) + div; if (isl_int_eq(constraint[pos], ls->div->row[div][0])) { int neg; isl_int_sub(ls->div->row[div][1], ls->div->row[div][1], ls->div->row[div][0]); isl_int_add_ui(ls->div->row[div][1], ls->div->row[div][1], 1); neg = isl_seq_is_neg(constraint, ls->div->row[div]+1, pos); isl_int_sub_ui(ls->div->row[div][1], ls->div->row[div][1], 1); isl_int_add(ls->div->row[div][1], ls->div->row[div][1], ls->div->row[div][0]); if (!neg) return 0; if (isl_seq_first_non_zero(constraint+pos+1, ls->div->n_row-div-1) != -1) return 0; } else if (isl_int_abs_eq(constraint[pos], ls->div->row[div][0])) { if (!isl_seq_eq(constraint, ls->div->row[div]+1, pos)) return 0; if (isl_seq_first_non_zero(constraint+pos+1, ls->div->n_row-div-1) != -1) return 0; } else return 0; return 1; } /* * Set active[i] to 1 if the dimension at position i is involved * in the linear expression l. */ int *isl_local_space_get_active(__isl_keep isl_local_space *ls, isl_int *l) { int i, j; isl_ctx *ctx; int *active = NULL; unsigned total; unsigned offset; ctx = isl_local_space_get_ctx(ls); total = isl_local_space_dim(ls, isl_dim_all); active = isl_calloc_array(ctx, int, total); if (total && !active) return NULL; for (i = 0; i < total; ++i) active[i] = !isl_int_is_zero(l[i]); offset = isl_local_space_offset(ls, isl_dim_div) - 1; for (i = ls->div->n_row - 1; i >= 0; --i) { if (!active[offset + i]) continue; for (j = 0; j < total; ++j) active[j] |= !isl_int_is_zero(ls->div->row[i][2 + j]); } return active; } /* Given a local space "ls" of a set, create a local space * for the lift of the set. In particular, the result * is of the form [dim -> local[..]], with ls->div->n_row variables in the * range of the wrapped map. */ __isl_give isl_local_space *isl_local_space_lift( __isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_lift(ls->dim, ls->div->n_row); ls->div = isl_mat_drop_rows(ls->div, 0, ls->div->n_row); if (!ls->dim || !ls->div) return isl_local_space_free(ls); return ls; } /* Construct a basic map that maps a set living in local space "ls" * to the corresponding lifted local space. */ __isl_give isl_basic_map *isl_local_space_lifting( __isl_take isl_local_space *ls) { isl_basic_map *lifting; isl_basic_set *bset; if (!ls) return NULL; if (!isl_local_space_is_set(ls)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "lifting only defined on set spaces", goto error); bset = isl_basic_set_from_local_space(ls); lifting = isl_basic_set_unwrap(isl_basic_set_lift(bset)); lifting = isl_basic_map_domain_map(lifting); lifting = isl_basic_map_reverse(lifting); return lifting; error: isl_local_space_free(ls); return NULL; } /* Compute the preimage of "ls" under the function represented by "ma". * In other words, plug in "ma" in "ls". The result is a local space * that is part of the domain space of "ma". * * If the divs in "ls" are represented as * * floor((a_i(p) + b_i x + c_i(divs))/n_i) * * and ma is represented by * * x = D(p) + F(y) + G(divs') * * then the resulting divs are * * floor((a_i(p) + b_i D(p) + b_i F(y) + B_i G(divs') + c_i(divs))/n_i) * * We first copy over the divs from "ma" and then * we add the modified divs from "ls". */ __isl_give isl_local_space *isl_local_space_preimage_multi_aff( __isl_take isl_local_space *ls, __isl_take isl_multi_aff *ma) { int i; isl_space *space; isl_local_space *res = NULL; int n_div_ls, n_div_ma; isl_int f, c1, c2, g; ma = isl_multi_aff_align_divs(ma); if (!ls || !ma) goto error; if (!isl_space_is_range_internal(ls->dim, ma->space)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", goto error); n_div_ls = isl_local_space_dim(ls, isl_dim_div); n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0; space = isl_space_domain(isl_multi_aff_get_space(ma)); res = isl_local_space_alloc(space, n_div_ma + n_div_ls); if (!res) goto error; if (n_div_ma) { isl_mat_free(res->div); res->div = isl_mat_copy(ma->p[0]->ls->div); res->div = isl_mat_add_zero_cols(res->div, n_div_ls); res->div = isl_mat_add_rows(res->div, n_div_ls); if (!res->div) goto error; } isl_int_init(f); isl_int_init(c1); isl_int_init(c2); isl_int_init(g); for (i = 0; i < ls->div->n_row; ++i) { if (isl_int_is_zero(ls->div->row[i][0])) { isl_int_set_si(res->div->row[n_div_ma + i][0], 0); continue; } isl_seq_preimage(res->div->row[n_div_ma + i], ls->div->row[i], ma, 0, 0, n_div_ma, n_div_ls, f, c1, c2, g, 1); normalize_div(res, n_div_ma + i); } isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_local_space_free(ls); isl_multi_aff_free(ma); return res; error: isl_local_space_free(ls); isl_multi_aff_free(ma); isl_local_space_free(res); return NULL; } /* Move the "n" dimensions of "src_type" starting at "src_pos" of "ls" * to dimensions of "dst_type" at "dst_pos". * * Moving to/from local dimensions is not allowed. * We currently assume that the dimension type changes. */ __isl_give isl_local_space *isl_local_space_move_dims( __isl_take isl_local_space *ls, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { unsigned g_dst_pos; unsigned g_src_pos; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, src_type) && !isl_local_space_is_named_or_nested(ls, dst_type)) return ls; if (src_pos + n > isl_local_space_dim(ls, src_type)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "range out of bounds", return isl_local_space_free(ls)); if (dst_pos > isl_local_space_dim(ls, dst_type)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "position out of bounds", return isl_local_space_free(ls)); if (src_type == isl_dim_div) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot move divs", return isl_local_space_free(ls)); if (dst_type == isl_dim_div) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot move to divs", return isl_local_space_free(ls)); if (dst_type == src_type && dst_pos == src_pos) return ls; if (dst_type == src_type) isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported, "moving dims within the same type not supported", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; g_src_pos = 1 + isl_local_space_offset(ls, src_type) + src_pos; g_dst_pos = 1 + isl_local_space_offset(ls, dst_type) + dst_pos; if (dst_type > src_type) g_dst_pos -= n; ls->div = isl_mat_move_cols(ls->div, g_dst_pos, g_src_pos, n); if (!ls->div) return isl_local_space_free(ls); ls->dim = isl_space_move_dims(ls->dim, dst_type, dst_pos, src_type, src_pos, n); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Remove any internal structure of the domain of "ls". * If there is any such internal structure in the input, * then the name of the corresponding space is also removed. */ __isl_give isl_local_space *isl_local_space_flatten_domain( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (!ls->dim->nested[0]) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_flatten_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Remove any internal structure of the range of "ls". * If there is any such internal structure in the input, * then the name of the corresponding space is also removed. */ __isl_give isl_local_space *isl_local_space_flatten_range( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (!ls->dim->nested[1]) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_flatten_range(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Given the local space "ls" of a map, return the local space of a set * that lives in a space that wraps the space of "ls" and that has * the same divs. */ __isl_give isl_local_space *isl_local_space_wrap(__isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_wrap(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; }