/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * Copyright 2016 INRIA Paris * Copyright 2016 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12, * CS 42112, 75589 Paris Cedex 12, France */ #include #include #include #include #include #include "isl_space_private.h" #include "isl_equalities.h" #include #include #include #include #include #include "isl_sample.h" #include #include "isl_tab.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned n(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return dim->nparam; case isl_dim_in: return dim->n_in; case isl_dim_out: return dim->n_out; case isl_dim_all: return dim->nparam + dim->n_in + dim->n_out; default: return 0; } } static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; default: return 0; } } unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap, enum isl_dim_type type) { if (!bmap) return 0; switch (type) { case isl_dim_cst: return 1; case isl_dim_param: case isl_dim_in: case isl_dim_out: return isl_space_dim(bmap->dim, type); case isl_dim_div: return bmap->n_div; case isl_dim_all: return isl_basic_map_total_dim(bmap); default: return 0; } } unsigned isl_map_dim(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? n(map->dim, type) : 0; } unsigned isl_set_dim(__isl_keep isl_set *set, enum isl_dim_type type) { return set ? n(set->dim, type) : 0; } unsigned isl_basic_map_offset(struct isl_basic_map *bmap, enum isl_dim_type type) { isl_space *space; if (!bmap) return 0; space = bmap->dim; switch (type) { case isl_dim_cst: return 0; case isl_dim_param: return 1; case isl_dim_in: return 1 + space->nparam; case isl_dim_out: return 1 + space->nparam + space->n_in; case isl_dim_div: return 1 + space->nparam + space->n_in + space->n_out; default: return 0; } } unsigned isl_basic_set_offset(struct isl_basic_set *bset, enum isl_dim_type type) { return isl_basic_map_offset(bset, type); } static unsigned map_offset(struct isl_map *map, enum isl_dim_type type) { return pos(map->dim, type); } unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset, enum isl_dim_type type) { return isl_basic_map_dim(bset, type); } unsigned isl_basic_set_n_dim(__isl_keep isl_basic_set *bset) { return isl_basic_set_dim(bset, isl_dim_set); } unsigned isl_basic_set_n_param(__isl_keep isl_basic_set *bset) { return isl_basic_set_dim(bset, isl_dim_param); } unsigned isl_basic_set_total_dim(const struct isl_basic_set *bset) { if (!bset) return 0; return isl_space_dim(bset->dim, isl_dim_all) + bset->n_div; } unsigned isl_set_n_dim(__isl_keep isl_set *set) { return isl_set_dim(set, isl_dim_set); } unsigned isl_set_n_param(__isl_keep isl_set *set) { return isl_set_dim(set, isl_dim_param); } unsigned isl_basic_map_n_in(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->n_in : 0; } unsigned isl_basic_map_n_out(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->n_out : 0; } unsigned isl_basic_map_n_param(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->nparam : 0; } unsigned isl_basic_map_n_div(const struct isl_basic_map *bmap) { return bmap ? bmap->n_div : 0; } unsigned isl_basic_map_total_dim(const struct isl_basic_map *bmap) { return bmap ? isl_space_dim(bmap->dim, isl_dim_all) + bmap->n_div : 0; } unsigned isl_map_n_in(const struct isl_map *map) { return map ? map->dim->n_in : 0; } unsigned isl_map_n_out(const struct isl_map *map) { return map ? map->dim->n_out : 0; } unsigned isl_map_n_param(const struct isl_map *map) { return map ? map->dim->nparam : 0; } int isl_map_compatible_domain(struct isl_map *map, struct isl_set *set) { int m; if (!map || !set) return -1; m = isl_space_match(map->dim, isl_dim_param, set->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(map->dim, isl_dim_in, set->dim, isl_dim_set); } isl_bool isl_basic_map_compatible_domain(__isl_keep isl_basic_map *bmap, __isl_keep isl_basic_set *bset) { isl_bool m; if (!bmap || !bset) return isl_bool_error; m = isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bset->dim, isl_dim_set); } int isl_map_compatible_range(__isl_keep isl_map *map, __isl_keep isl_set *set) { int m; if (!map || !set) return -1; m = isl_space_match(map->dim, isl_dim_param, set->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(map->dim, isl_dim_out, set->dim, isl_dim_set); } int isl_basic_map_compatible_range(struct isl_basic_map *bmap, struct isl_basic_set *bset) { int m; if (!bmap || !bset) return -1; m = isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(bmap->dim, isl_dim_out, bset->dim, isl_dim_set); } isl_ctx *isl_basic_map_get_ctx(__isl_keep isl_basic_map *bmap) { return bmap ? bmap->ctx : NULL; } isl_ctx *isl_basic_set_get_ctx(__isl_keep isl_basic_set *bset) { return bset ? bset->ctx : NULL; } isl_ctx *isl_map_get_ctx(__isl_keep isl_map *map) { return map ? map->ctx : NULL; } isl_ctx *isl_set_get_ctx(__isl_keep isl_set *set) { return set ? set->ctx : NULL; } __isl_give isl_space *isl_basic_map_get_space(__isl_keep isl_basic_map *bmap) { if (!bmap) return NULL; return isl_space_copy(bmap->dim); } __isl_give isl_space *isl_basic_set_get_space(__isl_keep isl_basic_set *bset) { if (!bset) return NULL; return isl_space_copy(bset->dim); } /* Extract the divs in "bmap" as a matrix. */ __isl_give isl_mat *isl_basic_map_get_divs(__isl_keep isl_basic_map *bmap) { int i; isl_ctx *ctx; isl_mat *div; unsigned total; unsigned cols; if (!bmap) return NULL; ctx = isl_basic_map_get_ctx(bmap); total = isl_space_dim(bmap->dim, isl_dim_all); cols = 1 + 1 + total + bmap->n_div; div = isl_mat_alloc(ctx, bmap->n_div, cols); if (!div) return NULL; for (i = 0; i < bmap->n_div; ++i) isl_seq_cpy(div->row[i], bmap->div[i], cols); return div; } /* Extract the divs in "bset" as a matrix. */ __isl_give isl_mat *isl_basic_set_get_divs(__isl_keep isl_basic_set *bset) { return isl_basic_map_get_divs(bset); } __isl_give isl_local_space *isl_basic_map_get_local_space( __isl_keep isl_basic_map *bmap) { isl_mat *div; if (!bmap) return NULL; div = isl_basic_map_get_divs(bmap); return isl_local_space_alloc_div(isl_space_copy(bmap->dim), div); } __isl_give isl_local_space *isl_basic_set_get_local_space( __isl_keep isl_basic_set *bset) { return isl_basic_map_get_local_space(bset); } /* For each known div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Do not finalize the result. */ static __isl_give isl_basic_map *add_known_div_constraints( __isl_take isl_basic_map *bmap) { int i; unsigned n_div; if (!bmap) return NULL; n_div = isl_basic_map_dim(bmap, isl_dim_div); if (n_div == 0) return bmap; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 2 * n_div); if (!bmap) return NULL; for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_basic_map_add_div_constraints(bmap, i) < 0) return isl_basic_map_free(bmap); } return bmap; } __isl_give isl_basic_map *isl_basic_map_from_local_space( __isl_take isl_local_space *ls) { int i; int n_div; isl_basic_map *bmap; if (!ls) return NULL; n_div = isl_local_space_dim(ls, isl_dim_div); bmap = isl_basic_map_alloc_space(isl_local_space_get_space(ls), n_div, 0, 2 * n_div); for (i = 0; i < n_div; ++i) if (isl_basic_map_alloc_div(bmap) < 0) goto error; for (i = 0; i < n_div; ++i) isl_seq_cpy(bmap->div[i], ls->div->row[i], ls->div->n_col); bmap = add_known_div_constraints(bmap); isl_local_space_free(ls); return bmap; error: isl_local_space_free(ls); isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_from_local_space( __isl_take isl_local_space *ls) { return isl_basic_map_from_local_space(ls); } __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map) { if (!map) return NULL; return isl_space_copy(map->dim); } __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set) { if (!set) return NULL; return isl_space_copy(set->dim); } __isl_give isl_basic_map *isl_basic_map_set_tuple_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, const char *s) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_set_tuple_name(bmap->dim, type, s); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_set_tuple_name( __isl_take isl_basic_set *bset, const char *s) { return isl_basic_map_set_tuple_name(bset, isl_dim_set, s); } const char *isl_basic_map_get_tuple_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type) { return bmap ? isl_space_get_tuple_name(bmap->dim, type) : NULL; } __isl_give isl_map *isl_map_set_tuple_name(__isl_take isl_map *map, enum isl_dim_type type, const char *s) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_set_tuple_name(map->dim, type, s); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_set_tuple_name(map->p[i], type, s); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Replace the identifier of the tuple of type "type" by "id". */ __isl_give isl_basic_map *isl_basic_map_set_tuple_id( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_id *id) { bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap->dim = isl_space_set_tuple_id(bmap->dim, type, id); if (!bmap->dim) return isl_basic_map_free(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_id_free(id); return NULL; } /* Replace the identifier of the tuple by "id". */ __isl_give isl_basic_set *isl_basic_set_set_tuple_id( __isl_take isl_basic_set *bset, __isl_take isl_id *id) { return isl_basic_map_set_tuple_id(bset, isl_dim_set, id); } /* Does the input or output tuple have a name? */ isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_has_tuple_name(map->dim, type) : isl_bool_error; } const char *isl_map_get_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_get_tuple_name(map->dim, type) : NULL; } __isl_give isl_set *isl_set_set_tuple_name(__isl_take isl_set *set, const char *s) { return set_from_map(isl_map_set_tuple_name(set_to_map(set), isl_dim_set, s)); } __isl_give isl_map *isl_map_set_tuple_id(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_id *id) { map = isl_map_cow(map); if (!map) goto error; map->dim = isl_space_set_tuple_id(map->dim, type, id); return isl_map_reset_space(map, isl_space_copy(map->dim)); error: isl_id_free(id); return NULL; } __isl_give isl_set *isl_set_set_tuple_id(__isl_take isl_set *set, __isl_take isl_id *id) { return isl_map_set_tuple_id(set, isl_dim_set, id); } __isl_give isl_map *isl_map_reset_tuple_id(__isl_take isl_map *map, enum isl_dim_type type) { map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_reset_tuple_id(map->dim, type); return isl_map_reset_space(map, isl_space_copy(map->dim)); } __isl_give isl_set *isl_set_reset_tuple_id(__isl_take isl_set *set) { return isl_map_reset_tuple_id(set, isl_dim_set); } isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_has_tuple_id(map->dim, type) : isl_bool_error; } __isl_give isl_id *isl_map_get_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_get_tuple_id(map->dim, type) : NULL; } isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set) { return isl_map_has_tuple_id(set, isl_dim_set); } __isl_give isl_id *isl_set_get_tuple_id(__isl_keep isl_set *set) { return isl_map_get_tuple_id(set, isl_dim_set); } /* Does the set tuple have a name? */ isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_has_tuple_name(set->dim, isl_dim_set); } const char *isl_basic_set_get_tuple_name(__isl_keep isl_basic_set *bset) { return bset ? isl_space_get_tuple_name(bset->dim, isl_dim_set) : NULL; } const char *isl_set_get_tuple_name(__isl_keep isl_set *set) { return set ? isl_space_get_tuple_name(set->dim, isl_dim_set) : NULL; } const char *isl_basic_map_get_dim_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return bmap ? isl_space_get_dim_name(bmap->dim, type, pos) : NULL; } const char *isl_basic_set_get_dim_name(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos) { return bset ? isl_space_get_dim_name(bset->dim, type, pos) : NULL; } /* Does the given dimension have a name? */ isl_bool isl_map_has_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { if (!map) return isl_bool_error; return isl_space_has_dim_name(map->dim, type, pos); } const char *isl_map_get_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_get_dim_name(map->dim, type, pos) : NULL; } const char *isl_set_get_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return set ? isl_space_get_dim_name(set->dim, type, pos) : NULL; } /* Does the given dimension have a name? */ isl_bool isl_set_has_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { if (!set) return isl_bool_error; return isl_space_has_dim_name(set->dim, type, pos); } __isl_give isl_basic_map *isl_basic_map_set_dim_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, const char *s) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_set_dim_name(bmap->dim, type, pos, s); if (!bmap->dim) goto error; return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_map *isl_map_set_dim_name(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, const char *s) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_set_dim_name(map->dim, type, pos, s); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_set_dim_name(map->p[i], type, pos, s); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_basic_set *isl_basic_set_set_dim_name( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, const char *s) { return bset_from_bmap(isl_basic_map_set_dim_name(bset_to_bmap(bset), type, pos, s)); } __isl_give isl_set *isl_set_set_dim_name(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, const char *s) { return set_from_map(isl_map_set_dim_name(set_to_map(set), type, pos, s)); } isl_bool isl_basic_map_has_dim_id(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { if (!bmap) return isl_bool_error; return isl_space_has_dim_id(bmap->dim, type, pos); } __isl_give isl_id *isl_basic_set_get_dim_id(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos) { return bset ? isl_space_get_dim_id(bset->dim, type, pos) : NULL; } isl_bool isl_map_has_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_has_dim_id(map->dim, type, pos) : isl_bool_error; } __isl_give isl_id *isl_map_get_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_get_dim_id(map->dim, type, pos) : NULL; } isl_bool isl_set_has_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_has_dim_id(set, type, pos); } __isl_give isl_id *isl_set_get_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_get_dim_id(set, type, pos); } __isl_give isl_map *isl_map_set_dim_id(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { map = isl_map_cow(map); if (!map) goto error; map->dim = isl_space_set_dim_id(map->dim, type, pos, id); return isl_map_reset_space(map, isl_space_copy(map->dim)); error: isl_id_free(id); return NULL; } __isl_give isl_set *isl_set_set_dim_id(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { return isl_map_set_dim_id(set, type, pos, id); } int isl_map_find_dim_by_id(__isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_id *id) { if (!map) return -1; return isl_space_find_dim_by_id(map->dim, type, id); } int isl_set_find_dim_by_id(__isl_keep isl_set *set, enum isl_dim_type type, __isl_keep isl_id *id) { return isl_map_find_dim_by_id(set, type, id); } /* Return the position of the dimension of the given type and name * in "bmap". * Return -1 if no such dimension can be found. */ int isl_basic_map_find_dim_by_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, const char *name) { if (!bmap) return -1; return isl_space_find_dim_by_name(bmap->dim, type, name); } int isl_map_find_dim_by_name(__isl_keep isl_map *map, enum isl_dim_type type, const char *name) { if (!map) return -1; return isl_space_find_dim_by_name(map->dim, type, name); } int isl_set_find_dim_by_name(__isl_keep isl_set *set, enum isl_dim_type type, const char *name) { return isl_map_find_dim_by_name(set, type, name); } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "map". */ __isl_give isl_map *isl_map_reset_user(__isl_take isl_map *map) { isl_space *space; space = isl_map_get_space(map); space = isl_space_reset_user(space); map = isl_map_reset_space(map, space); return map; } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "set". */ __isl_give isl_set *isl_set_reset_user(__isl_take isl_set *set) { return isl_map_reset_user(set); } int isl_basic_map_is_rational(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); } /* Has "map" been marked as a rational map? * In particular, have all basic maps in "map" been marked this way? * An empty map is not considered to be rational. * Maps where only some of the basic maps are marked rational * are not allowed. */ isl_bool isl_map_is_rational(__isl_keep isl_map *map) { int i; isl_bool rational; if (!map) return isl_bool_error; if (map->n == 0) return isl_bool_false; rational = isl_basic_map_is_rational(map->p[0]); if (rational < 0) return rational; for (i = 1; i < map->n; ++i) { isl_bool rational_i; rational_i = isl_basic_map_is_rational(map->p[i]); if (rational_i < 0) return rational; if (rational != rational_i) isl_die(isl_map_get_ctx(map), isl_error_unsupported, "mixed rational and integer basic maps " "not supported", return isl_bool_error); } return rational; } /* Has "set" been marked as a rational set? * In particular, have all basic set in "set" been marked this way? * An empty set is not considered to be rational. * Sets where only some of the basic sets are marked rational * are not allowed. */ isl_bool isl_set_is_rational(__isl_keep isl_set *set) { return isl_map_is_rational(set); } int isl_basic_set_is_rational(__isl_keep isl_basic_set *bset) { return isl_basic_map_is_rational(bset); } /* Does "bmap" contain any rational points? * * If "bmap" has an equality for each dimension, equating the dimension * to an integer constant, then it has no rational points, even if it * is marked as rational. */ int isl_basic_map_has_rational(__isl_keep isl_basic_map *bmap) { int has_rational = 1; unsigned total; if (!bmap) return -1; if (isl_basic_map_plain_is_empty(bmap)) return 0; if (!isl_basic_map_is_rational(bmap)) return 0; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_implicit_equalities(bmap); if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); if (bmap->n_eq == total) { int i, j; for (i = 0; i < bmap->n_eq; ++i) { j = isl_seq_first_non_zero(bmap->eq[i] + 1, total); if (j < 0) break; if (!isl_int_is_one(bmap->eq[i][1 + j]) && !isl_int_is_negone(bmap->eq[i][1 + j])) break; j = isl_seq_first_non_zero(bmap->eq[i] + 1 + j + 1, total - j - 1); if (j >= 0) break; } if (i == bmap->n_eq) has_rational = 0; } isl_basic_map_free(bmap); return has_rational; } /* Does "map" contain any rational points? */ int isl_map_has_rational(__isl_keep isl_map *map) { int i; int has_rational; if (!map) return -1; for (i = 0; i < map->n; ++i) { has_rational = isl_basic_map_has_rational(map->p[i]); if (has_rational < 0) return -1; if (has_rational) return 1; } return 0; } /* Does "set" contain any rational points? */ int isl_set_has_rational(__isl_keep isl_set *set) { return isl_map_has_rational(set); } /* Is this basic set a parameter domain? */ int isl_basic_set_is_params(__isl_keep isl_basic_set *bset) { if (!bset) return -1; return isl_space_is_params(bset->dim); } /* Is this set a parameter domain? */ isl_bool isl_set_is_params(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_is_params(set->dim); } /* Is this map actually a parameter domain? * Users should never call this function. Outside of isl, * a map can never be a parameter domain. */ int isl_map_is_params(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_is_params(map->dim); } static struct isl_basic_map *basic_map_init(struct isl_ctx *ctx, struct isl_basic_map *bmap, unsigned extra, unsigned n_eq, unsigned n_ineq) { int i; size_t row_size = 1 + isl_space_dim(bmap->dim, isl_dim_all) + extra; bmap->ctx = ctx; isl_ctx_ref(ctx); bmap->block = isl_blk_alloc(ctx, (n_ineq + n_eq) * row_size); if (isl_blk_is_error(bmap->block)) goto error; bmap->ineq = isl_alloc_array(ctx, isl_int *, n_ineq + n_eq); if ((n_ineq + n_eq) && !bmap->ineq) goto error; if (extra == 0) { bmap->block2 = isl_blk_empty(); bmap->div = NULL; } else { bmap->block2 = isl_blk_alloc(ctx, extra * (1 + row_size)); if (isl_blk_is_error(bmap->block2)) goto error; bmap->div = isl_alloc_array(ctx, isl_int *, extra); if (!bmap->div) goto error; } for (i = 0; i < n_ineq + n_eq; ++i) bmap->ineq[i] = bmap->block.data + i * row_size; for (i = 0; i < extra; ++i) bmap->div[i] = bmap->block2.data + i * (1 + row_size); bmap->ref = 1; bmap->flags = 0; bmap->c_size = n_eq + n_ineq; bmap->eq = bmap->ineq + n_ineq; bmap->extra = extra; bmap->n_eq = 0; bmap->n_ineq = 0; bmap->n_div = 0; bmap->sample = NULL; return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *space; space = isl_space_set_alloc(ctx, nparam, dim); if (!space) return NULL; bmap = isl_basic_map_alloc_space(space, extra, n_eq, n_ineq); return bset_from_bmap(bmap); } struct isl_basic_set *isl_basic_set_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; if (!dim) return NULL; isl_assert(dim->ctx, dim->n_in == 0, goto error); bmap = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); return bset_from_bmap(bmap); error: isl_space_free(dim); return NULL; } struct isl_basic_map *isl_basic_map_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; if (!dim) return NULL; bmap = isl_calloc_type(dim->ctx, struct isl_basic_map); if (!bmap) goto error; bmap->dim = dim; return basic_map_init(dim->ctx, bmap, extra, n_eq, n_ineq); error: isl_space_free(dim); return NULL; } struct isl_basic_map *isl_basic_map_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *dim; dim = isl_space_alloc(ctx, nparam, in, out); if (!dim) return NULL; bmap = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); return bmap; } static void dup_constraints( struct isl_basic_map *dst, struct isl_basic_map *src) { int i; unsigned total = isl_basic_map_total_dim(src); for (i = 0; i < src->n_eq; ++i) { int j = isl_basic_map_alloc_equality(dst); isl_seq_cpy(dst->eq[j], src->eq[i], 1+total); } for (i = 0; i < src->n_ineq; ++i) { int j = isl_basic_map_alloc_inequality(dst); isl_seq_cpy(dst->ineq[j], src->ineq[i], 1+total); } for (i = 0; i < src->n_div; ++i) { int j = isl_basic_map_alloc_div(dst); isl_seq_cpy(dst->div[j], src->div[i], 1+1+total); } ISL_F_SET(dst, ISL_BASIC_SET_FINAL); } struct isl_basic_map *isl_basic_map_dup(struct isl_basic_map *bmap) { struct isl_basic_map *dup; if (!bmap) return NULL; dup = isl_basic_map_alloc_space(isl_space_copy(bmap->dim), bmap->n_div, bmap->n_eq, bmap->n_ineq); if (!dup) return NULL; dup_constraints(dup, bmap); dup->flags = bmap->flags; dup->sample = isl_vec_copy(bmap->sample); return dup; } struct isl_basic_set *isl_basic_set_dup(struct isl_basic_set *bset) { struct isl_basic_map *dup; dup = isl_basic_map_dup(bset_to_bmap(bset)); return bset_from_bmap(dup); } struct isl_basic_set *isl_basic_set_copy(struct isl_basic_set *bset) { if (!bset) return NULL; if (ISL_F_ISSET(bset, ISL_BASIC_SET_FINAL)) { bset->ref++; return bset; } return isl_basic_set_dup(bset); } struct isl_set *isl_set_copy(struct isl_set *set) { if (!set) return NULL; set->ref++; return set; } struct isl_basic_map *isl_basic_map_copy(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_SET_FINAL)) { bmap->ref++; return bmap; } bmap = isl_basic_map_dup(bmap); if (bmap) ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); return bmap; } struct isl_map *isl_map_copy(struct isl_map *map) { if (!map) return NULL; map->ref++; return map; } __isl_null isl_basic_map *isl_basic_map_free(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (--bmap->ref > 0) return NULL; isl_ctx_deref(bmap->ctx); free(bmap->div); isl_blk_free(bmap->ctx, bmap->block2); free(bmap->ineq); isl_blk_free(bmap->ctx, bmap->block); isl_vec_free(bmap->sample); isl_space_free(bmap->dim); free(bmap); return NULL; } __isl_null isl_basic_set *isl_basic_set_free(__isl_take isl_basic_set *bset) { return isl_basic_map_free(bset_to_bmap(bset)); } static int room_for_con(struct isl_basic_map *bmap, unsigned n) { return bmap->n_eq + bmap->n_ineq + n <= bmap->c_size; } __isl_give isl_map *isl_map_align_params_map_map_and( __isl_take isl_map *map1, __isl_take isl_map *map2, __isl_give isl_map *(*fn)(__isl_take isl_map *map1, __isl_take isl_map *map2)) { if (!map1 || !map2) goto error; if (isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param)) return fn(map1, map2); if (!isl_space_has_named_params(map1->dim) || !isl_space_has_named_params(map2->dim)) isl_die(map1->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map1 = isl_map_align_params(map1, isl_map_get_space(map2)); map2 = isl_map_align_params(map2, isl_map_get_space(map1)); return fn(map1, map2); error: isl_map_free(map1); isl_map_free(map2); return NULL; } isl_bool isl_map_align_params_map_map_and_test(__isl_keep isl_map *map1, __isl_keep isl_map *map2, isl_bool (*fn)(__isl_keep isl_map *map1, __isl_keep isl_map *map2)) { isl_bool r; if (!map1 || !map2) return isl_bool_error; if (isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param)) return fn(map1, map2); if (!isl_space_has_named_params(map1->dim) || !isl_space_has_named_params(map2->dim)) isl_die(map1->ctx, isl_error_invalid, "unaligned unnamed parameters", return isl_bool_error); map1 = isl_map_copy(map1); map2 = isl_map_copy(map2); map1 = isl_map_align_params(map1, isl_map_get_space(map2)); map2 = isl_map_align_params(map2, isl_map_get_space(map1)); r = fn(map1, map2); isl_map_free(map1); isl_map_free(map2); return r; } int isl_basic_map_alloc_equality(struct isl_basic_map *bmap) { struct isl_ctx *ctx; if (!bmap) return -1; ctx = bmap->ctx; isl_assert(ctx, room_for_con(bmap, 1), return -1); isl_assert(ctx, (bmap->eq - bmap->ineq) + bmap->n_eq <= bmap->c_size, return -1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); if ((bmap->eq - bmap->ineq) + bmap->n_eq == bmap->c_size) { isl_int *t; int j = isl_basic_map_alloc_inequality(bmap); if (j < 0) return -1; t = bmap->ineq[j]; bmap->ineq[j] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = bmap->eq[-1]; bmap->eq[-1] = t; bmap->n_eq++; bmap->n_ineq--; bmap->eq--; return 0; } isl_seq_clr(bmap->eq[bmap->n_eq] + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); return bmap->n_eq++; } int isl_basic_set_alloc_equality(struct isl_basic_set *bset) { return isl_basic_map_alloc_equality(bset_to_bmap(bset)); } int isl_basic_map_free_equality(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_eq, return -1); bmap->n_eq -= n; return 0; } int isl_basic_set_free_equality(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_equality(bset_to_bmap(bset), n); } int isl_basic_map_drop_equality(struct isl_basic_map *bmap, unsigned pos) { isl_int *t; if (!bmap) return -1; isl_assert(bmap->ctx, pos < bmap->n_eq, return -1); if (pos != bmap->n_eq - 1) { t = bmap->eq[pos]; bmap->eq[pos] = bmap->eq[bmap->n_eq - 1]; bmap->eq[bmap->n_eq - 1] = t; } bmap->n_eq--; return 0; } int isl_basic_set_drop_equality(struct isl_basic_set *bset, unsigned pos) { return isl_basic_map_drop_equality(bset_to_bmap(bset), pos); } /* Turn inequality "pos" of "bmap" into an equality. * * In particular, we move the inequality in front of the equalities * and move the last inequality in the position of the moved inequality. * Note that isl_tab_make_equalities_explicit depends on this particular * change in the ordering of the constraints. */ void isl_basic_map_inequality_to_equality( struct isl_basic_map *bmap, unsigned pos) { isl_int *t; t = bmap->ineq[pos]; bmap->ineq[pos] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = bmap->eq[-1]; bmap->eq[-1] = t; bmap->n_eq++; bmap->n_ineq--; bmap->eq--; ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); } static int room_for_ineq(struct isl_basic_map *bmap, unsigned n) { return bmap->n_ineq + n <= bmap->eq - bmap->ineq; } int isl_basic_map_alloc_inequality(struct isl_basic_map *bmap) { struct isl_ctx *ctx; if (!bmap) return -1; ctx = bmap->ctx; isl_assert(ctx, room_for_ineq(bmap, 1), return -1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); isl_seq_clr(bmap->ineq[bmap->n_ineq] + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); return bmap->n_ineq++; } int isl_basic_set_alloc_inequality(struct isl_basic_set *bset) { return isl_basic_map_alloc_inequality(bset_to_bmap(bset)); } int isl_basic_map_free_inequality(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_ineq, return -1); bmap->n_ineq -= n; return 0; } int isl_basic_set_free_inequality(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_inequality(bset_to_bmap(bset), n); } int isl_basic_map_drop_inequality(struct isl_basic_map *bmap, unsigned pos) { isl_int *t; if (!bmap) return -1; isl_assert(bmap->ctx, pos < bmap->n_ineq, return -1); if (pos != bmap->n_ineq - 1) { t = bmap->ineq[pos]; bmap->ineq[pos] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = t; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } bmap->n_ineq--; return 0; } int isl_basic_set_drop_inequality(struct isl_basic_set *bset, unsigned pos) { return isl_basic_map_drop_inequality(bset_to_bmap(bset), pos); } __isl_give isl_basic_map *isl_basic_map_add_eq(__isl_take isl_basic_map *bmap, isl_int *eq) { int k; bmap = isl_basic_map_extend_constraints(bmap, 1, 0); if (!bmap) return NULL; k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], eq, 1 + isl_basic_map_total_dim(bmap)); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_add_eq(__isl_take isl_basic_set *bset, isl_int *eq) { return bset_from_bmap(isl_basic_map_add_eq(bset_to_bmap(bset), eq)); } __isl_give isl_basic_map *isl_basic_map_add_ineq(__isl_take isl_basic_map *bmap, isl_int *ineq) { int k; bmap = isl_basic_map_extend_constraints(bmap, 0, 1); if (!bmap) return NULL; k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], ineq, 1 + isl_basic_map_total_dim(bmap)); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_add_ineq(__isl_take isl_basic_set *bset, isl_int *ineq) { return bset_from_bmap(isl_basic_map_add_ineq(bset_to_bmap(bset), ineq)); } int isl_basic_map_alloc_div(struct isl_basic_map *bmap) { if (!bmap) return -1; isl_assert(bmap->ctx, bmap->n_div < bmap->extra, return -1); isl_seq_clr(bmap->div[bmap->n_div] + 1 + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); return bmap->n_div++; } int isl_basic_set_alloc_div(struct isl_basic_set *bset) { return isl_basic_map_alloc_div(bset_to_bmap(bset)); } /* Insert an extra integer division, prescribed by "div", to "bmap" * at (integer division) position "pos". * * The integer division is first added at the end and then moved * into the right position. */ __isl_give isl_basic_map *isl_basic_map_insert_div( __isl_take isl_basic_map *bmap, int pos, __isl_keep isl_vec *div) { int i, k, n_div; bmap = isl_basic_map_cow(bmap); if (!bmap || !div) return isl_basic_map_free(bmap); if (div->size != 1 + 1 + isl_basic_map_dim(bmap, isl_dim_all)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "unexpected size", return isl_basic_map_free(bmap)); n_div = isl_basic_map_dim(bmap, isl_dim_div); if (pos < 0 || pos > n_div) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "invalid position", return isl_basic_map_free(bmap)); bmap = isl_basic_map_extend_space(bmap, isl_basic_map_get_space(bmap), 1, 0, 2); k = isl_basic_map_alloc_div(bmap); if (k < 0) return isl_basic_map_free(bmap); isl_seq_cpy(bmap->div[k], div->el, div->size); isl_int_set_si(bmap->div[k][div->size], 0); for (i = k; i > pos; --i) isl_basic_map_swap_div(bmap, i, i - 1); return bmap; } int isl_basic_map_free_div(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_div, return -1); bmap->n_div -= n; return 0; } int isl_basic_set_free_div(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_div(bset_to_bmap(bset), n); } /* Copy constraint from src to dst, putting the vars of src at offset * dim_off in dst and the divs of src at offset div_off in dst. * If both sets are actually map, then dim_off applies to the input * variables. */ static void copy_constraint(struct isl_basic_map *dst_map, isl_int *dst, struct isl_basic_map *src_map, isl_int *src, unsigned in_off, unsigned out_off, unsigned div_off) { unsigned src_nparam = isl_basic_map_n_param(src_map); unsigned dst_nparam = isl_basic_map_n_param(dst_map); unsigned src_in = isl_basic_map_n_in(src_map); unsigned dst_in = isl_basic_map_n_in(dst_map); unsigned src_out = isl_basic_map_n_out(src_map); unsigned dst_out = isl_basic_map_n_out(dst_map); isl_int_set(dst[0], src[0]); isl_seq_cpy(dst+1, src+1, isl_min(dst_nparam, src_nparam)); if (dst_nparam > src_nparam) isl_seq_clr(dst+1+src_nparam, dst_nparam - src_nparam); isl_seq_clr(dst+1+dst_nparam, in_off); isl_seq_cpy(dst+1+dst_nparam+in_off, src+1+src_nparam, isl_min(dst_in-in_off, src_in)); if (dst_in-in_off > src_in) isl_seq_clr(dst+1+dst_nparam+in_off+src_in, dst_in - in_off - src_in); isl_seq_clr(dst+1+dst_nparam+dst_in, out_off); isl_seq_cpy(dst+1+dst_nparam+dst_in+out_off, src+1+src_nparam+src_in, isl_min(dst_out-out_off, src_out)); if (dst_out-out_off > src_out) isl_seq_clr(dst+1+dst_nparam+dst_in+out_off+src_out, dst_out - out_off - src_out); isl_seq_clr(dst+1+dst_nparam+dst_in+dst_out, div_off); isl_seq_cpy(dst+1+dst_nparam+dst_in+dst_out+div_off, src+1+src_nparam+src_in+src_out, isl_min(dst_map->extra-div_off, src_map->n_div)); if (dst_map->n_div-div_off > src_map->n_div) isl_seq_clr(dst+1+dst_nparam+dst_in+dst_out+ div_off+src_map->n_div, dst_map->n_div - div_off - src_map->n_div); } static void copy_div(struct isl_basic_map *dst_map, isl_int *dst, struct isl_basic_map *src_map, isl_int *src, unsigned in_off, unsigned out_off, unsigned div_off) { isl_int_set(dst[0], src[0]); copy_constraint(dst_map, dst+1, src_map, src+1, in_off, out_off, div_off); } static struct isl_basic_map *add_constraints(struct isl_basic_map *bmap1, struct isl_basic_map *bmap2, unsigned i_pos, unsigned o_pos) { int i; unsigned div_off; if (!bmap1 || !bmap2) goto error; div_off = bmap1->n_div; for (i = 0; i < bmap2->n_eq; ++i) { int i1 = isl_basic_map_alloc_equality(bmap1); if (i1 < 0) goto error; copy_constraint(bmap1, bmap1->eq[i1], bmap2, bmap2->eq[i], i_pos, o_pos, div_off); } for (i = 0; i < bmap2->n_ineq; ++i) { int i1 = isl_basic_map_alloc_inequality(bmap1); if (i1 < 0) goto error; copy_constraint(bmap1, bmap1->ineq[i1], bmap2, bmap2->ineq[i], i_pos, o_pos, div_off); } for (i = 0; i < bmap2->n_div; ++i) { int i1 = isl_basic_map_alloc_div(bmap1); if (i1 < 0) goto error; copy_div(bmap1, bmap1->div[i1], bmap2, bmap2->div[i], i_pos, o_pos, div_off); } isl_basic_map_free(bmap2); return bmap1; error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_add_constraints(struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned pos) { return bset_from_bmap(add_constraints(bset_to_bmap(bset1), bset_to_bmap(bset2), 0, pos)); } struct isl_basic_map *isl_basic_map_extend_space(struct isl_basic_map *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *ext; unsigned flags; int dims_ok; if (!dim) goto error; if (!base) goto error; dims_ok = isl_space_is_equal(base->dim, dim) && base->extra >= base->n_div + extra; if (dims_ok && room_for_con(base, n_eq + n_ineq) && room_for_ineq(base, n_ineq)) { isl_space_free(dim); return base; } isl_assert(base->ctx, base->dim->nparam <= dim->nparam, goto error); isl_assert(base->ctx, base->dim->n_in <= dim->n_in, goto error); isl_assert(base->ctx, base->dim->n_out <= dim->n_out, goto error); extra += base->extra; n_eq += base->n_eq; n_ineq += base->n_ineq; ext = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); dim = NULL; if (!ext) goto error; if (dims_ok) ext->sample = isl_vec_copy(base->sample); flags = base->flags; ext = add_constraints(ext, base, 0, 0); if (ext) { ext->flags = flags; ISL_F_CLR(ext, ISL_BASIC_SET_FINAL); } return ext; error: isl_space_free(dim); isl_basic_map_free(base); return NULL; } struct isl_basic_set *isl_basic_set_extend_space(struct isl_basic_set *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { return bset_from_bmap(isl_basic_map_extend_space(bset_to_bmap(base), dim, extra, n_eq, n_ineq)); } struct isl_basic_map *isl_basic_map_extend_constraints( struct isl_basic_map *base, unsigned n_eq, unsigned n_ineq) { if (!base) return NULL; return isl_basic_map_extend_space(base, isl_space_copy(base->dim), 0, n_eq, n_ineq); } struct isl_basic_map *isl_basic_map_extend(struct isl_basic_map *base, unsigned nparam, unsigned n_in, unsigned n_out, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *dim; if (!base) return NULL; dim = isl_space_alloc(base->ctx, nparam, n_in, n_out); if (!dim) goto error; bmap = isl_basic_map_extend_space(base, dim, extra, n_eq, n_ineq); return bmap; error: isl_basic_map_free(base); return NULL; } struct isl_basic_set *isl_basic_set_extend(struct isl_basic_set *base, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { return bset_from_bmap(isl_basic_map_extend(bset_to_bmap(base), nparam, 0, dim, extra, n_eq, n_ineq)); } struct isl_basic_set *isl_basic_set_extend_constraints( struct isl_basic_set *base, unsigned n_eq, unsigned n_ineq) { isl_basic_map *bmap = bset_to_bmap(base); bmap = isl_basic_map_extend_constraints(bmap, n_eq, n_ineq); return bset_from_bmap(bmap); } struct isl_basic_set *isl_basic_set_cow(struct isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_cow(bset_to_bmap(bset))); } struct isl_basic_map *isl_basic_map_cow(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (bmap->ref > 1) { bmap->ref--; bmap = isl_basic_map_dup(bmap); } if (bmap) { ISL_F_CLR(bmap, ISL_BASIC_SET_FINAL); ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); } return bmap; } /* Clear all cached information in "map", either because it is about * to be modified or because it is being freed. * Always return the same pointer that is passed in. * This is needed for the use in isl_map_free. */ static __isl_give isl_map *clear_caches(__isl_take isl_map *map) { isl_basic_map_free(map->cached_simple_hull[0]); isl_basic_map_free(map->cached_simple_hull[1]); map->cached_simple_hull[0] = NULL; map->cached_simple_hull[1] = NULL; return map; } struct isl_set *isl_set_cow(struct isl_set *set) { return isl_map_cow(set); } /* Return an isl_map that is equal to "map" and that has only * a single reference. * * If the original input already has only one reference, then * simply return it, but clear all cached information, since * it may be rendered invalid by the operations that will be * performed on the result. * * Otherwise, create a duplicate (without any cached information). */ struct isl_map *isl_map_cow(struct isl_map *map) { if (!map) return NULL; if (map->ref == 1) return clear_caches(map); map->ref--; return isl_map_dup(map); } static void swap_vars(struct isl_blk blk, isl_int *a, unsigned a_len, unsigned b_len) { isl_seq_cpy(blk.data, a+a_len, b_len); isl_seq_cpy(blk.data+b_len, a, a_len); isl_seq_cpy(a, blk.data, b_len+a_len); } static __isl_give isl_basic_map *isl_basic_map_swap_vars( __isl_take isl_basic_map *bmap, unsigned pos, unsigned n1, unsigned n2) { int i; struct isl_blk blk; if (!bmap) goto error; isl_assert(bmap->ctx, pos + n1 + n2 <= 1 + isl_basic_map_total_dim(bmap), goto error); if (n1 == 0 || n2 == 0) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; blk = isl_blk_alloc(bmap->ctx, n1 + n2); if (isl_blk_is_error(blk)) goto error; for (i = 0; i < bmap->n_eq; ++i) swap_vars(blk, bmap->eq[i] + pos, n1, n2); for (i = 0; i < bmap->n_ineq; ++i) swap_vars(blk, bmap->ineq[i] + pos, n1, n2); for (i = 0; i < bmap->n_div; ++i) swap_vars(blk, bmap->div[i]+1 + pos, n1, n2); isl_blk_free(bmap->ctx, blk); ISL_F_CLR(bmap, ISL_BASIC_SET_NORMALIZED); bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_set_to_empty(struct isl_basic_map *bmap) { int i = 0; unsigned total; if (!bmap) goto error; total = isl_basic_map_total_dim(bmap); isl_basic_map_free_div(bmap, bmap->n_div); isl_basic_map_free_inequality(bmap, bmap->n_ineq); if (bmap->n_eq > 0) isl_basic_map_free_equality(bmap, bmap->n_eq-1); else { i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; } isl_int_set_si(bmap->eq[i][0], 1); isl_seq_clr(bmap->eq[i]+1, total); ISL_F_SET(bmap, ISL_BASIC_MAP_EMPTY); isl_vec_free(bmap->sample); bmap->sample = NULL; return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_set_to_empty(struct isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_set_to_empty(bset_to_bmap(bset))); } /* Swap divs "a" and "b" in "bmap" (without modifying any of the constraints * of "bmap"). */ static void swap_div(__isl_keep isl_basic_map *bmap, int a, int b) { isl_int *t = bmap->div[a]; bmap->div[a] = bmap->div[b]; bmap->div[b] = t; } /* Swap divs "a" and "b" in "bmap" and adjust the constraints and * div definitions accordingly. */ void isl_basic_map_swap_div(struct isl_basic_map *bmap, int a, int b) { int i; unsigned off = isl_space_dim(bmap->dim, isl_dim_all); swap_div(bmap, a, b); for (i = 0; i < bmap->n_eq; ++i) isl_int_swap(bmap->eq[i][1+off+a], bmap->eq[i][1+off+b]); for (i = 0; i < bmap->n_ineq; ++i) isl_int_swap(bmap->ineq[i][1+off+a], bmap->ineq[i][1+off+b]); for (i = 0; i < bmap->n_div; ++i) isl_int_swap(bmap->div[i][1+1+off+a], bmap->div[i][1+1+off+b]); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } /* Swap divs "a" and "b" in "bset" and adjust the constraints and * div definitions accordingly. */ void isl_basic_set_swap_div(__isl_keep isl_basic_set *bset, int a, int b) { isl_basic_map_swap_div(bset, a, b); } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_map *isl_map_eliminate(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map; if (first + n > isl_map_dim(map, type) || first + n < first) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_eliminate(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_set *isl_set_eliminate(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return set_from_map(isl_map_eliminate(set_to_map(set), type, first, n)); } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_set *isl_set_eliminate_dims(__isl_take isl_set *set, unsigned first, unsigned n) { return isl_set_eliminate(set, isl_dim_set, first, n); } __isl_give isl_basic_map *isl_basic_map_remove_divs( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; bmap = isl_basic_map_eliminate_vars(bmap, isl_space_dim(bmap->dim, isl_dim_all), bmap->n_div); if (!bmap) return NULL; bmap->n_div = 0; return isl_basic_map_finalize(bmap); } __isl_give isl_basic_set *isl_basic_set_remove_divs( __isl_take isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_remove_divs(bset_to_bmap(bset))); } __isl_give isl_map *isl_map_remove_divs(__isl_take isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_divs(__isl_take isl_set *set) { return isl_map_remove_divs(set); } struct isl_basic_map *isl_basic_map_remove_dims(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { if (!bmap) return NULL; isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type)) return bmap; bmap = isl_basic_map_eliminate_vars(bmap, isl_basic_map_offset(bmap, type) - 1 + first, n); if (!bmap) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY) && type == isl_dim_div) return bmap; bmap = isl_basic_map_drop(bmap, type, first, n); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Return true if the definition of the given div (recursively) involves * any of the given variables. */ static int div_involves_vars(__isl_keep isl_basic_map *bmap, int div, unsigned first, unsigned n) { int i; unsigned div_offset = isl_basic_map_offset(bmap, isl_dim_div); if (isl_int_is_zero(bmap->div[div][0])) return 0; if (isl_seq_first_non_zero(bmap->div[div] + 1 + first, n) >= 0) return 1; for (i = bmap->n_div - 1; i >= 0; --i) { if (isl_int_is_zero(bmap->div[div][1 + div_offset + i])) continue; if (div_involves_vars(bmap, i, first, n)) return 1; } return 0; } /* Try and add a lower and/or upper bound on "div" to "bmap" * based on inequality "i". * "total" is the total number of variables (excluding the divs). * "v" is a temporary object that can be used during the calculations. * If "lb" is set, then a lower bound should be constructed. * If "ub" is set, then an upper bound should be constructed. * * The calling function has already checked that the inequality does not * reference "div", but we still need to check that the inequality is * of the right form. We'll consider the case where we want to construct * a lower bound. The construction of upper bounds is similar. * * Let "div" be of the form * * q = floor((a + f(x))/d) * * We essentially check if constraint "i" is of the form * * b + f(x) >= 0 * * so that we can use it to derive a lower bound on "div". * However, we allow a slightly more general form * * b + g(x) >= 0 * * with the condition that the coefficients of g(x) - f(x) are all * divisible by d. * Rewriting this constraint as * * 0 >= -b - g(x) * * adding a + f(x) to both sides and dividing by d, we obtain * * (a + f(x))/d >= (a-b)/d + (f(x)-g(x))/d * * Taking the floor on both sides, we obtain * * q >= floor((a-b)/d) + (f(x)-g(x))/d * * or * * (g(x)-f(x))/d + ceil((b-a)/d) + q >= 0 * * In the case of an upper bound, we construct the constraint * * (g(x)+f(x))/d + floor((b+a)/d) - q >= 0 * */ static __isl_give isl_basic_map *insert_bounds_on_div_from_ineq( __isl_take isl_basic_map *bmap, int div, int i, unsigned total, isl_int v, int lb, int ub) { int j; for (j = 0; (lb || ub) && j < total + bmap->n_div; ++j) { if (lb) { isl_int_sub(v, bmap->ineq[i][1 + j], bmap->div[div][1 + 1 + j]); lb = isl_int_is_divisible_by(v, bmap->div[div][0]); } if (ub) { isl_int_add(v, bmap->ineq[i][1 + j], bmap->div[div][1 + 1 + j]); ub = isl_int_is_divisible_by(v, bmap->div[div][0]); } } if (!lb && !ub) return bmap; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, lb + ub); if (lb) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; for (j = 0; j < 1 + total + bmap->n_div; ++j) { isl_int_sub(bmap->ineq[k][j], bmap->ineq[i][j], bmap->div[div][1 + j]); isl_int_cdiv_q(bmap->ineq[k][j], bmap->ineq[k][j], bmap->div[div][0]); } isl_int_set_si(bmap->ineq[k][1 + total + div], 1); } if (ub) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; for (j = 0; j < 1 + total + bmap->n_div; ++j) { isl_int_add(bmap->ineq[k][j], bmap->ineq[i][j], bmap->div[div][1 + j]); isl_int_fdiv_q(bmap->ineq[k][j], bmap->ineq[k][j], bmap->div[div][0]); } isl_int_set_si(bmap->ineq[k][1 + total + div], -1); } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* This function is called right before "div" is eliminated from "bmap" * using Fourier-Motzkin. * Look through the constraints of "bmap" for constraints on the argument * of the integer division and use them to construct constraints on the * integer division itself. These constraints can then be combined * during the Fourier-Motzkin elimination. * Note that it is only useful to introduce lower bounds on "div" * if "bmap" already contains upper bounds on "div" as the newly * introduce lower bounds can then be combined with the pre-existing * upper bounds. Similarly for upper bounds. * We therefore first check if "bmap" contains any lower and/or upper bounds * on "div". * * It is interesting to note that the introduction of these constraints * can indeed lead to more accurate results, even when compared to * deriving constraints on the argument of "div" from constraints on "div". * Consider, for example, the set * * { [i,j,k] : 3 + i + 2j >= 0 and 2 * [(i+2j)/4] <= k } * * The second constraint can be rewritten as * * 2 * [(-i-2j+3)/4] + k >= 0 * * from which we can derive * * -i - 2j + 3 >= -2k * * or * * i + 2j <= 3 + 2k * * Combined with the first constraint, we obtain * * -3 <= 3 + 2k or k >= -3 * * If, on the other hand we derive a constraint on [(i+2j)/4] from * the first constraint, we obtain * * [(i + 2j)/4] >= [-3/4] = -1 * * Combining this constraint with the second constraint, we obtain * * k >= -2 */ static __isl_give isl_basic_map *insert_bounds_on_div( __isl_take isl_basic_map *bmap, int div) { int i; int check_lb, check_ub; isl_int v; unsigned total; if (!bmap) return NULL; if (isl_int_is_zero(bmap->div[div][0])) return bmap; total = isl_space_dim(bmap->dim, isl_dim_all); check_lb = 0; check_ub = 0; for (i = 0; (!check_lb || !check_ub) && i < bmap->n_ineq; ++i) { int s = isl_int_sgn(bmap->ineq[i][1 + total + div]); if (s > 0) check_ub = 1; if (s < 0) check_lb = 1; } if (!check_lb && !check_ub) return bmap; isl_int_init(v); for (i = 0; bmap && i < bmap->n_ineq; ++i) { if (!isl_int_is_zero(bmap->ineq[i][1 + total + div])) continue; bmap = insert_bounds_on_div_from_ineq(bmap, div, i, total, v, check_lb, check_ub); } isl_int_clear(v); return bmap; } /* Remove all divs (recursively) involving any of the given dimensions * in their definitions. */ __isl_give isl_basic_map *isl_basic_map_remove_divs_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!bmap) return NULL; isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); first += isl_basic_map_offset(bmap, type); for (i = bmap->n_div - 1; i >= 0; --i) { if (!div_involves_vars(bmap, i, first, n)) continue; bmap = insert_bounds_on_div(bmap, i); bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, i, 1); if (!bmap) return NULL; i = bmap->n_div; } return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_remove_divs_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_remove_divs_involving_dims(bset, type, first, n); } __isl_give isl_map *isl_map_remove_divs_involving_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_divs_involving_dims(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_divs_involving_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return set_from_map(isl_map_remove_divs_involving_dims(set_to_map(set), type, first, n)); } /* Does the description of "bmap" depend on the specified dimensions? * We also check whether the dimensions appear in any of the div definitions. * In principle there is no need for this check. If the dimensions appear * in a div definition, they also appear in the defining constraints of that * div. */ isl_bool isl_basic_map_involves_dims(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!bmap) return isl_bool_error; if (first + n > isl_basic_map_dim(bmap, type)) isl_die(bmap->ctx, isl_error_invalid, "index out of bounds", return isl_bool_error); first += isl_basic_map_offset(bmap, type); for (i = 0; i < bmap->n_eq; ++i) if (isl_seq_first_non_zero(bmap->eq[i] + first, n) >= 0) return isl_bool_true; for (i = 0; i < bmap->n_ineq; ++i) if (isl_seq_first_non_zero(bmap->ineq[i] + first, n) >= 0) return isl_bool_true; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_seq_first_non_zero(bmap->div[i] + 1 + first, n) >= 0) return isl_bool_true; } return isl_bool_false; } isl_bool isl_map_involves_dims(__isl_keep isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return isl_bool_error; if (first + n > isl_map_dim(map, type)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", return isl_bool_error); for (i = 0; i < map->n; ++i) { isl_bool involves = isl_basic_map_involves_dims(map->p[i], type, first, n); if (involves < 0 || involves) return involves; } return isl_bool_false; } isl_bool isl_basic_set_involves_dims(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_involves_dims(bset, type, first, n); } isl_bool isl_set_involves_dims(__isl_keep isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return isl_map_involves_dims(set, type, first, n); } /* Does local variable "div" of "bmap" have a complete explicit representation? * Having a complete explicit representation requires not only * an explicit representation, but also that all local variables * that appear in this explicit representation in turn have * a complete explicit representation. */ isl_bool isl_basic_map_div_is_known(__isl_keep isl_basic_map *bmap, int div) { int i; unsigned div_offset = isl_basic_map_offset(bmap, isl_dim_div); isl_bool marked; marked = isl_basic_map_div_is_marked_unknown(bmap, div); if (marked < 0 || marked) return isl_bool_not(marked); for (i = bmap->n_div - 1; i >= 0; --i) { isl_bool known; if (isl_int_is_zero(bmap->div[div][1 + div_offset + i])) continue; known = isl_basic_map_div_is_known(bmap, i); if (known < 0 || !known) return known; } return isl_bool_true; } /* Does local variable "div" of "bset" have a complete explicit representation? */ isl_bool isl_basic_set_div_is_known(__isl_keep isl_basic_set *bset, int div) { return isl_basic_map_div_is_known(bset, div); } /* Remove all divs that are unknown or defined in terms of unknown divs. */ __isl_give isl_basic_map *isl_basic_map_remove_unknown_divs( __isl_take isl_basic_map *bmap) { int i; if (!bmap) return NULL; for (i = bmap->n_div - 1; i >= 0; --i) { if (isl_basic_map_div_is_known(bmap, i)) continue; bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, i, 1); if (!bmap) return NULL; i = bmap->n_div; } return bmap; } /* Remove all divs that are unknown or defined in terms of unknown divs. */ __isl_give isl_basic_set *isl_basic_set_remove_unknown_divs( __isl_take isl_basic_set *bset) { return isl_basic_map_remove_unknown_divs(bset); } __isl_give isl_map *isl_map_remove_unknown_divs(__isl_take isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_unknown_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_unknown_divs(__isl_take isl_set *set) { return set_from_map(isl_map_remove_unknown_divs(set_to_map(set))); } __isl_give isl_basic_set *isl_basic_set_remove_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { isl_basic_map *bmap = bset_to_bmap(bset); bmap = isl_basic_map_remove_dims(bmap, type, first, n); return bset_from_bmap(bmap); } struct isl_map *isl_map_remove_dims(struct isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_eliminate_vars(map->p[i], isl_basic_map_offset(map->p[i], type) - 1 + first, n); if (!map->p[i]) goto error; } map = isl_map_drop(map, type, first, n); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_dims(__isl_take isl_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return set_from_map(isl_map_remove_dims(set_to_map(bset), type, first, n)); } /* Project out n inputs starting at first using Fourier-Motzkin */ struct isl_map *isl_map_remove_inputs(struct isl_map *map, unsigned first, unsigned n) { return isl_map_remove_dims(map, isl_dim_in, first, n); } static void dump_term(struct isl_basic_map *bmap, isl_int c, int pos, FILE *out) { const char *name; unsigned in = isl_basic_map_n_in(bmap); unsigned dim = in + isl_basic_map_n_out(bmap); unsigned nparam = isl_basic_map_n_param(bmap); if (!pos) isl_int_print(out, c, 0); else { if (!isl_int_is_one(c)) isl_int_print(out, c, 0); if (pos < 1 + nparam) { name = isl_space_get_dim_name(bmap->dim, isl_dim_param, pos - 1); if (name) fprintf(out, "%s", name); else fprintf(out, "p%d", pos - 1); } else if (pos < 1 + nparam + in) fprintf(out, "i%d", pos - 1 - nparam); else if (pos < 1 + nparam + dim) fprintf(out, "o%d", pos - 1 - nparam - in); else fprintf(out, "e%d", pos - 1 - nparam - dim); } } static void dump_constraint_sign(struct isl_basic_map *bmap, isl_int *c, int sign, FILE *out) { int i; int first; unsigned len = 1 + isl_basic_map_total_dim(bmap); isl_int v; isl_int_init(v); for (i = 0, first = 1; i < len; ++i) { if (isl_int_sgn(c[i]) * sign <= 0) continue; if (!first) fprintf(out, " + "); first = 0; isl_int_abs(v, c[i]); dump_term(bmap, v, i, out); } isl_int_clear(v); if (first) fprintf(out, "0"); } static void dump_constraint(struct isl_basic_map *bmap, isl_int *c, const char *op, FILE *out, int indent) { int i; fprintf(out, "%*s", indent, ""); dump_constraint_sign(bmap, c, 1, out); fprintf(out, " %s ", op); dump_constraint_sign(bmap, c, -1, out); fprintf(out, "\n"); for (i = bmap->n_div; i < bmap->extra; ++i) { if (isl_int_is_zero(c[1+isl_space_dim(bmap->dim, isl_dim_all)+i])) continue; fprintf(out, "%*s", indent, ""); fprintf(out, "ERROR: unused div coefficient not zero\n"); abort(); } } static void dump_constraints(struct isl_basic_map *bmap, isl_int **c, unsigned n, const char *op, FILE *out, int indent) { int i; for (i = 0; i < n; ++i) dump_constraint(bmap, c[i], op, out, indent); } static void dump_affine(struct isl_basic_map *bmap, isl_int *exp, FILE *out) { int j; int first = 1; unsigned total = isl_basic_map_total_dim(bmap); for (j = 0; j < 1 + total; ++j) { if (isl_int_is_zero(exp[j])) continue; if (!first && isl_int_is_pos(exp[j])) fprintf(out, "+"); dump_term(bmap, exp[j], j, out); first = 0; } } static void dump(struct isl_basic_map *bmap, FILE *out, int indent) { int i; dump_constraints(bmap, bmap->eq, bmap->n_eq, "=", out, indent); dump_constraints(bmap, bmap->ineq, bmap->n_ineq, ">=", out, indent); for (i = 0; i < bmap->n_div; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "e%d = [(", i); dump_affine(bmap, bmap->div[i]+1, out); fprintf(out, ")/"); isl_int_print(out, bmap->div[i][0], 0); fprintf(out, "]\n"); } } void isl_basic_set_print_internal(struct isl_basic_set *bset, FILE *out, int indent) { if (!bset) { fprintf(out, "null basic set\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, nparam: %d, dim: %d, extra: %d, flags: %x\n", bset->ref, bset->dim->nparam, bset->dim->n_out, bset->extra, bset->flags); dump(bset_to_bmap(bset), out, indent); } void isl_basic_map_print_internal(struct isl_basic_map *bmap, FILE *out, int indent) { if (!bmap) { fprintf(out, "null basic map\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, nparam: %d, in: %d, out: %d, extra: %d, " "flags: %x, n_name: %d\n", bmap->ref, bmap->dim->nparam, bmap->dim->n_in, bmap->dim->n_out, bmap->extra, bmap->flags, bmap->dim->n_id); dump(bmap, out, indent); } int isl_inequality_negate(struct isl_basic_map *bmap, unsigned pos) { unsigned total; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); isl_assert(bmap->ctx, pos < bmap->n_ineq, return -1); isl_seq_neg(bmap->ineq[pos], bmap->ineq[pos], 1 + total); isl_int_sub_ui(bmap->ineq[pos][0], bmap->ineq[pos][0], 1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); return 0; } __isl_give isl_set *isl_set_alloc_space(__isl_take isl_space *space, int n, unsigned flags) { if (!space) return NULL; if (isl_space_dim(space, isl_dim_in) != 0) isl_die(isl_space_get_ctx(space), isl_error_invalid, "set cannot have input dimensions", goto error); return isl_map_alloc_space(space, n, flags); error: isl_space_free(space); return NULL; } struct isl_set *isl_set_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned dim, int n, unsigned flags) { struct isl_set *set; isl_space *dims; dims = isl_space_alloc(ctx, nparam, 0, dim); if (!dims) return NULL; set = isl_set_alloc_space(dims, n, flags); return set; } /* Make sure "map" has room for at least "n" more basic maps. */ struct isl_map *isl_map_grow(struct isl_map *map, int n) { int i; struct isl_map *grown = NULL; if (!map) return NULL; isl_assert(map->ctx, n >= 0, goto error); if (map->n + n <= map->size) return map; grown = isl_map_alloc_space(isl_map_get_space(map), map->n + n, map->flags); if (!grown) goto error; for (i = 0; i < map->n; ++i) { grown->p[i] = isl_basic_map_copy(map->p[i]); if (!grown->p[i]) goto error; grown->n++; } isl_map_free(map); return grown; error: isl_map_free(grown); isl_map_free(map); return NULL; } /* Make sure "set" has room for at least "n" more basic sets. */ struct isl_set *isl_set_grow(struct isl_set *set, int n) { return set_from_map(isl_map_grow(set_to_map(set), n)); } struct isl_set *isl_set_dup(struct isl_set *set) { int i; struct isl_set *dup; if (!set) return NULL; dup = isl_set_alloc_space(isl_space_copy(set->dim), set->n, set->flags); if (!dup) return NULL; for (i = 0; i < set->n; ++i) dup = isl_set_add_basic_set(dup, isl_basic_set_copy(set->p[i])); return dup; } struct isl_set *isl_set_from_basic_set(struct isl_basic_set *bset) { return isl_map_from_basic_map(bset); } struct isl_map *isl_map_from_basic_map(struct isl_basic_map *bmap) { struct isl_map *map; if (!bmap) return NULL; map = isl_map_alloc_space(isl_space_copy(bmap->dim), 1, ISL_MAP_DISJOINT); return isl_map_add_basic_map(map, bmap); } __isl_give isl_set *isl_set_add_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *bset) { return set_from_map(isl_map_add_basic_map(set_to_map(set), bset_to_bmap(bset))); } __isl_null isl_set *isl_set_free(__isl_take isl_set *set) { return isl_map_free(set); } void isl_set_print_internal(struct isl_set *set, FILE *out, int indent) { int i; if (!set) { fprintf(out, "null set\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, n: %d, nparam: %d, dim: %d, flags: %x\n", set->ref, set->n, set->dim->nparam, set->dim->n_out, set->flags); for (i = 0; i < set->n; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "basic set %d:\n", i); isl_basic_set_print_internal(set->p[i], out, indent+4); } } void isl_map_print_internal(struct isl_map *map, FILE *out, int indent) { int i; if (!map) { fprintf(out, "null map\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, n: %d, nparam: %d, in: %d, out: %d, " "flags: %x, n_name: %d\n", map->ref, map->n, map->dim->nparam, map->dim->n_in, map->dim->n_out, map->flags, map->dim->n_id); for (i = 0; i < map->n; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "basic map %d:\n", i); isl_basic_map_print_internal(map->p[i], out, indent+4); } } struct isl_basic_map *isl_basic_map_intersect_domain( struct isl_basic_map *bmap, struct isl_basic_set *bset) { struct isl_basic_map *bmap_domain; if (!bmap || !bset) goto error; isl_assert(bset->ctx, isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param), goto error); if (isl_space_dim(bset->dim, isl_dim_set) != 0) isl_assert(bset->ctx, isl_basic_map_compatible_domain(bmap, bset), goto error); bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), bset->n_div, bset->n_eq, bset->n_ineq); bmap_domain = isl_basic_map_from_domain(bset); bmap = add_constraints(bmap, bmap_domain, 0, 0); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_set_free(bset); return NULL; } struct isl_basic_map *isl_basic_map_intersect_range( struct isl_basic_map *bmap, struct isl_basic_set *bset) { struct isl_basic_map *bmap_range; if (!bmap || !bset) goto error; isl_assert(bset->ctx, isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param), goto error); if (isl_space_dim(bset->dim, isl_dim_set) != 0) isl_assert(bset->ctx, isl_basic_map_compatible_range(bmap, bset), goto error); if (isl_basic_set_plain_is_universe(bset)) { isl_basic_set_free(bset); return bmap; } bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), bset->n_div, bset->n_eq, bset->n_ineq); bmap_range = bset_to_bmap(bset); bmap = add_constraints(bmap, bmap_range, 0, 0); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_set_free(bset); return NULL; } isl_bool isl_basic_map_contains(__isl_keep isl_basic_map *bmap, __isl_keep isl_vec *vec) { int i; unsigned total; isl_int s; if (!bmap || !vec) return isl_bool_error; total = 1 + isl_basic_map_total_dim(bmap); if (total != vec->size) return isl_bool_error; isl_int_init(s); for (i = 0; i < bmap->n_eq; ++i) { isl_seq_inner_product(vec->el, bmap->eq[i], total, &s); if (!isl_int_is_zero(s)) { isl_int_clear(s); return isl_bool_false; } } for (i = 0; i < bmap->n_ineq; ++i) { isl_seq_inner_product(vec->el, bmap->ineq[i], total, &s); if (isl_int_is_neg(s)) { isl_int_clear(s); return isl_bool_false; } } isl_int_clear(s); return isl_bool_true; } isl_bool isl_basic_set_contains(__isl_keep isl_basic_set *bset, __isl_keep isl_vec *vec) { return isl_basic_map_contains(bset_to_bmap(bset), vec); } struct isl_basic_map *isl_basic_map_intersect( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { struct isl_vec *sample = NULL; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param), goto error); if (isl_space_dim(bmap1->dim, isl_dim_all) == isl_space_dim(bmap1->dim, isl_dim_param) && isl_space_dim(bmap2->dim, isl_dim_all) != isl_space_dim(bmap2->dim, isl_dim_param)) return isl_basic_map_intersect(bmap2, bmap1); if (isl_space_dim(bmap2->dim, isl_dim_all) != isl_space_dim(bmap2->dim, isl_dim_param)) isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); if (isl_basic_map_plain_is_empty(bmap1)) { isl_basic_map_free(bmap2); return bmap1; } if (isl_basic_map_plain_is_empty(bmap2)) { isl_basic_map_free(bmap1); return bmap2; } if (bmap1->sample && isl_basic_map_contains(bmap1, bmap1->sample) > 0 && isl_basic_map_contains(bmap2, bmap1->sample) > 0) sample = isl_vec_copy(bmap1->sample); else if (bmap2->sample && isl_basic_map_contains(bmap1, bmap2->sample) > 0 && isl_basic_map_contains(bmap2, bmap2->sample) > 0) sample = isl_vec_copy(bmap2->sample); bmap1 = isl_basic_map_cow(bmap1); if (!bmap1) goto error; bmap1 = isl_basic_map_extend_space(bmap1, isl_space_copy(bmap1->dim), bmap2->n_div, bmap2->n_eq, bmap2->n_ineq); bmap1 = add_constraints(bmap1, bmap2, 0, 0); if (!bmap1) isl_vec_free(sample); else if (sample) { isl_vec_free(bmap1->sample); bmap1->sample = sample; } bmap1 = isl_basic_map_simplify(bmap1); return isl_basic_map_finalize(bmap1); error: if (sample) isl_vec_free(sample); isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_intersect( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { return bset_from_bmap(isl_basic_map_intersect(bset_to_bmap(bset1), bset_to_bmap(bset2))); } __isl_give isl_basic_set *isl_basic_set_intersect_params( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) { return isl_basic_set_intersect(bset1, bset2); } /* Special case of isl_map_intersect, where both map1 and map2 * are convex, without any divs and such that either map1 or map2 * contains a single constraint. This constraint is then simply * added to the other map. */ static __isl_give isl_map *map_intersect_add_constraint( __isl_take isl_map *map1, __isl_take isl_map *map2) { isl_assert(map1->ctx, map1->n == 1, goto error); isl_assert(map2->ctx, map1->n == 1, goto error); isl_assert(map1->ctx, map1->p[0]->n_div == 0, goto error); isl_assert(map2->ctx, map1->p[0]->n_div == 0, goto error); if (map2->p[0]->n_eq + map2->p[0]->n_ineq != 1) return isl_map_intersect(map2, map1); isl_assert(map2->ctx, map2->p[0]->n_eq + map2->p[0]->n_ineq == 1, goto error); map1 = isl_map_cow(map1); if (!map1) goto error; if (isl_map_plain_is_empty(map1)) { isl_map_free(map2); return map1; } map1->p[0] = isl_basic_map_cow(map1->p[0]); if (map2->p[0]->n_eq == 1) map1->p[0] = isl_basic_map_add_eq(map1->p[0], map2->p[0]->eq[0]); else map1->p[0] = isl_basic_map_add_ineq(map1->p[0], map2->p[0]->ineq[0]); map1->p[0] = isl_basic_map_simplify(map1->p[0]); map1->p[0] = isl_basic_map_finalize(map1->p[0]); if (!map1->p[0]) goto error; if (isl_basic_map_plain_is_empty(map1->p[0])) { isl_basic_map_free(map1->p[0]); map1->n = 0; } isl_map_free(map2); return map1; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* map2 may be either a parameter domain or a map living in the same * space as map1. */ static __isl_give isl_map *map_intersect_internal(__isl_take isl_map *map1, __isl_take isl_map *map2) { unsigned flags = 0; isl_map *result; int i, j; if (!map1 || !map2) goto error; if ((isl_map_plain_is_empty(map1) || isl_map_plain_is_universe(map2)) && isl_space_is_equal(map1->dim, map2->dim)) { isl_map_free(map2); return map1; } if ((isl_map_plain_is_empty(map2) || isl_map_plain_is_universe(map1)) && isl_space_is_equal(map1->dim, map2->dim)) { isl_map_free(map1); return map2; } if (map1->n == 1 && map2->n == 1 && map1->p[0]->n_div == 0 && map2->p[0]->n_div == 0 && isl_space_is_equal(map1->dim, map2->dim) && (map1->p[0]->n_eq + map1->p[0]->n_ineq == 1 || map2->p[0]->n_eq + map2->p[0]->n_ineq == 1)) return map_intersect_add_constraint(map1, map2); if (isl_space_dim(map2->dim, isl_dim_all) != isl_space_dim(map2->dim, isl_dim_param)) isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n * map2->n, flags); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = isl_basic_map_intersect( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part) < 0) part = isl_basic_map_free(part); result = isl_map_add_basic_map(result, part); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } static __isl_give isl_map *map_intersect(__isl_take isl_map *map1, __isl_take isl_map *map2) { if (!map1 || !map2) goto error; if (!isl_space_is_equal(map1->dim, map2->dim)) isl_die(isl_map_get_ctx(map1), isl_error_invalid, "spaces don't match", goto error); return map_intersect_internal(map1, map2); error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_intersect(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_intersect); } struct isl_set *isl_set_intersect(struct isl_set *set1, struct isl_set *set2) { return set_from_map(isl_map_intersect(set_to_map(set1), set_to_map(set2))); } /* map_intersect_internal accepts intersections * with parameter domains, so we can just call that function. */ static __isl_give isl_map *map_intersect_params(__isl_take isl_map *map, __isl_take isl_set *params) { return map_intersect_internal(map, params); } __isl_give isl_map *isl_map_intersect_params(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_intersect_params); } __isl_give isl_set *isl_set_intersect_params(__isl_take isl_set *set, __isl_take isl_set *params) { return isl_map_intersect_params(set, params); } struct isl_basic_map *isl_basic_map_reverse(struct isl_basic_map *bmap) { isl_space *space; unsigned pos, n1, n2; if (!bmap) return NULL; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; space = isl_space_reverse(isl_space_copy(bmap->dim)); pos = isl_basic_map_offset(bmap, isl_dim_in); n1 = isl_basic_map_dim(bmap, isl_dim_in); n2 = isl_basic_map_dim(bmap, isl_dim_out); bmap = isl_basic_map_swap_vars(bmap, pos, n1, n2); return isl_basic_map_reset_space(bmap, space); } static __isl_give isl_basic_map *basic_map_space_reset( __isl_take isl_basic_map *bmap, enum isl_dim_type type) { isl_space *space; if (!bmap) return NULL; if (!isl_space_is_named_or_nested(bmap->dim, type)) return bmap; space = isl_basic_map_get_space(bmap); space = isl_space_reset(space, type); bmap = isl_basic_map_reset_space(bmap, space); return bmap; } __isl_give isl_basic_map *isl_basic_map_insert_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, unsigned n) { isl_space *res_dim; struct isl_basic_map *res; struct isl_dim_map *dim_map; unsigned total, off; enum isl_dim_type t; if (n == 0) return basic_map_space_reset(bmap, type); if (!bmap) return NULL; res_dim = isl_space_insert_dims(isl_basic_map_get_space(bmap), type, pos, n); total = isl_basic_map_total_dim(bmap) + n; dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { if (t != type) { isl_dim_map_dim(dim_map, bmap->dim, t, off); } else { unsigned size = isl_basic_map_dim(bmap, t); isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, pos, off); isl_dim_map_dim_range(dim_map, bmap->dim, t, pos, size - pos, off + pos + n); } off += isl_space_dim(res_dim, t); } isl_dim_map_div(dim_map, bmap, off); res = isl_basic_map_alloc_space(res_dim, bmap->n_div, bmap->n_eq, bmap->n_ineq); if (isl_basic_map_is_rational(bmap)) res = isl_basic_map_set_rational(res); if (isl_basic_map_plain_is_empty(bmap)) { isl_basic_map_free(bmap); free(dim_map); return isl_basic_map_set_to_empty(res); } res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); return isl_basic_map_finalize(res); } __isl_give isl_basic_set *isl_basic_set_insert_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n) { return isl_basic_map_insert_dims(bset, type, pos, n); } __isl_give isl_basic_map *isl_basic_map_add_dims(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned n) { if (!bmap) return NULL; return isl_basic_map_insert_dims(bmap, type, isl_basic_map_dim(bmap, type), n); } __isl_give isl_basic_set *isl_basic_set_add_dims(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n) { if (!bset) return NULL; isl_assert(bset->ctx, type != isl_dim_in, goto error); return isl_basic_map_add_dims(bset, type, n); error: isl_basic_set_free(bset); return NULL; } static __isl_give isl_map *map_space_reset(__isl_take isl_map *map, enum isl_dim_type type) { isl_space *space; if (!map || !isl_space_is_named_or_nested(map->dim, type)) return map; space = isl_map_get_space(map); space = isl_space_reset(space, type); map = isl_map_reset_space(map, space); return map; } __isl_give isl_map *isl_map_insert_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, unsigned n) { int i; if (n == 0) return map_space_reset(map, type); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_insert_dims(map->dim, type, pos, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_insert_dims(map->p[i], type, pos, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_insert_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, unsigned n) { return isl_map_insert_dims(set, type, pos, n); } __isl_give isl_map *isl_map_add_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned n) { if (!map) return NULL; return isl_map_insert_dims(map, type, isl_map_dim(map, type), n); } __isl_give isl_set *isl_set_add_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned n) { if (!set) return NULL; isl_assert(set->ctx, type != isl_dim_in, goto error); return set_from_map(isl_map_add_dims(set_to_map(set), type, n)); error: isl_set_free(set); return NULL; } __isl_give isl_basic_map *isl_basic_map_move_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { struct isl_dim_map *dim_map; struct isl_basic_map *res; enum isl_dim_type t; unsigned total, off; if (!bmap) return NULL; if (n == 0) return bmap; isl_assert(bmap->ctx, src_pos + n <= isl_basic_map_dim(bmap, src_type), goto error); if (dst_type == src_type && dst_pos == src_pos) return bmap; isl_assert(bmap->ctx, dst_type != src_type, goto error); if (pos(bmap->dim, dst_type) + dst_pos == pos(bmap->dim, src_type) + src_pos + ((src_type < dst_type) ? n : 0)) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_move_dims(bmap->dim, dst_type, dst_pos, src_type, src_pos, n); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; } total = isl_basic_map_total_dim(bmap); dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { unsigned size = isl_space_dim(bmap->dim, t); if (t == dst_type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, dst_pos, off); off += dst_pos; isl_dim_map_dim_range(dim_map, bmap->dim, src_type, src_pos, n, off); off += n; isl_dim_map_dim_range(dim_map, bmap->dim, t, dst_pos, size - dst_pos, off); off += size - dst_pos; } else if (t == src_type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, src_pos, off); off += src_pos; isl_dim_map_dim_range(dim_map, bmap->dim, t, src_pos + n, size - src_pos - n, off); off += size - src_pos - n; } else { isl_dim_map_dim(dim_map, bmap->dim, t, off); off += size; } } isl_dim_map_div(dim_map, bmap, off); res = isl_basic_map_alloc_space(isl_basic_map_get_space(bmap), bmap->n_div, bmap->n_eq, bmap->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); if (!bmap) goto error; bmap->dim = isl_space_move_dims(bmap->dim, dst_type, dst_pos, src_type, src_pos, n); if (!bmap->dim) goto error; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_move_dims(__isl_take isl_basic_set *bset, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { isl_basic_map *bmap = bset_to_bmap(bset); bmap = isl_basic_map_move_dims(bmap, dst_type, dst_pos, src_type, src_pos, n); return bset_from_bmap(bmap); } __isl_give isl_set *isl_set_move_dims(__isl_take isl_set *set, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { if (!set) return NULL; isl_assert(set->ctx, dst_type != isl_dim_in, goto error); return set_from_map(isl_map_move_dims(set_to_map(set), dst_type, dst_pos, src_type, src_pos, n)); error: isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_move_dims(__isl_take isl_map *map, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map; isl_assert(map->ctx, src_pos + n <= isl_map_dim(map, src_type), goto error); if (dst_type == src_type && dst_pos == src_pos) return map; isl_assert(map->ctx, dst_type != src_type, goto error); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_move_dims(map->dim, dst_type, dst_pos, src_type, src_pos, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_move_dims(map->p[i], dst_type, dst_pos, src_type, src_pos, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Move the specified dimensions to the last columns right before * the divs. Don't change the dimension specification of bmap. * That's the responsibility of the caller. */ static __isl_give isl_basic_map *move_last(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { struct isl_dim_map *dim_map; struct isl_basic_map *res; enum isl_dim_type t; unsigned total, off; if (!bmap) return NULL; if (pos(bmap->dim, type) + first + n == 1 + isl_space_dim(bmap->dim, isl_dim_all)) return bmap; total = isl_basic_map_total_dim(bmap); dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { unsigned size = isl_space_dim(bmap->dim, t); if (t == type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, first, off); off += first; isl_dim_map_dim_range(dim_map, bmap->dim, t, first, n, total - bmap->n_div - n); isl_dim_map_dim_range(dim_map, bmap->dim, t, first + n, size - (first + n), off); off += size - (first + n); } else { isl_dim_map_dim(dim_map, bmap->dim, t, off); off += size; } } isl_dim_map_div(dim_map, bmap, off + n); res = isl_basic_map_alloc_space(isl_basic_map_get_space(bmap), bmap->n_div, bmap->n_eq, bmap->n_ineq); res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); return res; } /* Insert "n" rows in the divs of "bmap". * * The number of columns is not changed, which means that the last * dimensions of "bmap" are being reintepreted as the new divs. * The space of "bmap" is not adjusted, however, which means * that "bmap" is left in an inconsistent state. Removing "n" dimensions * from the space of "bmap" is the responsibility of the caller. */ static __isl_give isl_basic_map *insert_div_rows(__isl_take isl_basic_map *bmap, int n) { int i; size_t row_size; isl_int **new_div; isl_int *old; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; row_size = 1 + isl_space_dim(bmap->dim, isl_dim_all) + bmap->extra; old = bmap->block2.data; bmap->block2 = isl_blk_extend(bmap->ctx, bmap->block2, (bmap->extra + n) * (1 + row_size)); if (!bmap->block2.data) return isl_basic_map_free(bmap); new_div = isl_alloc_array(bmap->ctx, isl_int *, bmap->extra + n); if (!new_div) return isl_basic_map_free(bmap); for (i = 0; i < n; ++i) { new_div[i] = bmap->block2.data + (bmap->extra + i) * (1 + row_size); isl_seq_clr(new_div[i], 1 + row_size); } for (i = 0; i < bmap->extra; ++i) new_div[n + i] = bmap->block2.data + (bmap->div[i] - old); free(bmap->div); bmap->div = new_div; bmap->n_div += n; bmap->extra += n; return bmap; } /* Drop constraints from "bmap" that only involve the variables * of "type" in the range [first, first + n] that are not related * to any of the variables outside that interval. * These constraints cannot influence the values for the variables * outside the interval, except in case they cause "bmap" to be empty. * Only drop the constraints if "bmap" is known to be non-empty. */ static __isl_give isl_basic_map *drop_irrelevant_constraints( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; int *groups; unsigned dim, n_div; isl_bool non_empty; non_empty = isl_basic_map_plain_is_non_empty(bmap); if (non_empty < 0) return isl_basic_map_free(bmap); if (!non_empty) return bmap; dim = isl_basic_map_dim(bmap, isl_dim_all); n_div = isl_basic_map_dim(bmap, isl_dim_div); groups = isl_calloc_array(isl_basic_map_get_ctx(bmap), int, dim); if (!groups) return isl_basic_map_free(bmap); first += isl_basic_map_offset(bmap, type) - 1; for (i = 0; i < first; ++i) groups[i] = -1; for (i = first + n; i < dim - n_div; ++i) groups[i] = -1; bmap = isl_basic_map_drop_unrelated_constraints(bmap, groups); return bmap; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. * * If a subset of the projected out variables are unrelated * to any of the variables that remain, then the constraints * involving this subset are simply dropped first. */ __isl_give isl_basic_map *isl_basic_map_project_out( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { if (n == 0) return basic_map_space_reset(bmap, type); if (type == isl_dim_div) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "cannot project out existentially quantified variables", return isl_basic_map_free(bmap)); bmap = drop_irrelevant_constraints(bmap, type, first, n); if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return isl_basic_map_remove_dims(bmap, type, first, n); isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); bmap = move_last(bmap, type, first, n); bmap = isl_basic_map_cow(bmap); bmap = insert_div_rows(bmap, n); if (!bmap) return NULL; bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n); if (!bmap->dim) goto error; bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ struct isl_basic_set *isl_basic_set_project_out(struct isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return bset_from_bmap(isl_basic_map_project_out(bset_to_bmap(bset), type, first, n)); } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map_space_reset(map, type); isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_drop_dims(map->dim, type, first, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_project_out(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return set_from_map(isl_map_project_out(set_to_map(set), type, first, n)); } /* Return a map that projects the elements in "set" onto their * "n" set dimensions starting at "first". * "type" should be equal to isl_dim_set. */ __isl_give isl_map *isl_set_project_onto_map(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { int i; int dim; isl_map *map; if (!set) return NULL; if (type != isl_dim_set) isl_die(isl_set_get_ctx(set), isl_error_invalid, "only set dimensions can be projected out", goto error); dim = isl_set_dim(set, isl_dim_set); if (first + n > dim || first + n < first) isl_die(isl_set_get_ctx(set), isl_error_invalid, "index out of bounds", goto error); map = isl_map_from_domain(set); map = isl_map_add_dims(map, isl_dim_out, n); for (i = 0; i < n; ++i) map = isl_map_equate(map, isl_dim_in, first + i, isl_dim_out, i); return map; error: isl_set_free(set); return NULL; } static struct isl_basic_map *add_divs(struct isl_basic_map *bmap, unsigned n) { int i, j; for (i = 0; i < n; ++i) { j = isl_basic_map_alloc_div(bmap); if (j < 0) goto error; isl_seq_clr(bmap->div[j], 1+1+isl_basic_map_total_dim(bmap)); } return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_apply_range( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_space *dim_result = NULL; struct isl_basic_map *bmap; unsigned n_in, n_out, n, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; if (!isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "parameters don't match", goto error); if (!isl_space_tuple_is_equal(bmap1->dim, isl_dim_out, bmap2->dim, isl_dim_in)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "spaces don't match", goto error); dim_result = isl_space_join(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); n_in = isl_basic_map_n_in(bmap1); n_out = isl_basic_map_n_out(bmap2); n = isl_basic_map_n_out(bmap1); nparam = isl_basic_map_n_param(bmap1); total = nparam + n_in + n_out + bmap1->n_div + bmap2->n_div + n; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += n_in); isl_dim_map_div(dim_map1, bmap1, pos += n_out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += bmap2->n_div); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div + n, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = add_divs(bmap, n); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_apply( struct isl_basic_set *bset, struct isl_basic_map *bmap) { if (!bset || !bmap) goto error; isl_assert(bset->ctx, isl_basic_map_compatible_domain(bmap, bset), goto error); return bset_from_bmap(isl_basic_map_apply_range(bset_to_bmap(bset), bmap)); error: isl_basic_set_free(bset); isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_apply_domain( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_basic_map_n_in(bmap1) == isl_basic_map_n_in(bmap2), goto error); isl_assert(bmap1->ctx, isl_basic_map_n_param(bmap1) == isl_basic_map_n_param(bmap2), goto error); bmap1 = isl_basic_map_reverse(bmap1); bmap1 = isl_basic_map_apply_range(bmap1, bmap2); return isl_basic_map_reverse(bmap1); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } /* Given two basic maps A -> f(A) and B -> g(B), construct a basic map * A \cap B -> f(A) + f(B) */ struct isl_basic_map *isl_basic_map_sum( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { unsigned n_in, n_out, nparam, total, pos; struct isl_basic_map *bmap = NULL; struct isl_dim_map *dim_map1, *dim_map2; int i; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); nparam = isl_basic_map_n_param(bmap1); n_in = isl_basic_map_n_in(bmap1); n_out = isl_basic_map_n_out(bmap1); total = nparam + n_in + n_out + bmap1->n_div + bmap2->n_div + 2 * n_out; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap2->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); isl_dim_map_div(dim_map1, bmap1, pos += n_in + n_out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += bmap2->n_div); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += n_out); bmap = isl_basic_map_alloc_space(isl_space_copy(bmap1->dim), bmap1->n_div + bmap2->n_div + 2 * n_out, bmap1->n_eq + bmap2->n_eq + n_out, bmap1->n_ineq + bmap2->n_ineq); for (i = 0; i < n_out; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j], 1+total); isl_int_set_si(bmap->eq[j][1+nparam+n_in+i], -1); isl_int_set_si(bmap->eq[j][1+pos+i], 1); isl_int_set_si(bmap->eq[j][1+pos-n_out+i], 1); } bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = add_divs(bmap, 2 * n_out); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } /* Given two maps A -> f(A) and B -> g(B), construct a map * A \cap B -> f(A) + f(B) */ struct isl_map *isl_map_sum(struct isl_map *map1, struct isl_map *map2) { struct isl_map *result; int i, j; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); result = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n * map2->n, 0); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = isl_basic_map_sum( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part)) isl_basic_map_free(part); else result = isl_map_add_basic_map(result, part); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_set *isl_set_sum(__isl_take isl_set *set1, __isl_take isl_set *set2) { return set_from_map(isl_map_sum(set_to_map(set1), set_to_map(set2))); } /* Given a basic map A -> f(A), construct A -> -f(A). */ struct isl_basic_map *isl_basic_map_neg(struct isl_basic_map *bmap) { int i, j; unsigned off, n; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; n = isl_basic_map_dim(bmap, isl_dim_out); off = isl_basic_map_offset(bmap, isl_dim_out); for (i = 0; i < bmap->n_eq; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->eq[i][off+j], bmap->eq[i][off+j]); for (i = 0; i < bmap->n_ineq; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->ineq[i][off+j], bmap->ineq[i][off+j]); for (i = 0; i < bmap->n_div; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->div[i][1+off+j], bmap->div[i][1+off+j]); bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); } __isl_give isl_basic_set *isl_basic_set_neg(__isl_take isl_basic_set *bset) { return isl_basic_map_neg(bset); } /* Given a map A -> f(A), construct A -> -f(A). */ struct isl_map *isl_map_neg(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_neg(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_neg(__isl_take isl_set *set) { return set_from_map(isl_map_neg(set_to_map(set))); } /* Given a basic map A -> f(A) and an integer d, construct a basic map * A -> floor(f(A)/d). */ struct isl_basic_map *isl_basic_map_floordiv(struct isl_basic_map *bmap, isl_int d) { unsigned n_in, n_out, nparam, total, pos; struct isl_basic_map *result = NULL; struct isl_dim_map *dim_map; int i; if (!bmap) return NULL; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); n_out = isl_basic_map_n_out(bmap); total = nparam + n_in + n_out + bmap->n_div + n_out; dim_map = isl_dim_map_alloc(bmap->ctx, total); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_in, pos += nparam); isl_dim_map_div(dim_map, bmap, pos += n_in + n_out); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_out, pos += bmap->n_div); result = isl_basic_map_alloc_space(isl_space_copy(bmap->dim), bmap->n_div + n_out, bmap->n_eq, bmap->n_ineq + 2 * n_out); result = isl_basic_map_add_constraints_dim_map(result, bmap, dim_map); result = add_divs(result, n_out); for (i = 0; i < n_out; ++i) { int j; j = isl_basic_map_alloc_inequality(result); if (j < 0) goto error; isl_seq_clr(result->ineq[j], 1+total); isl_int_neg(result->ineq[j][1+nparam+n_in+i], d); isl_int_set_si(result->ineq[j][1+pos+i], 1); j = isl_basic_map_alloc_inequality(result); if (j < 0) goto error; isl_seq_clr(result->ineq[j], 1+total); isl_int_set(result->ineq[j][1+nparam+n_in+i], d); isl_int_set_si(result->ineq[j][1+pos+i], -1); isl_int_sub_ui(result->ineq[j][0], d, 1); } result = isl_basic_map_simplify(result); return isl_basic_map_finalize(result); error: isl_basic_map_free(result); return NULL; } /* Given a map A -> f(A) and an integer d, construct a map * A -> floor(f(A)/d). */ struct isl_map *isl_map_floordiv(struct isl_map *map, isl_int d) { int i; map = isl_map_cow(map); if (!map) return NULL; ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_floordiv(map->p[i], d); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Given a map A -> f(A) and an integer d, construct a map * A -> floor(f(A)/d). */ __isl_give isl_map *isl_map_floordiv_val(__isl_take isl_map *map, __isl_take isl_val *d) { if (!map || !d) goto error; if (!isl_val_is_int(d)) isl_die(isl_val_get_ctx(d), isl_error_invalid, "expecting integer denominator", goto error); map = isl_map_floordiv(map, d->n); isl_val_free(d); return map; error: isl_map_free(map); isl_val_free(d); return NULL; } static struct isl_basic_map *var_equal(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[i][1+nparam+pos], -1); isl_int_set_si(bmap->eq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos < o_pos */ static struct isl_basic_map *var_less(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][0], -1); isl_int_set_si(bmap->ineq[i][1+nparam+pos], -1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos <= o_pos */ static __isl_give isl_basic_map *var_less_or_equal( __isl_take isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][1+nparam+pos], -1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos > o_pos */ static struct isl_basic_map *var_more(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][0], -1); isl_int_set_si(bmap->ineq[i][1+nparam+pos], 1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], -1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos >= o_pos */ static __isl_give isl_basic_map *var_more_or_equal( __isl_take isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][1+nparam+pos], 1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], -1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_equal( __isl_take isl_space *dim, unsigned n_equal) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, n_equal, 0); if (!bmap) return NULL; for (i = 0; i < n_equal && bmap; ++i) bmap = var_equal(bmap, i); return isl_basic_map_finalize(bmap); } /* Return a relation on of dimension "dim" expressing i_[0..pos] << o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_less_at(__isl_take isl_space *dim, unsigned pos) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); if (!bmap) return NULL; for (i = 0; i < pos && bmap; ++i) bmap = var_equal(bmap, i); if (bmap) bmap = var_less(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on "dim" expressing i_[0..pos] <<= o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_less_or_equal_at( __isl_take isl_space *dim, unsigned pos) { int i; isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); for (i = 0; i < pos; ++i) bmap = var_equal(bmap, i); bmap = var_less_or_equal(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on "dim" expressing i_pos > o_pos */ __isl_give isl_basic_map *isl_basic_map_more_at(__isl_take isl_space *dim, unsigned pos) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); if (!bmap) return NULL; for (i = 0; i < pos && bmap; ++i) bmap = var_equal(bmap, i); if (bmap) bmap = var_more(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on "dim" expressing i_[0..pos] >>= o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_more_or_equal_at( __isl_take isl_space *dim, unsigned pos) { int i; isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); for (i = 0; i < pos; ++i) bmap = var_equal(bmap, i); bmap = var_more_or_equal(bmap, pos); return isl_basic_map_finalize(bmap); } static __isl_give isl_map *map_lex_lte_first(__isl_take isl_space *dims, unsigned n, int equal) { struct isl_map *map; int i; if (n == 0 && equal) return isl_map_universe(dims); map = isl_map_alloc_space(isl_space_copy(dims), n, ISL_MAP_DISJOINT); for (i = 0; i + 1 < n; ++i) map = isl_map_add_basic_map(map, isl_basic_map_less_at(isl_space_copy(dims), i)); if (n > 0) { if (equal) map = isl_map_add_basic_map(map, isl_basic_map_less_or_equal_at(dims, n - 1)); else map = isl_map_add_basic_map(map, isl_basic_map_less_at(dims, n - 1)); } else isl_space_free(dims); return map; } static __isl_give isl_map *map_lex_lte(__isl_take isl_space *dims, int equal) { if (!dims) return NULL; return map_lex_lte_first(dims, dims->n_out, equal); } __isl_give isl_map *isl_map_lex_lt_first(__isl_take isl_space *dim, unsigned n) { return map_lex_lte_first(dim, n, 0); } __isl_give isl_map *isl_map_lex_le_first(__isl_take isl_space *dim, unsigned n) { return map_lex_lte_first(dim, n, 1); } __isl_give isl_map *isl_map_lex_lt(__isl_take isl_space *set_dim) { return map_lex_lte(isl_space_map_from_set(set_dim), 0); } __isl_give isl_map *isl_map_lex_le(__isl_take isl_space *set_dim) { return map_lex_lte(isl_space_map_from_set(set_dim), 1); } static __isl_give isl_map *map_lex_gte_first(__isl_take isl_space *dims, unsigned n, int equal) { struct isl_map *map; int i; if (n == 0 && equal) return isl_map_universe(dims); map = isl_map_alloc_space(isl_space_copy(dims), n, ISL_MAP_DISJOINT); for (i = 0; i + 1 < n; ++i) map = isl_map_add_basic_map(map, isl_basic_map_more_at(isl_space_copy(dims), i)); if (n > 0) { if (equal) map = isl_map_add_basic_map(map, isl_basic_map_more_or_equal_at(dims, n - 1)); else map = isl_map_add_basic_map(map, isl_basic_map_more_at(dims, n - 1)); } else isl_space_free(dims); return map; } static __isl_give isl_map *map_lex_gte(__isl_take isl_space *dims, int equal) { if (!dims) return NULL; return map_lex_gte_first(dims, dims->n_out, equal); } __isl_give isl_map *isl_map_lex_gt_first(__isl_take isl_space *dim, unsigned n) { return map_lex_gte_first(dim, n, 0); } __isl_give isl_map *isl_map_lex_ge_first(__isl_take isl_space *dim, unsigned n) { return map_lex_gte_first(dim, n, 1); } __isl_give isl_map *isl_map_lex_gt(__isl_take isl_space *set_dim) { return map_lex_gte(isl_space_map_from_set(set_dim), 0); } __isl_give isl_map *isl_map_lex_ge(__isl_take isl_space *set_dim) { return map_lex_gte(isl_space_map_from_set(set_dim), 1); } __isl_give isl_map *isl_set_lex_le_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_le(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_lt_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_lt(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_ge_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_ge(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_gt_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_gt(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_map_lex_le_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_le(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_lt_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_lt(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_ge_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_ge(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_gt_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_gt(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } static __isl_give isl_basic_map *basic_map_from_basic_set( __isl_take isl_basic_set *bset, __isl_take isl_space *dim) { struct isl_basic_map *bmap; bset = isl_basic_set_cow(bset); if (!bset || !dim) goto error; isl_assert(bset->ctx, isl_space_compatible_internal(bset->dim, dim), goto error); isl_space_free(bset->dim); bmap = bset_to_bmap(bset); bmap->dim = dim; return isl_basic_map_finalize(bmap); error: isl_basic_set_free(bset); isl_space_free(dim); return NULL; } __isl_give isl_basic_map *isl_basic_map_from_basic_set( __isl_take isl_basic_set *bset, __isl_take isl_space *space) { return basic_map_from_basic_set(bset, space); } /* For a div d = floor(f/m), add the constraint * * f - m d >= 0 */ static int add_upper_div_constraint(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { int i; unsigned total = isl_basic_map_total_dim(bmap); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return -1; isl_seq_cpy(bmap->ineq[i], div + 1, 1 + total); isl_int_neg(bmap->ineq[i][1 + pos], div[0]); return 0; } /* For a div d = floor(f/m), add the constraint * * -(f-(m-1)) + m d >= 0 */ static int add_lower_div_constraint(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { int i; unsigned total = isl_basic_map_total_dim(bmap); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return -1; isl_seq_neg(bmap->ineq[i], div + 1, 1 + total); isl_int_set(bmap->ineq[i][1 + pos], div[0]); isl_int_add(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[i][1 + pos]); isl_int_sub_ui(bmap->ineq[i][0], bmap->ineq[i][0], 1); return 0; } /* For a div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Note that the second constraint is the negation of * * f - m d >= m */ int isl_basic_map_add_div_constraints_var(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { if (add_upper_div_constraint(bmap, pos, div) < 0) return -1; if (add_lower_div_constraint(bmap, pos, div) < 0) return -1; return 0; } int isl_basic_set_add_div_constraints_var(__isl_keep isl_basic_set *bset, unsigned pos, isl_int *div) { return isl_basic_map_add_div_constraints_var(bset_to_bmap(bset), pos, div); } int isl_basic_map_add_div_constraints(struct isl_basic_map *bmap, unsigned div) { unsigned total = isl_basic_map_total_dim(bmap); unsigned div_pos = total - bmap->n_div + div; return isl_basic_map_add_div_constraints_var(bmap, div_pos, bmap->div[div]); } /* For each known div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Remove duplicate constraints in case of some these div constraints * already appear in "bmap". */ __isl_give isl_basic_map *isl_basic_map_add_known_div_constraints( __isl_take isl_basic_map *bmap) { unsigned n_div; if (!bmap) return NULL; n_div = isl_basic_map_dim(bmap, isl_dim_div); if (n_div == 0) return bmap; bmap = add_known_div_constraints(bmap); bmap = isl_basic_map_remove_duplicate_constraints(bmap, NULL, 0); bmap = isl_basic_map_finalize(bmap); return bmap; } /* Add the div constraint of sign "sign" for div "div" of "bmap". * * In particular, if this div is of the form d = floor(f/m), * then add the constraint * * f - m d >= 0 * * if sign < 0 or the constraint * * -(f-(m-1)) + m d >= 0 * * if sign > 0. */ int isl_basic_map_add_div_constraint(__isl_keep isl_basic_map *bmap, unsigned div, int sign) { unsigned total; unsigned div_pos; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); div_pos = total - bmap->n_div + div; if (sign < 0) return add_upper_div_constraint(bmap, div_pos, bmap->div[div]); else return add_lower_div_constraint(bmap, div_pos, bmap->div[div]); } int isl_basic_set_add_div_constraints(struct isl_basic_set *bset, unsigned div) { return isl_basic_map_add_div_constraints(bset, div); } struct isl_basic_set *isl_basic_map_underlying_set( struct isl_basic_map *bmap) { if (!bmap) goto error; if (bmap->dim->nparam == 0 && bmap->dim->n_in == 0 && bmap->n_div == 0 && !isl_space_is_named_or_nested(bmap->dim, isl_dim_in) && !isl_space_is_named_or_nested(bmap->dim, isl_dim_out)) return bset_from_bmap(bmap); bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap->dim = isl_space_underlying(bmap->dim, bmap->n_div); if (!bmap->dim) goto error; bmap->extra -= bmap->n_div; bmap->n_div = 0; bmap = isl_basic_map_finalize(bmap); return bset_from_bmap(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_underlying_set( __isl_take isl_basic_set *bset) { return isl_basic_map_underlying_set(bset_to_bmap(bset)); } /* Replace each element in "list" by the result of applying * isl_basic_map_underlying_set to the element. */ __isl_give isl_basic_set_list *isl_basic_map_list_underlying_set( __isl_take isl_basic_map_list *list) { int i, n; if (!list) return NULL; n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap; isl_basic_set *bset; bmap = isl_basic_map_list_get_basic_map(list, i); bset = isl_basic_set_underlying_set(bmap); list = isl_basic_set_list_set_basic_set(list, i, bset); } return list; } struct isl_basic_map *isl_basic_map_overlying_set( struct isl_basic_set *bset, struct isl_basic_map *like) { struct isl_basic_map *bmap; struct isl_ctx *ctx; unsigned total; int i; if (!bset || !like) goto error; ctx = bset->ctx; isl_assert(ctx, bset->n_div == 0, goto error); isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(ctx, bset->dim->n_out == isl_basic_map_total_dim(like), goto error); if (like->n_div == 0) { isl_space *space = isl_basic_map_get_space(like); isl_basic_map_free(like); return isl_basic_map_reset_space(bset, space); } bset = isl_basic_set_cow(bset); if (!bset) goto error; total = bset->dim->n_out + bset->extra; bmap = bset_to_bmap(bset); isl_space_free(bmap->dim); bmap->dim = isl_space_copy(like->dim); if (!bmap->dim) goto error; bmap->n_div = like->n_div; bmap->extra += like->n_div; if (bmap->extra) { unsigned ltotal; isl_int **div; ltotal = total - bmap->extra + like->extra; if (ltotal > total) ltotal = total; bmap->block2 = isl_blk_extend(ctx, bmap->block2, bmap->extra * (1 + 1 + total)); if (isl_blk_is_error(bmap->block2)) goto error; div = isl_realloc_array(ctx, bmap->div, isl_int *, bmap->extra); if (!div) goto error; bmap->div = div; for (i = 0; i < bmap->extra; ++i) bmap->div[i] = bmap->block2.data + i * (1 + 1 + total); for (i = 0; i < like->n_div; ++i) { isl_seq_cpy(bmap->div[i], like->div[i], 1 + 1 + ltotal); isl_seq_clr(bmap->div[i]+1+1+ltotal, total - ltotal); } bmap = isl_basic_map_add_known_div_constraints(bmap); } isl_basic_map_free(like); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(like); isl_basic_set_free(bset); return NULL; } struct isl_basic_set *isl_basic_set_from_underlying_set( struct isl_basic_set *bset, struct isl_basic_set *like) { return bset_from_bmap(isl_basic_map_overlying_set(bset, bset_to_bmap(like))); } struct isl_set *isl_set_from_underlying_set( struct isl_set *set, struct isl_basic_set *like) { int i; if (!set || !like) goto error; isl_assert(set->ctx, set->dim->n_out == isl_basic_set_total_dim(like), goto error); if (isl_space_is_equal(set->dim, like->dim) && like->n_div == 0) { isl_basic_set_free(like); return set; } set = isl_set_cow(set); if (!set) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_from_underlying_set(set->p[i], isl_basic_set_copy(like)); if (!set->p[i]) goto error; } isl_space_free(set->dim); set->dim = isl_space_copy(like->dim); if (!set->dim) goto error; isl_basic_set_free(like); return set; error: isl_basic_set_free(like); isl_set_free(set); return NULL; } struct isl_set *isl_map_underlying_set(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_cow(map->dim); if (!map->dim) goto error; for (i = 1; i < map->n; ++i) isl_assert(map->ctx, map->p[0]->n_div == map->p[i]->n_div, goto error); for (i = 0; i < map->n; ++i) { map->p[i] = bset_to_bmap( isl_basic_map_underlying_set(map->p[i])); if (!map->p[i]) goto error; } if (map->n == 0) map->dim = isl_space_underlying(map->dim, 0); else { isl_space_free(map->dim); map->dim = isl_space_copy(map->p[0]->dim); } if (!map->dim) goto error; return set_from_map(map); error: isl_map_free(map); return NULL; } struct isl_set *isl_set_to_underlying_set(struct isl_set *set) { return set_from_map(isl_map_underlying_set(set_to_map(set))); } /* Replace the space of "bmap" by "space". * * If the space of "bmap" is identical to "space" (including the identifiers * of the input and output dimensions), then simply return the original input. */ __isl_give isl_basic_map *isl_basic_map_reset_space( __isl_take isl_basic_map *bmap, __isl_take isl_space *space) { isl_bool equal; if (!bmap) goto error; equal = isl_space_is_equal(bmap->dim, space); if (equal >= 0 && equal) equal = isl_space_match(bmap->dim, isl_dim_in, space, isl_dim_in); if (equal >= 0 && equal) equal = isl_space_match(bmap->dim, isl_dim_out, space, isl_dim_out); if (equal < 0) goto error; if (equal) { isl_space_free(space); return bmap; } bmap = isl_basic_map_cow(bmap); if (!bmap || !space) goto error; isl_space_free(bmap->dim); bmap->dim = space; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); isl_space_free(space); return NULL; } __isl_give isl_basic_set *isl_basic_set_reset_space( __isl_take isl_basic_set *bset, __isl_take isl_space *dim) { return bset_from_bmap(isl_basic_map_reset_space(bset_to_bmap(bset), dim)); } __isl_give isl_map *isl_map_reset_space(__isl_take isl_map *map, __isl_take isl_space *dim) { int i; map = isl_map_cow(map); if (!map || !dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reset_space(map->p[i], isl_space_copy(dim)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = dim; return map; error: isl_map_free(map); isl_space_free(dim); return NULL; } __isl_give isl_set *isl_set_reset_space(__isl_take isl_set *set, __isl_take isl_space *dim) { return set_from_map(isl_map_reset_space(set_to_map(set), dim)); } /* Compute the parameter domain of the given basic set. */ __isl_give isl_basic_set *isl_basic_set_params(__isl_take isl_basic_set *bset) { isl_space *space; unsigned n; if (isl_basic_set_is_params(bset)) return bset; n = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_project_out(bset, isl_dim_set, 0, n); space = isl_basic_set_get_space(bset); space = isl_space_params(space); bset = isl_basic_set_reset_space(bset, space); return bset; } /* Construct a zero-dimensional basic set with the given parameter domain. */ __isl_give isl_basic_set *isl_basic_set_from_params( __isl_take isl_basic_set *bset) { isl_space *space; space = isl_basic_set_get_space(bset); space = isl_space_set_from_params(space); bset = isl_basic_set_reset_space(bset, space); return bset; } /* Compute the parameter domain of the given set. */ __isl_give isl_set *isl_set_params(__isl_take isl_set *set) { isl_space *space; unsigned n; if (isl_set_is_params(set)) return set; n = isl_set_dim(set, isl_dim_set); set = isl_set_project_out(set, isl_dim_set, 0, n); space = isl_set_get_space(set); space = isl_space_params(space); set = isl_set_reset_space(set, space); return set; } /* Construct a zero-dimensional set with the given parameter domain. */ __isl_give isl_set *isl_set_from_params(__isl_take isl_set *set) { isl_space *space; space = isl_set_get_space(set); space = isl_space_set_from_params(space); set = isl_set_reset_space(set, space); return set; } /* Compute the parameter domain of the given map. */ __isl_give isl_set *isl_map_params(__isl_take isl_map *map) { isl_space *space; unsigned n; n = isl_map_dim(map, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, 0, n); n = isl_map_dim(map, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, 0, n); space = isl_map_get_space(map); space = isl_space_params(space); map = isl_map_reset_space(map, space); return map; } struct isl_basic_set *isl_basic_map_domain(struct isl_basic_map *bmap) { isl_space *space; unsigned n_out; if (!bmap) return NULL; space = isl_space_domain(isl_basic_map_get_space(bmap)); n_out = isl_basic_map_n_out(bmap); bmap = isl_basic_map_project_out(bmap, isl_dim_out, 0, n_out); return isl_basic_map_reset_space(bmap, space); } int isl_basic_map_may_be_set(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return isl_space_may_be_set(bmap->dim); } /* Is this basic map actually a set? * Users should never call this function. Outside of isl, * the type should indicate whether something is a set or a map. */ int isl_basic_map_is_set(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return isl_space_is_set(bmap->dim); } struct isl_basic_set *isl_basic_map_range(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (isl_basic_map_is_set(bmap)) return bmap; return isl_basic_map_domain(isl_basic_map_reverse(bmap)); } __isl_give isl_basic_map *isl_basic_map_domain_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *domain; int nparam, n_in, n_out; unsigned total; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_from_range(isl_space_domain(isl_basic_map_get_space(bmap))); domain = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, domain); bmap = isl_basic_map_extend_constraints(bmap, n_in, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n_in; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + n_out + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_range_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *range; int nparam, n_in, n_out; unsigned total; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_from_range(isl_space_range(isl_basic_map_get_space(bmap))); range = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, range); bmap = isl_basic_map_extend_constraints(bmap, n_out, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n_out; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + n_out + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } int isl_map_may_be_set(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_may_be_set(map->dim); } /* Is this map actually a set? * Users should never call this function. Outside of isl, * the type should indicate whether something is a set or a map. */ int isl_map_is_set(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_is_set(map->dim); } struct isl_set *isl_map_range(struct isl_map *map) { int i; struct isl_set *set; if (!map) goto error; if (isl_map_is_set(map)) return set_from_map(map); map = isl_map_cow(map); if (!map) goto error; set = set_from_map(map); set->dim = isl_space_range(set->dim); if (!set->dim) goto error; for (i = 0; i < map->n; ++i) { set->p[i] = isl_basic_map_range(map->p[i]); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_MAP_DISJOINT); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_domain_map(map->dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_domain_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map) { int i; isl_space *range_dim; map = isl_map_cow(map); if (!map) return NULL; range_dim = isl_space_range(isl_map_get_space(map)); range_dim = isl_space_from_range(range_dim); map->dim = isl_space_from_domain(isl_space_wrap(map->dim)); map->dim = isl_space_join(map->dim, range_dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_range_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } /* Given a wrapped map of the form A[B -> C], * return the map A[B -> C] -> B. */ __isl_give isl_map *isl_set_wrapped_domain_map(__isl_take isl_set *set) { isl_id *id; isl_map *map; if (!set) return NULL; if (!isl_set_has_tuple_id(set)) return isl_map_domain_map(isl_set_unwrap(set)); id = isl_set_get_tuple_id(set); map = isl_map_domain_map(isl_set_unwrap(set)); map = isl_map_set_tuple_id(map, isl_dim_in, id); return map; } __isl_give isl_map *isl_map_from_set(__isl_take isl_set *set, __isl_take isl_space *dim) { int i; struct isl_map *map = NULL; set = isl_set_cow(set); if (!set || !dim) goto error; isl_assert(set->ctx, isl_space_compatible_internal(set->dim, dim), goto error); map = set_to_map(set); for (i = 0; i < set->n; ++i) { map->p[i] = basic_map_from_basic_set( set->p[i], isl_space_copy(dim)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = dim; return map; error: isl_space_free(dim); isl_set_free(set); return NULL; } __isl_give isl_basic_map *isl_basic_map_from_domain( __isl_take isl_basic_set *bset) { return isl_basic_map_reverse(isl_basic_map_from_range(bset)); } __isl_give isl_basic_map *isl_basic_map_from_range( __isl_take isl_basic_set *bset) { isl_space *space; space = isl_basic_set_get_space(bset); space = isl_space_from_range(space); bset = isl_basic_set_reset_space(bset, space); return bset_to_bmap(bset); } /* Create a relation with the given set as range. * The domain of the created relation is a zero-dimensional * flat anonymous space. */ __isl_give isl_map *isl_map_from_range(__isl_take isl_set *set) { isl_space *space; space = isl_set_get_space(set); space = isl_space_from_range(space); set = isl_set_reset_space(set, space); return set_to_map(set); } /* Create a relation with the given set as domain. * The range of the created relation is a zero-dimensional * flat anonymous space. */ __isl_give isl_map *isl_map_from_domain(__isl_take isl_set *set) { return isl_map_reverse(isl_map_from_range(set)); } __isl_give isl_basic_map *isl_basic_map_from_domain_and_range( __isl_take isl_basic_set *domain, __isl_take isl_basic_set *range) { return isl_basic_map_apply_range(isl_basic_map_reverse(domain), range); } __isl_give isl_map *isl_map_from_domain_and_range(__isl_take isl_set *domain, __isl_take isl_set *range) { return isl_map_apply_range(isl_map_reverse(domain), range); } /* Return a newly allocated isl_map with given space and flags and * room for "n" basic maps. * Make sure that all cached information is cleared. */ __isl_give isl_map *isl_map_alloc_space(__isl_take isl_space *space, int n, unsigned flags) { struct isl_map *map; if (!space) return NULL; if (n < 0) isl_die(space->ctx, isl_error_internal, "negative number of basic maps", goto error); map = isl_calloc(space->ctx, struct isl_map, sizeof(struct isl_map) + (n - 1) * sizeof(struct isl_basic_map *)); if (!map) goto error; map->ctx = space->ctx; isl_ctx_ref(map->ctx); map->ref = 1; map->size = n; map->n = 0; map->dim = space; map->flags = flags; return map; error: isl_space_free(space); return NULL; } struct isl_map *isl_map_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, int n, unsigned flags) { struct isl_map *map; isl_space *dims; dims = isl_space_alloc(ctx, nparam, in, out); if (!dims) return NULL; map = isl_map_alloc_space(dims, n, flags); return map; } __isl_give isl_basic_map *isl_basic_map_empty(__isl_take isl_space *dim) { struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, 1, 0); bmap = isl_basic_map_set_to_empty(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_empty(__isl_take isl_space *dim) { struct isl_basic_set *bset; bset = isl_basic_set_alloc_space(dim, 0, 1, 0); bset = isl_basic_set_set_to_empty(bset); return bset; } __isl_give isl_basic_map *isl_basic_map_universe(__isl_take isl_space *dim) { struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, 0, 0); bmap = isl_basic_map_finalize(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_universe(__isl_take isl_space *dim) { struct isl_basic_set *bset; bset = isl_basic_set_alloc_space(dim, 0, 0, 0); bset = isl_basic_set_finalize(bset); return bset; } __isl_give isl_basic_map *isl_basic_map_nat_universe(__isl_take isl_space *dim) { int i; unsigned total = isl_space_dim(dim, isl_dim_all); isl_basic_map *bmap; bmap= isl_basic_map_alloc_space(dim, 0, 0, total); for (i = 0; i < total; ++i) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + total); isl_int_set_si(bmap->ineq[k][1 + i], 1); } return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_nat_universe(__isl_take isl_space *dim) { return isl_basic_map_nat_universe(dim); } __isl_give isl_map *isl_map_nat_universe(__isl_take isl_space *dim) { return isl_map_from_basic_map(isl_basic_map_nat_universe(dim)); } __isl_give isl_set *isl_set_nat_universe(__isl_take isl_space *dim) { return isl_map_nat_universe(dim); } __isl_give isl_map *isl_map_empty(__isl_take isl_space *dim) { return isl_map_alloc_space(dim, 0, ISL_MAP_DISJOINT); } __isl_give isl_set *isl_set_empty(__isl_take isl_space *dim) { return isl_set_alloc_space(dim, 0, ISL_MAP_DISJOINT); } __isl_give isl_map *isl_map_universe(__isl_take isl_space *dim) { struct isl_map *map; if (!dim) return NULL; map = isl_map_alloc_space(isl_space_copy(dim), 1, ISL_MAP_DISJOINT); map = isl_map_add_basic_map(map, isl_basic_map_universe(dim)); return map; } __isl_give isl_set *isl_set_universe(__isl_take isl_space *dim) { struct isl_set *set; if (!dim) return NULL; set = isl_set_alloc_space(isl_space_copy(dim), 1, ISL_MAP_DISJOINT); set = isl_set_add_basic_set(set, isl_basic_set_universe(dim)); return set; } struct isl_map *isl_map_dup(struct isl_map *map) { int i; struct isl_map *dup; if (!map) return NULL; dup = isl_map_alloc_space(isl_space_copy(map->dim), map->n, map->flags); for (i = 0; i < map->n; ++i) dup = isl_map_add_basic_map(dup, isl_basic_map_copy(map->p[i])); return dup; } __isl_give isl_map *isl_map_add_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *bmap) { if (!bmap || !map) goto error; if (isl_basic_map_plain_is_empty(bmap)) { isl_basic_map_free(bmap); return map; } isl_assert(map->ctx, isl_space_is_equal(map->dim, bmap->dim), goto error); isl_assert(map->ctx, map->n < map->size, goto error); map->p[map->n] = bmap; map->n++; ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: if (map) isl_map_free(map); if (bmap) isl_basic_map_free(bmap); return NULL; } __isl_null isl_map *isl_map_free(__isl_take isl_map *map) { int i; if (!map) return NULL; if (--map->ref > 0) return NULL; clear_caches(map); isl_ctx_deref(map->ctx); for (i = 0; i < map->n; ++i) isl_basic_map_free(map->p[i]); isl_space_free(map->dim); free(map); return NULL; } static struct isl_basic_map *isl_basic_map_fix_pos_si( struct isl_basic_map *bmap, unsigned pos, int value) { int j; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j] + 1, isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][pos], -1); isl_int_set_si(bmap->eq[j][0], value); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } static __isl_give isl_basic_map *isl_basic_map_fix_pos( __isl_take isl_basic_map *bmap, unsigned pos, isl_int value) { int j; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j] + 1, isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][pos], -1); isl_int_set(bmap->eq[j][0], value); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_fix_si(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); return isl_basic_map_fix_pos_si(bmap, isl_basic_map_offset(bmap, type) + pos, value); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_fix(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int value) { if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); return isl_basic_map_fix_pos(bmap, isl_basic_map_offset(bmap, type) + pos, value); error: isl_basic_map_free(bmap); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "bmap" * to be equal to "v". */ __isl_give isl_basic_map *isl_basic_map_fix_val(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { if (!bmap || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "expecting integer value", goto error); if (pos >= isl_basic_map_dim(bmap, type)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_fix_pos(bmap, pos, v->n); isl_val_free(v); return bmap; error: isl_basic_map_free(bmap); isl_val_free(v); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "bset" * to be equal to "v". */ __isl_give isl_basic_set *isl_basic_set_fix_val(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { return isl_basic_map_fix_val(bset, type, pos, v); } struct isl_basic_set *isl_basic_set_fix_si(struct isl_basic_set *bset, enum isl_dim_type type, unsigned pos, int value) { return bset_from_bmap(isl_basic_map_fix_si(bset_to_bmap(bset), type, pos, value)); } __isl_give isl_basic_set *isl_basic_set_fix(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_int value) { return bset_from_bmap(isl_basic_map_fix(bset_to_bmap(bset), type, pos, value)); } struct isl_basic_map *isl_basic_map_fix_input_si(struct isl_basic_map *bmap, unsigned input, int value) { return isl_basic_map_fix_si(bmap, isl_dim_in, input, value); } struct isl_basic_set *isl_basic_set_fix_dim_si(struct isl_basic_set *bset, unsigned dim, int value) { return bset_from_bmap(isl_basic_map_fix_si(bset_to_bmap(bset), isl_dim_set, dim, value)); } static int remove_if_empty(__isl_keep isl_map *map, int i) { int empty = isl_basic_map_plain_is_empty(map->p[i]); if (empty < 0) return -1; if (!empty) return 0; isl_basic_map_free(map->p[i]); if (i != map->n - 1) { ISL_F_CLR(map, ISL_MAP_NORMALIZED); map->p[i] = map->p[map->n - 1]; } map->n--; return 0; } /* Perform "fn" on each basic map of "map", where we may not be holding * the only reference to "map". * In particular, "fn" should be a semantics preserving operation * that we want to apply to all copies of "map". We therefore need * to be careful not to modify "map" in a way that breaks "map" * in case anything goes wrong. */ __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map, __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap)) { struct isl_basic_map *bmap; int i; if (!map) return NULL; for (i = map->n - 1; i >= 0; --i) { bmap = isl_basic_map_copy(map->p[i]); bmap = fn(bmap); if (!bmap) goto error; isl_basic_map_free(map->p[i]); map->p[i] = bmap; if (remove_if_empty(map, i) < 0) goto error; } return map; error: isl_map_free(map); return NULL; } struct isl_map *isl_map_fix_si(struct isl_map *map, enum isl_dim_type type, unsigned pos, int value) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_fix_si(map->p[i], type, pos, value); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return set_from_map(isl_map_fix_si(set_to_map(set), type, pos, value)); } __isl_give isl_map *isl_map_fix(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_fix(map->p[i], type, pos, value); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_fix(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return set_from_map(isl_map_fix(set_to_map(set), type, pos, value)); } /* Fix the value of the variable at position "pos" of type "type" of "map" * to be equal to "v". */ __isl_give isl_map *isl_map_fix_val(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { int i; map = isl_map_cow(map); if (!map || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "expecting integer value", goto error); if (pos >= isl_map_dim(map, type)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "index out of bounds", goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_fix_val(map->p[i], type, pos, isl_val_copy(v)); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); isl_val_free(v); return map; error: isl_map_free(map); isl_val_free(v); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "set" * to be equal to "v". */ __isl_give isl_set *isl_set_fix_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { return isl_map_fix_val(set, type, pos, v); } struct isl_map *isl_map_fix_input_si(struct isl_map *map, unsigned input, int value) { return isl_map_fix_si(map, isl_dim_in, input, value); } struct isl_set *isl_set_fix_dim_si(struct isl_set *set, unsigned dim, int value) { return set_from_map(isl_map_fix_si(set_to_map(set), isl_dim_set, dim, value)); } static __isl_give isl_basic_map *basic_map_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value, int upper) { int j; if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); j = isl_basic_map_alloc_inequality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->ineq[j], 1 + isl_basic_map_total_dim(bmap)); if (upper) { isl_int_set_si(bmap->ineq[j][pos], -1); isl_int_set_si(bmap->ineq[j][0], value); } else { isl_int_set_si(bmap->ineq[j][pos], 1); isl_int_set_si(bmap->ineq[j][0], -value); } bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_lower_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { return basic_map_bound_si(bmap, type, pos, value, 0); } /* Constrain the values of the given dimension to be no greater than "value". */ __isl_give isl_basic_map *isl_basic_map_upper_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { return basic_map_bound_si(bmap, type, pos, value, 1); } struct isl_basic_set *isl_basic_set_lower_bound_dim(struct isl_basic_set *bset, unsigned dim, isl_int value) { int j; bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend_constraints(bset, 0, 1); j = isl_basic_set_alloc_inequality(bset); if (j < 0) goto error; isl_seq_clr(bset->ineq[j], 1 + isl_basic_set_total_dim(bset)); isl_int_set_si(bset->ineq[j][1 + isl_basic_set_n_param(bset) + dim], 1); isl_int_neg(bset->ineq[j][0], value); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } static __isl_give isl_map *map_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value, int upper) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = basic_map_bound_si(map->p[i], type, pos, value, upper); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_lower_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value) { return map_bound_si(map, type, pos, value, 0); } __isl_give isl_map *isl_map_upper_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value) { return map_bound_si(map, type, pos, value, 1); } __isl_give isl_set *isl_set_lower_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return set_from_map(isl_map_lower_bound_si(set_to_map(set), type, pos, value)); } __isl_give isl_set *isl_set_upper_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return isl_map_upper_bound_si(set, type, pos, value); } /* Bound the given variable of "bmap" from below (or above is "upper" * is set) to "value". */ static __isl_give isl_basic_map *basic_map_bound( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int value, int upper) { int j; if (!bmap) return NULL; if (pos >= isl_basic_map_dim(bmap, type)) isl_die(bmap->ctx, isl_error_invalid, "index out of bounds", goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); j = isl_basic_map_alloc_inequality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->ineq[j], 1 + isl_basic_map_total_dim(bmap)); if (upper) { isl_int_set_si(bmap->ineq[j][pos], -1); isl_int_set(bmap->ineq[j][0], value); } else { isl_int_set_si(bmap->ineq[j][pos], 1); isl_int_neg(bmap->ineq[j][0], value); } bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Bound the given variable of "map" from below (or above is "upper" * is set) to "value". */ static __isl_give isl_map *map_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value, int upper) { int i; map = isl_map_cow(map); if (!map) return NULL; if (pos >= isl_map_dim(map, type)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = basic_map_bound(map->p[i], type, pos, value, upper); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_lower_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { return map_bound(map, type, pos, value, 0); } __isl_give isl_map *isl_map_upper_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { return map_bound(map, type, pos, value, 1); } __isl_give isl_set *isl_set_lower_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return isl_map_lower_bound(set, type, pos, value); } __isl_give isl_set *isl_set_upper_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return isl_map_upper_bound(set, type, pos, value); } /* Force the values of the variable at position "pos" of type "type" of "set" * to be no smaller than "value". */ __isl_give isl_set *isl_set_lower_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value) { if (!value) goto error; if (!isl_val_is_int(value)) isl_die(isl_set_get_ctx(set), isl_error_invalid, "expecting integer value", goto error); set = isl_set_lower_bound(set, type, pos, value->n); isl_val_free(value); return set; error: isl_val_free(value); isl_set_free(set); return NULL; } /* Force the values of the variable at position "pos" of type "type" of "set" * to be no greater than "value". */ __isl_give isl_set *isl_set_upper_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value) { if (!value) goto error; if (!isl_val_is_int(value)) isl_die(isl_set_get_ctx(set), isl_error_invalid, "expecting integer value", goto error); set = isl_set_upper_bound(set, type, pos, value->n); isl_val_free(value); return set; error: isl_val_free(value); isl_set_free(set); return NULL; } struct isl_set *isl_set_lower_bound_dim(struct isl_set *set, unsigned dim, isl_int value) { int i; set = isl_set_cow(set); if (!set) return NULL; isl_assert(set->ctx, dim < isl_set_n_dim(set), goto error); for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_lower_bound_dim(set->p[i], dim, value); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } struct isl_map *isl_map_reverse(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_reverse(map->dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reverse(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } #undef TYPE #define TYPE isl_pw_multi_aff #undef SUFFIX #define SUFFIX _pw_multi_aff #undef EMPTY #define EMPTY isl_pw_multi_aff_empty #undef ADD #define ADD isl_pw_multi_aff_union_add #include "isl_map_lexopt_templ.c" /* Given a map "map", compute the lexicographically minimal * (or maximal) image element for each domain element in dom, * in the form of an isl_pw_multi_aff. * If "empty" is not NULL, then set *empty to those elements in dom that * do not have an image element. * If "flags" includes ISL_OPT_FULL, then "dom" is NULL and the optimum * should be computed over the domain of "map". "empty" is also NULL * in this case. * * We first compute the lexicographically minimal or maximal element * in the first basic map. This results in a partial solution "res" * and a subset "todo" of dom that still need to be handled. * We then consider each of the remaining maps in "map" and successively * update both "res" and "todo". * If "empty" is NULL, then the todo sets are not needed and therefore * also not computed. */ static __isl_give isl_pw_multi_aff *isl_map_partial_lexopt_aligned_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, unsigned flags) { int i; int full; isl_pw_multi_aff *res; isl_set *todo; full = ISL_FL_ISSET(flags, ISL_OPT_FULL); if (!map || (!full && !dom)) goto error; if (isl_map_plain_is_empty(map)) { if (empty) *empty = dom; else isl_set_free(dom); return isl_pw_multi_aff_from_map(map); } res = basic_map_partial_lexopt_pw_multi_aff( isl_basic_map_copy(map->p[0]), isl_set_copy(dom), empty, flags); if (empty) todo = *empty; for (i = 1; i < map->n; ++i) { isl_pw_multi_aff *res_i; res_i = basic_map_partial_lexopt_pw_multi_aff( isl_basic_map_copy(map->p[i]), isl_set_copy(dom), empty, flags); if (ISL_FL_ISSET(flags, ISL_OPT_MAX)) res = isl_pw_multi_aff_union_lexmax(res, res_i); else res = isl_pw_multi_aff_union_lexmin(res, res_i); if (empty) todo = isl_set_intersect(todo, *empty); } isl_set_free(dom); isl_map_free(map); if (empty) *empty = todo; return res; error: if (empty) *empty = NULL; isl_set_free(dom); isl_map_free(map); return NULL; } #undef TYPE #define TYPE isl_map #undef SUFFIX #define SUFFIX #undef EMPTY #define EMPTY isl_map_empty #undef ADD #define ADD isl_map_union_disjoint #include "isl_map_lexopt_templ.c" /* Given a map "map", compute the lexicographically minimal * (or maximal) image element for each domain element in "dom", * in the form of an isl_map. * If "empty" is not NULL, then set *empty to those elements in "dom" that * do not have an image element. * If "flags" includes ISL_OPT_FULL, then "dom" is NULL and the optimum * should be computed over the domain of "map". "empty" is also NULL * in this case. * * If the input consists of more than one disjunct, then first * compute the desired result in the form of an isl_pw_multi_aff and * then convert that into an isl_map. * * This function used to have an explicit implementation in terms * of isl_maps, but it would continually intersect the domains of * partial results with the complement of the domain of the next * partial solution, potentially leading to an explosion in the number * of disjuncts if there are several disjuncts in the input. * An even earlier implementation of this function would look for * better results in the domain of the partial result and for extra * results in the complement of this domain, which would lead to * even more splintering. */ static __isl_give isl_map *isl_map_partial_lexopt_aligned( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, unsigned flags) { int full; struct isl_map *res; isl_pw_multi_aff *pma; full = ISL_FL_ISSET(flags, ISL_OPT_FULL); if (!map || (!full && !dom)) goto error; if (isl_map_plain_is_empty(map)) { if (empty) *empty = dom; else isl_set_free(dom); return map; } if (map->n == 1) { res = basic_map_partial_lexopt(isl_basic_map_copy(map->p[0]), dom, empty, flags); isl_map_free(map); return res; } pma = isl_map_partial_lexopt_aligned_pw_multi_aff(map, dom, empty, flags); return isl_map_from_pw_multi_aff(pma); error: if (empty) *empty = NULL; isl_set_free(dom); isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_partial_lexmax( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty) { return isl_map_partial_lexopt(map, dom, empty, ISL_OPT_MAX); } __isl_give isl_map *isl_map_partial_lexmin( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty) { return isl_map_partial_lexopt(map, dom, empty, 0); } __isl_give isl_set *isl_set_partial_lexmin( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty) { return set_from_map(isl_map_partial_lexmin(set_to_map(set), dom, empty)); } __isl_give isl_set *isl_set_partial_lexmax( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty) { return set_from_map(isl_map_partial_lexmax(set_to_map(set), dom, empty)); } /* Compute the lexicographic minimum (or maximum if "flags" includes * ISL_OPT_MAX) of "bset" over its parametric domain. */ __isl_give isl_set *isl_basic_set_lexopt(__isl_take isl_basic_set *bset, unsigned flags) { return isl_basic_map_lexopt(bset, flags); } __isl_give isl_map *isl_basic_map_lexmax(__isl_take isl_basic_map *bmap) { return isl_basic_map_lexopt(bmap, ISL_OPT_MAX); } __isl_give isl_set *isl_basic_set_lexmin(__isl_take isl_basic_set *bset) { return set_from_map(isl_basic_map_lexmin(bset_to_bmap(bset))); } __isl_give isl_set *isl_basic_set_lexmax(__isl_take isl_basic_set *bset) { return set_from_map(isl_basic_map_lexmax(bset_to_bmap(bset))); } /* Compute the lexicographic minimum of "bset" over its parametric domain * for the purpose of quantifier elimination. * That is, find an explicit representation for all the existentially * quantified variables in "bset" by computing their lexicographic * minimum. */ static __isl_give isl_set *isl_basic_set_lexmin_compute_divs( __isl_take isl_basic_set *bset) { return isl_basic_set_lexopt(bset, ISL_OPT_QE); } /* Extract the first and only affine expression from list * and then add it to *pwaff with the given dom. * This domain is known to be disjoint from other domains * because of the way isl_basic_map_foreach_lexmax works. */ static int update_dim_opt(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user) { isl_ctx *ctx = isl_basic_set_get_ctx(dom); isl_aff *aff; isl_pw_aff **pwaff = user; isl_pw_aff *pwaff_i; if (!list) goto error; if (isl_aff_list_n_aff(list) != 1) isl_die(ctx, isl_error_internal, "expecting single element list", goto error); aff = isl_aff_list_get_aff(list, 0); pwaff_i = isl_pw_aff_alloc(isl_set_from_basic_set(dom), aff); *pwaff = isl_pw_aff_add_disjoint(*pwaff, pwaff_i); isl_aff_list_free(list); return 0; error: isl_basic_set_free(dom); isl_aff_list_free(list); return -1; } /* Given a basic map with one output dimension, compute the minimum or * maximum of that dimension as an isl_pw_aff. * * The isl_pw_aff is constructed by having isl_basic_map_foreach_lexopt * call update_dim_opt on each leaf of the result. */ static __isl_give isl_pw_aff *basic_map_dim_opt(__isl_keep isl_basic_map *bmap, int max) { isl_space *dim = isl_basic_map_get_space(bmap); isl_pw_aff *pwaff; int r; dim = isl_space_from_domain(isl_space_domain(dim)); dim = isl_space_add_dims(dim, isl_dim_out, 1); pwaff = isl_pw_aff_empty(dim); r = isl_basic_map_foreach_lexopt(bmap, max, &update_dim_opt, &pwaff); if (r < 0) return isl_pw_aff_free(pwaff); return pwaff; } /* Compute the minimum or maximum of the given output dimension * as a function of the parameters and the input dimensions, * but independently of the other output dimensions. * * We first project out the other output dimension and then compute * the "lexicographic" maximum in each basic map, combining the results * using isl_pw_aff_union_max. */ static __isl_give isl_pw_aff *map_dim_opt(__isl_take isl_map *map, int pos, int max) { int i; isl_pw_aff *pwaff; unsigned n_out; n_out = isl_map_dim(map, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, pos + 1, n_out - (pos + 1)); map = isl_map_project_out(map, isl_dim_out, 0, pos); if (!map) return NULL; if (map->n == 0) { isl_space *dim = isl_map_get_space(map); isl_map_free(map); return isl_pw_aff_empty(dim); } pwaff = basic_map_dim_opt(map->p[0], max); for (i = 1; i < map->n; ++i) { isl_pw_aff *pwaff_i; pwaff_i = basic_map_dim_opt(map->p[i], max); pwaff = isl_pw_aff_union_opt(pwaff, pwaff_i, max); } isl_map_free(map); return pwaff; } /* Compute the minimum of the given output dimension as a function of the * parameters and input dimensions, but independently of * the other output dimensions. */ __isl_give isl_pw_aff *isl_map_dim_min(__isl_take isl_map *map, int pos) { return map_dim_opt(map, pos, 0); } /* Compute the maximum of the given output dimension as a function of the * parameters and input dimensions, but independently of * the other output dimensions. */ __isl_give isl_pw_aff *isl_map_dim_max(__isl_take isl_map *map, int pos) { return map_dim_opt(map, pos, 1); } /* Compute the minimum or maximum of the given set dimension * as a function of the parameters, * but independently of the other set dimensions. */ static __isl_give isl_pw_aff *set_dim_opt(__isl_take isl_set *set, int pos, int max) { return map_dim_opt(set, pos, max); } /* Compute the maximum of the given set dimension as a function of the * parameters, but independently of the other set dimensions. */ __isl_give isl_pw_aff *isl_set_dim_max(__isl_take isl_set *set, int pos) { return set_dim_opt(set, pos, 1); } /* Compute the minimum of the given set dimension as a function of the * parameters, but independently of the other set dimensions. */ __isl_give isl_pw_aff *isl_set_dim_min(__isl_take isl_set *set, int pos) { return set_dim_opt(set, pos, 0); } /* Apply a preimage specified by "mat" on the parameters of "bset". * bset is assumed to have only parameters and divs. */ static struct isl_basic_set *basic_set_parameter_preimage( struct isl_basic_set *bset, struct isl_mat *mat) { unsigned nparam; if (!bset || !mat) goto error; bset->dim = isl_space_cow(bset->dim); if (!bset->dim) goto error; nparam = isl_basic_set_dim(bset, isl_dim_param); isl_assert(bset->ctx, mat->n_row == 1 + nparam, goto error); bset->dim->nparam = 0; bset->dim->n_out = nparam; bset = isl_basic_set_preimage(bset, mat); if (bset) { bset->dim->nparam = bset->dim->n_out; bset->dim->n_out = 0; } return bset; error: isl_mat_free(mat); isl_basic_set_free(bset); return NULL; } /* Apply a preimage specified by "mat" on the parameters of "set". * set is assumed to have only parameters and divs. */ static __isl_give isl_set *set_parameter_preimage(__isl_take isl_set *set, __isl_take isl_mat *mat) { isl_space *space; unsigned nparam; if (!set || !mat) goto error; nparam = isl_set_dim(set, isl_dim_param); if (mat->n_row != 1 + nparam) isl_die(isl_set_get_ctx(set), isl_error_internal, "unexpected number of rows", goto error); space = isl_set_get_space(set); space = isl_space_move_dims(space, isl_dim_set, 0, isl_dim_param, 0, nparam); set = isl_set_reset_space(set, space); set = isl_set_preimage(set, mat); nparam = isl_set_dim(set, isl_dim_out); space = isl_set_get_space(set); space = isl_space_move_dims(space, isl_dim_param, 0, isl_dim_out, 0, nparam); set = isl_set_reset_space(set, space); return set; error: isl_mat_free(mat); isl_set_free(set); return NULL; } /* Intersect the basic set "bset" with the affine space specified by the * equalities in "eq". */ static struct isl_basic_set *basic_set_append_equalities( struct isl_basic_set *bset, struct isl_mat *eq) { int i, k; unsigned len; if (!bset || !eq) goto error; bset = isl_basic_set_extend_space(bset, isl_space_copy(bset->dim), 0, eq->n_row, 0); if (!bset) goto error; len = 1 + isl_space_dim(bset->dim, isl_dim_all) + bset->extra; for (i = 0; i < eq->n_row; ++i) { k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], eq->row[i], eq->n_col); isl_seq_clr(bset->eq[k] + eq->n_col, len - eq->n_col); } isl_mat_free(eq); bset = isl_basic_set_gauss(bset, NULL); bset = isl_basic_set_finalize(bset); return bset; error: isl_mat_free(eq); isl_basic_set_free(bset); return NULL; } /* Intersect the set "set" with the affine space specified by the * equalities in "eq". */ static struct isl_set *set_append_equalities(struct isl_set *set, struct isl_mat *eq) { int i; if (!set || !eq) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = basic_set_append_equalities(set->p[i], isl_mat_copy(eq)); if (!set->p[i]) goto error; } isl_mat_free(eq); return set; error: isl_mat_free(eq); isl_set_free(set); return NULL; } /* Given a basic set "bset" that only involves parameters and existentially * quantified variables, return the index of the first equality * that only involves parameters. If there is no such equality then * return bset->n_eq. * * This function assumes that isl_basic_set_gauss has been called on "bset". */ static int first_parameter_equality(__isl_keep isl_basic_set *bset) { int i, j; unsigned nparam, n_div; if (!bset) return -1; nparam = isl_basic_set_dim(bset, isl_dim_param); n_div = isl_basic_set_dim(bset, isl_dim_div); for (i = 0, j = n_div - 1; i < bset->n_eq && j >= 0; --j) { if (!isl_int_is_zero(bset->eq[i][1 + nparam + j])) ++i; } return i; } /* Compute an explicit representation for the existentially quantified * variables in "bset" by computing the "minimal value" of the set * variables. Since there are no set variables, the computation of * the minimal value essentially computes an explicit representation * of the non-empty part(s) of "bset". * * The input only involves parameters and existentially quantified variables. * All equalities among parameters have been removed. * * Since the existentially quantified variables in the result are in general * going to be different from those in the input, we first replace * them by the minimal number of variables based on their equalities. * This should simplify the parametric integer programming. */ static __isl_give isl_set *base_compute_divs(__isl_take isl_basic_set *bset) { isl_morph *morph1, *morph2; isl_set *set; unsigned n; if (!bset) return NULL; if (bset->n_eq == 0) return isl_basic_set_lexmin_compute_divs(bset); morph1 = isl_basic_set_parameter_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph1), bset); bset = isl_basic_set_lift(bset); morph2 = isl_basic_set_variable_compression(bset, isl_dim_set); bset = isl_morph_basic_set(morph2, bset); n = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_project_out(bset, isl_dim_set, 0, n); set = isl_basic_set_lexmin_compute_divs(bset); set = isl_morph_set(isl_morph_inverse(morph1), set); return set; } /* Project the given basic set onto its parameter domain, possibly introducing * new, explicit, existential variables in the constraints. * The input has parameters and (possibly implicit) existential variables. * The output has the same parameters, but only * explicit existentially quantified variables. * * The actual projection is performed by pip, but pip doesn't seem * to like equalities very much, so we first remove the equalities * among the parameters by performing a variable compression on * the parameters. Afterward, an inverse transformation is performed * and the equalities among the parameters are inserted back in. * * The variable compression on the parameters may uncover additional * equalities that were only implicit before. We therefore check * if there are any new parameter equalities in the result and * if so recurse. The removal of parameter equalities is required * for the parameter compression performed by base_compute_divs. */ static struct isl_set *parameter_compute_divs(struct isl_basic_set *bset) { int i; struct isl_mat *eq; struct isl_mat *T, *T2; struct isl_set *set; unsigned nparam; bset = isl_basic_set_cow(bset); if (!bset) return NULL; if (bset->n_eq == 0) return base_compute_divs(bset); bset = isl_basic_set_gauss(bset, NULL); if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_set_from_basic_set(bset); i = first_parameter_equality(bset); if (i == bset->n_eq) return base_compute_divs(bset); nparam = isl_basic_set_dim(bset, isl_dim_param); eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, i, bset->n_eq - i, 0, 1 + nparam); eq = isl_mat_cow(eq); T = isl_mat_variable_compression(isl_mat_copy(eq), &T2); if (T && T->n_col == 0) { isl_mat_free(T); isl_mat_free(T2); isl_mat_free(eq); bset = isl_basic_set_set_to_empty(bset); return isl_set_from_basic_set(bset); } bset = basic_set_parameter_preimage(bset, T); i = first_parameter_equality(bset); if (!bset) set = NULL; else if (i == bset->n_eq) set = base_compute_divs(bset); else set = parameter_compute_divs(bset); set = set_parameter_preimage(set, T2); set = set_append_equalities(set, eq); return set; } /* Insert the divs from "ls" before those of "bmap". * * The number of columns is not changed, which means that the last * dimensions of "bmap" are being reintepreted as the divs from "ls". * The caller is responsible for removing the same number of dimensions * from the space of "bmap". */ static __isl_give isl_basic_map *insert_divs_from_local_space( __isl_take isl_basic_map *bmap, __isl_keep isl_local_space *ls) { int i; int n_div; int old_n_div; n_div = isl_local_space_dim(ls, isl_dim_div); if (n_div == 0) return bmap; old_n_div = bmap->n_div; bmap = insert_div_rows(bmap, n_div); if (!bmap) return NULL; for (i = 0; i < n_div; ++i) { isl_seq_cpy(bmap->div[i], ls->div->row[i], ls->div->n_col); isl_seq_clr(bmap->div[i] + ls->div->n_col, old_n_div); } return bmap; } /* Replace the space of "bmap" by the space and divs of "ls". * * If "ls" has any divs, then we simplify the result since we may * have discovered some additional equalities that could simplify * the div expressions. */ static __isl_give isl_basic_map *basic_replace_space_by_local_space( __isl_take isl_basic_map *bmap, __isl_take isl_local_space *ls) { int n_div; bmap = isl_basic_map_cow(bmap); if (!bmap || !ls) goto error; n_div = isl_local_space_dim(ls, isl_dim_div); bmap = insert_divs_from_local_space(bmap, ls); if (!bmap) goto error; isl_space_free(bmap->dim); bmap->dim = isl_local_space_get_space(ls); if (!bmap->dim) goto error; isl_local_space_free(ls); if (n_div > 0) bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); isl_local_space_free(ls); return NULL; } /* Replace the space of "map" by the space and divs of "ls". */ static __isl_give isl_map *replace_space_by_local_space(__isl_take isl_map *map, __isl_take isl_local_space *ls) { int i; map = isl_map_cow(map); if (!map || !ls) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = basic_replace_space_by_local_space(map->p[i], isl_local_space_copy(ls)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = isl_local_space_get_space(ls); if (!map->dim) goto error; isl_local_space_free(ls); return map; error: isl_local_space_free(ls); isl_map_free(map); return NULL; } /* Compute an explicit representation for the existentially * quantified variables for which do not know any explicit representation yet. * * We first sort the existentially quantified variables so that the * existentially quantified variables for which we already have an explicit * representation are placed before those for which we do not. * The input dimensions, the output dimensions and the existentially * quantified variables for which we already have an explicit * representation are then turned into parameters. * compute_divs returns a map with the same parameters and * no input or output dimensions and the dimension specification * is reset to that of the input, including the existentially quantified * variables for which we already had an explicit representation. */ static struct isl_map *compute_divs(struct isl_basic_map *bmap) { struct isl_basic_set *bset; struct isl_set *set; struct isl_map *map; isl_space *dim; isl_local_space *ls; unsigned nparam; unsigned n_in; unsigned n_out; int n_known; int i; bmap = isl_basic_map_sort_divs(bmap); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; n_known = isl_basic_map_first_unknown_div(bmap); if (n_known < 0) return isl_map_from_basic_map(isl_basic_map_free(bmap)); nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_set_alloc(bmap->ctx, nparam + n_in + n_out + n_known, 0); if (!dim) goto error; ls = isl_basic_map_get_local_space(bmap); ls = isl_local_space_drop_dims(ls, isl_dim_div, n_known, bmap->n_div - n_known); if (n_known > 0) { for (i = n_known; i < bmap->n_div; ++i) swap_div(bmap, i - n_known, i); bmap->n_div -= n_known; bmap->extra -= n_known; } bmap = isl_basic_map_reset_space(bmap, dim); bset = bset_from_bmap(bmap); set = parameter_compute_divs(bset); map = set_to_map(set); map = replace_space_by_local_space(map, ls); return map; error: isl_basic_map_free(bmap); return NULL; } /* Remove the explicit representation of local variable "div", * if there is any. */ __isl_give isl_basic_map *isl_basic_map_mark_div_unknown( __isl_take isl_basic_map *bmap, int div) { isl_bool unknown; unknown = isl_basic_map_div_is_marked_unknown(bmap, div); if (unknown < 0) return isl_basic_map_free(bmap); if (unknown) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; isl_int_set_si(bmap->div[div][0], 0); return bmap; } /* Is local variable "div" of "bmap" marked as not having an explicit * representation? * Note that even if "div" is not marked in this way and therefore * has an explicit representation, this representation may still * depend (indirectly) on other local variables that do not * have an explicit representation. */ isl_bool isl_basic_map_div_is_marked_unknown(__isl_keep isl_basic_map *bmap, int div) { if (!bmap) return isl_bool_error; if (div < 0 || div >= isl_basic_map_dim(bmap, isl_dim_div)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "position out of bounds", return isl_bool_error); return isl_int_is_zero(bmap->div[div][0]); } /* Return the position of the first local variable that does not * have an explicit representation. * Return the total number of local variables if they all have * an explicit representation. * Return -1 on error. */ int isl_basic_map_first_unknown_div(__isl_keep isl_basic_map *bmap) { int i; if (!bmap) return -1; for (i = 0; i < bmap->n_div; ++i) { if (!isl_basic_map_div_is_known(bmap, i)) return i; } return bmap->n_div; } /* Return the position of the first local variable that does not * have an explicit representation. * Return the total number of local variables if they all have * an explicit representation. * Return -1 on error. */ int isl_basic_set_first_unknown_div(__isl_keep isl_basic_set *bset) { return isl_basic_map_first_unknown_div(bset); } /* Does "bmap" have an explicit representation for all local variables? */ isl_bool isl_basic_map_divs_known(__isl_keep isl_basic_map *bmap) { int first, n; n = isl_basic_map_dim(bmap, isl_dim_div); first = isl_basic_map_first_unknown_div(bmap); if (first < 0) return isl_bool_error; return first == n; } /* Do all basic maps in "map" have an explicit representation * for all local variables? */ isl_bool isl_map_divs_known(__isl_keep isl_map *map) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { int known = isl_basic_map_divs_known(map->p[i]); if (known <= 0) return known; } return isl_bool_true; } /* If bmap contains any unknown divs, then compute explicit * expressions for them. However, this computation may be * quite expensive, so first try to remove divs that aren't * strictly needed. */ struct isl_map *isl_basic_map_compute_divs(struct isl_basic_map *bmap) { int known; struct isl_map *map; known = isl_basic_map_divs_known(bmap); if (known < 0) goto error; if (known) return isl_map_from_basic_map(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); known = isl_basic_map_divs_known(bmap); if (known < 0) goto error; if (known) return isl_map_from_basic_map(bmap); map = compute_divs(bmap); return map; error: isl_basic_map_free(bmap); return NULL; } struct isl_map *isl_map_compute_divs(struct isl_map *map) { int i; int known; struct isl_map *res; if (!map) return NULL; if (map->n == 0) return map; known = isl_map_divs_known(map); if (known < 0) { isl_map_free(map); return NULL; } if (known) return map; res = isl_basic_map_compute_divs(isl_basic_map_copy(map->p[0])); for (i = 1 ; i < map->n; ++i) { struct isl_map *r2; r2 = isl_basic_map_compute_divs(isl_basic_map_copy(map->p[i])); if (ISL_F_ISSET(map, ISL_MAP_DISJOINT)) res = isl_map_union_disjoint(res, r2); else res = isl_map_union(res, r2); } isl_map_free(map); return res; } struct isl_set *isl_basic_set_compute_divs(struct isl_basic_set *bset) { return set_from_map(isl_basic_map_compute_divs(bset_to_bmap(bset))); } struct isl_set *isl_set_compute_divs(struct isl_set *set) { return set_from_map(isl_map_compute_divs(set_to_map(set))); } struct isl_set *isl_map_domain(struct isl_map *map) { int i; struct isl_set *set; if (!map) goto error; map = isl_map_cow(map); if (!map) return NULL; set = set_from_map(map); set->dim = isl_space_domain(set->dim); if (!set->dim) goto error; for (i = 0; i < map->n; ++i) { set->p[i] = isl_basic_map_domain(map->p[i]); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_MAP_DISJOINT); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_map_free(map); return NULL; } /* Return the union of "map1" and "map2", where we assume for now that * "map1" and "map2" are disjoint. Note that the basic maps inside * "map1" or "map2" may not be disjoint from each other. * Also note that this function is also called from isl_map_union, * which takes care of handling the situation where "map1" and "map2" * may not be disjoint. * * If one of the inputs is empty, we can simply return the other input. * Similarly, if one of the inputs is universal, then it is equal to the union. */ static __isl_give isl_map *map_union_disjoint(__isl_take isl_map *map1, __isl_take isl_map *map2) { int i; unsigned flags = 0; struct isl_map *map = NULL; int is_universe; if (!map1 || !map2) goto error; if (!isl_space_is_equal(map1->dim, map2->dim)) isl_die(isl_map_get_ctx(map1), isl_error_invalid, "spaces don't match", goto error); if (map1->n == 0) { isl_map_free(map1); return map2; } if (map2->n == 0) { isl_map_free(map2); return map1; } is_universe = isl_map_plain_is_universe(map1); if (is_universe < 0) goto error; if (is_universe) { isl_map_free(map2); return map1; } is_universe = isl_map_plain_is_universe(map2); if (is_universe < 0) goto error; if (is_universe) { isl_map_free(map1); return map2; } if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); map = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n + map2->n, flags); if (!map) goto error; for (i = 0; i < map1->n; ++i) { map = isl_map_add_basic_map(map, isl_basic_map_copy(map1->p[i])); if (!map) goto error; } for (i = 0; i < map2->n; ++i) { map = isl_map_add_basic_map(map, isl_basic_map_copy(map2->p[i])); if (!map) goto error; } isl_map_free(map1); isl_map_free(map2); return map; error: isl_map_free(map); isl_map_free(map1); isl_map_free(map2); return NULL; } /* Return the union of "map1" and "map2", where "map1" and "map2" are * guaranteed to be disjoint by the caller. * * Note that this functions is called from within isl_map_make_disjoint, * so we have to be careful not to touch the constraints of the inputs * in any way. */ __isl_give isl_map *isl_map_union_disjoint(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_union_disjoint); } /* Return the union of "map1" and "map2", where "map1" and "map2" may * not be disjoint. The parameters are assumed to have been aligned. * * We currently simply call map_union_disjoint, the internal operation * of which does not really depend on the inputs being disjoint. * If the result contains more than one basic map, then we clear * the disjoint flag since the result may contain basic maps from * both inputs and these are not guaranteed to be disjoint. * * As a special case, if "map1" and "map2" are obviously equal, * then we simply return "map1". */ static __isl_give isl_map *map_union_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { int equal; if (!map1 || !map2) goto error; equal = isl_map_plain_is_equal(map1, map2); if (equal < 0) goto error; if (equal) { isl_map_free(map2); return map1; } map1 = map_union_disjoint(map1, map2); if (!map1) return NULL; if (map1->n > 1) ISL_F_CLR(map1, ISL_MAP_DISJOINT); return map1; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* Return the union of "map1" and "map2", where "map1" and "map2" may * not be disjoint. */ __isl_give isl_map *isl_map_union(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_union_aligned); } struct isl_set *isl_set_union_disjoint( struct isl_set *set1, struct isl_set *set2) { return set_from_map(isl_map_union_disjoint(set_to_map(set1), set_to_map(set2))); } struct isl_set *isl_set_union(struct isl_set *set1, struct isl_set *set2) { return set_from_map(isl_map_union(set_to_map(set1), set_to_map(set2))); } /* Apply "fn" to pairs of elements from "map" and "set" and collect * the results. * * "map" and "set" are assumed to be compatible and non-NULL. */ static __isl_give isl_map *map_intersect_set(__isl_take isl_map *map, __isl_take isl_set *set, __isl_give isl_basic_map *fn(__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset)) { unsigned flags = 0; struct isl_map *result; int i, j; if (isl_set_plain_is_universe(set)) { isl_set_free(set); return map; } if (ISL_F_ISSET(map, ISL_MAP_DISJOINT) && ISL_F_ISSET(set, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(isl_space_copy(map->dim), map->n * set->n, flags); for (i = 0; result && i < map->n; ++i) for (j = 0; j < set->n; ++j) { result = isl_map_add_basic_map(result, fn(isl_basic_map_copy(map->p[i]), isl_basic_set_copy(set->p[j]))); if (!result) break; } isl_map_free(map); isl_set_free(set); return result; } static __isl_give isl_map *map_intersect_range(__isl_take isl_map *map, __isl_take isl_set *set) { if (!map || !set) goto error; if (!isl_map_compatible_range(map, set)) isl_die(set->ctx, isl_error_invalid, "incompatible spaces", goto error); return map_intersect_set(map, set, &isl_basic_map_intersect_range); error: isl_map_free(map); isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_intersect_range(__isl_take isl_map *map, __isl_take isl_set *set) { return isl_map_align_params_map_map_and(map, set, &map_intersect_range); } static __isl_give isl_map *map_intersect_domain(__isl_take isl_map *map, __isl_take isl_set *set) { if (!map || !set) goto error; if (!isl_map_compatible_domain(map, set)) isl_die(set->ctx, isl_error_invalid, "incompatible spaces", goto error); return map_intersect_set(map, set, &isl_basic_map_intersect_domain); error: isl_map_free(map); isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_intersect_domain(__isl_take isl_map *map, __isl_take isl_set *set) { return isl_map_align_params_map_map_and(map, set, &map_intersect_domain); } static __isl_give isl_map *map_apply_domain(__isl_take isl_map *map1, __isl_take isl_map *map2) { if (!map1 || !map2) goto error; map1 = isl_map_reverse(map1); map1 = isl_map_apply_range(map1, map2); return isl_map_reverse(map1); error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_apply_domain(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_apply_domain); } static __isl_give isl_map *map_apply_range(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_space *dim_result; struct isl_map *result; int i, j; if (!map1 || !map2) goto error; dim_result = isl_space_join(isl_space_copy(map1->dim), isl_space_copy(map2->dim)); result = isl_map_alloc_space(dim_result, map1->n * map2->n, 0); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { result = isl_map_add_basic_map(result, isl_basic_map_apply_range( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j]))); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); if (result && result->n <= 1) ISL_F_SET(result, ISL_MAP_DISJOINT); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_apply_range(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_apply_range); } /* * returns range - domain */ struct isl_basic_set *isl_basic_map_deltas(struct isl_basic_map *bmap) { isl_space *target_space; struct isl_basic_set *bset; unsigned dim; unsigned nparam; int i; if (!bmap) goto error; isl_assert(bmap->ctx, isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bmap->dim, isl_dim_out), goto error); target_space = isl_space_domain(isl_basic_map_get_space(bmap)); dim = isl_basic_map_n_in(bmap); nparam = isl_basic_map_n_param(bmap); bmap = isl_basic_map_from_range(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_add_dims(bmap, isl_dim_in, dim); bmap = isl_basic_map_extend_constraints(bmap, dim, 0); for (i = 0; i < dim; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) { bmap = isl_basic_map_free(bmap); break; } isl_seq_clr(bmap->eq[j], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][1+nparam+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+dim+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+2*dim+i], -1); } bset = isl_basic_map_domain(bmap); bset = isl_basic_set_reset_space(bset, target_space); return bset; error: isl_basic_map_free(bmap); return NULL; } /* * returns range - domain */ __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map) { int i; isl_space *dim; struct isl_set *result; if (!map) return NULL; isl_assert(map->ctx, isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out), goto error); dim = isl_map_get_space(map); dim = isl_space_domain(dim); result = isl_set_alloc_space(dim, map->n, 0); if (!result) goto error; for (i = 0; i < map->n; ++i) result = isl_set_add_basic_set(result, isl_basic_map_deltas(isl_basic_map_copy(map->p[i]))); isl_map_free(map); return result; error: isl_map_free(map); return NULL; } /* * returns [domain -> range] -> range - domain */ __isl_give isl_basic_map *isl_basic_map_deltas_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *domain; int nparam, n; unsigned total; if (!isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bmap->dim, isl_dim_out)) isl_die(bmap->ctx, isl_error_invalid, "domain and range don't match", goto error); nparam = isl_basic_map_dim(bmap, isl_dim_param); n = isl_basic_map_dim(bmap, isl_dim_in); dim = isl_space_from_range(isl_space_domain(isl_basic_map_get_space(bmap))); domain = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, domain); bmap = isl_basic_map_extend_constraints(bmap, n, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + i], 1); isl_int_set_si(bmap->eq[k][1 + nparam + n + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n + n + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* * returns [domain -> range] -> range - domain */ __isl_give isl_map *isl_map_deltas_map(__isl_take isl_map *map) { int i; isl_space *domain_dim; if (!map) return NULL; if (!isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out)) isl_die(map->ctx, isl_error_invalid, "domain and range don't match", goto error); map = isl_map_cow(map); if (!map) return NULL; domain_dim = isl_space_from_range(isl_space_domain(isl_map_get_space(map))); map->dim = isl_space_from_domain(isl_space_wrap(map->dim)); map->dim = isl_space_join(map->dim, domain_dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_deltas_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } static __isl_give isl_basic_map *basic_map_identity(__isl_take isl_space *dims) { struct isl_basic_map *bmap; unsigned nparam; unsigned dim; int i; if (!dims) return NULL; nparam = dims->nparam; dim = dims->n_out; bmap = isl_basic_map_alloc_space(dims, 0, dim, 0); if (!bmap) goto error; for (i = 0; i < dim; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][1+nparam+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+dim+i], -1); } return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_identity(__isl_take isl_space *dim) { if (!dim) return NULL; if (dim->n_in != dim->n_out) isl_die(dim->ctx, isl_error_invalid, "number of input and output dimensions needs to be " "the same", goto error); return basic_map_identity(dim); error: isl_space_free(dim); return NULL; } __isl_give isl_map *isl_map_identity(__isl_take isl_space *dim) { return isl_map_from_basic_map(isl_basic_map_identity(dim)); } __isl_give isl_map *isl_set_identity(__isl_take isl_set *set) { isl_space *dim = isl_set_get_space(set); isl_map *id; id = isl_map_identity(isl_space_map_from_set(dim)); return isl_map_intersect_range(id, set); } /* Construct a basic set with all set dimensions having only non-negative * values. */ __isl_give isl_basic_set *isl_basic_set_positive_orthant( __isl_take isl_space *space) { int i; unsigned nparam; unsigned dim; struct isl_basic_set *bset; if (!space) return NULL; nparam = space->nparam; dim = space->n_out; bset = isl_basic_set_alloc_space(space, 0, 0, dim); if (!bset) return NULL; for (i = 0; i < dim; ++i) { int k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset)); isl_int_set_si(bset->ineq[k][1 + nparam + i], 1); } return bset; error: isl_basic_set_free(bset); return NULL; } /* Construct the half-space x_pos >= 0. */ static __isl_give isl_basic_set *nonneg_halfspace(__isl_take isl_space *dim, int pos) { int k; isl_basic_set *nonneg; nonneg = isl_basic_set_alloc_space(dim, 0, 0, 1); k = isl_basic_set_alloc_inequality(nonneg); if (k < 0) goto error; isl_seq_clr(nonneg->ineq[k], 1 + isl_basic_set_total_dim(nonneg)); isl_int_set_si(nonneg->ineq[k][pos], 1); return isl_basic_set_finalize(nonneg); error: isl_basic_set_free(nonneg); return NULL; } /* Construct the half-space x_pos <= -1. */ static __isl_give isl_basic_set *neg_halfspace(__isl_take isl_space *dim, int pos) { int k; isl_basic_set *neg; neg = isl_basic_set_alloc_space(dim, 0, 0, 1); k = isl_basic_set_alloc_inequality(neg); if (k < 0) goto error; isl_seq_clr(neg->ineq[k], 1 + isl_basic_set_total_dim(neg)); isl_int_set_si(neg->ineq[k][0], -1); isl_int_set_si(neg->ineq[k][pos], -1); return isl_basic_set_finalize(neg); error: isl_basic_set_free(neg); return NULL; } __isl_give isl_set *isl_set_split_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned offset; isl_basic_set *nonneg; isl_basic_set *neg; if (!set) return NULL; if (n == 0) return set; isl_assert(set->ctx, first + n <= isl_set_dim(set, type), goto error); offset = pos(set->dim, type); for (i = 0; i < n; ++i) { nonneg = nonneg_halfspace(isl_set_get_space(set), offset + first + i); neg = neg_halfspace(isl_set_get_space(set), offset + first + i); set = isl_set_intersect(set, isl_basic_set_union(nonneg, neg)); } return set; error: isl_set_free(set); return NULL; } static int foreach_orthant(__isl_take isl_set *set, int *signs, int first, int len, int (*fn)(__isl_take isl_set *orthant, int *signs, void *user), void *user) { isl_set *half; if (!set) return -1; if (isl_set_plain_is_empty(set)) { isl_set_free(set); return 0; } if (first == len) return fn(set, signs, user); signs[first] = 1; half = isl_set_from_basic_set(nonneg_halfspace(isl_set_get_space(set), 1 + first)); half = isl_set_intersect(half, isl_set_copy(set)); if (foreach_orthant(half, signs, first + 1, len, fn, user) < 0) goto error; signs[first] = -1; half = isl_set_from_basic_set(neg_halfspace(isl_set_get_space(set), 1 + first)); half = isl_set_intersect(half, set); return foreach_orthant(half, signs, first + 1, len, fn, user); error: isl_set_free(set); return -1; } /* Call "fn" on the intersections of "set" with each of the orthants * (except for obviously empty intersections). The orthant is identified * by the signs array, with each entry having value 1 or -1 according * to the sign of the corresponding variable. */ int isl_set_foreach_orthant(__isl_keep isl_set *set, int (*fn)(__isl_take isl_set *orthant, int *signs, void *user), void *user) { unsigned nparam; unsigned nvar; int *signs; int r; if (!set) return -1; if (isl_set_plain_is_empty(set)) return 0; nparam = isl_set_dim(set, isl_dim_param); nvar = isl_set_dim(set, isl_dim_set); signs = isl_alloc_array(set->ctx, int, nparam + nvar); r = foreach_orthant(isl_set_copy(set), signs, 0, nparam + nvar, fn, user); free(signs); return r; } isl_bool isl_set_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_equal(set_to_map(set1), set_to_map(set2)); } isl_bool isl_basic_map_is_subset(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int is_subset; struct isl_map *map1; struct isl_map *map2; if (!bmap1 || !bmap2) return isl_bool_error; map1 = isl_map_from_basic_map(isl_basic_map_copy(bmap1)); map2 = isl_map_from_basic_map(isl_basic_map_copy(bmap2)); is_subset = isl_map_is_subset(map1, map2); isl_map_free(map1); isl_map_free(map2); return is_subset; } isl_bool isl_basic_set_is_subset(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_is_subset(bset1, bset2); } isl_bool isl_basic_map_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { isl_bool is_subset; if (!bmap1 || !bmap2) return isl_bool_error; is_subset = isl_basic_map_is_subset(bmap1, bmap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_basic_map_is_subset(bmap2, bmap1); return is_subset; } isl_bool isl_basic_set_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_is_equal( bset_to_bmap(bset1), bset_to_bmap(bset2)); } isl_bool isl_map_is_empty(__isl_keep isl_map *map) { int i; int is_empty; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { is_empty = isl_basic_map_is_empty(map->p[i]); if (is_empty < 0) return isl_bool_error; if (!is_empty) return isl_bool_false; } return isl_bool_true; } isl_bool isl_map_plain_is_empty(__isl_keep isl_map *map) { return map ? map->n == 0 : isl_bool_error; } isl_bool isl_set_plain_is_empty(__isl_keep isl_set *set) { return set ? set->n == 0 : isl_bool_error; } isl_bool isl_set_is_empty(__isl_keep isl_set *set) { return isl_map_is_empty(set_to_map(set)); } int isl_map_has_equal_space(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { if (!map1 || !map2) return -1; return isl_space_is_equal(map1->dim, map2->dim); } int isl_set_has_equal_space(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { if (!set1 || !set2) return -1; return isl_space_is_equal(set1->dim, set2->dim); } static isl_bool map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool is_subset; if (!map1 || !map2) return isl_bool_error; is_subset = isl_map_is_subset(map1, map2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_map_is_subset(map2, map1); return is_subset; } /* Is "map1" equal to "map2"? * * First check if they are obviously equal. * If not, then perform a more detailed analysis. */ isl_bool isl_map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool equal; equal = isl_map_plain_is_equal(map1, map2); if (equal < 0 || equal) return equal; return isl_map_align_params_map_map_and_test(map1, map2, &map_is_equal); } isl_bool isl_basic_map_is_strict_subset( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_bool is_subset; if (!bmap1 || !bmap2) return isl_bool_error; is_subset = isl_basic_map_is_subset(bmap1, bmap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_basic_map_is_subset(bmap2, bmap1); if (is_subset == isl_bool_error) return is_subset; return !is_subset; } isl_bool isl_map_is_strict_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool is_subset; if (!map1 || !map2) return isl_bool_error; is_subset = isl_map_is_subset(map1, map2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_map_is_subset(map2, map1); if (is_subset == isl_bool_error) return is_subset; return !is_subset; } isl_bool isl_set_is_strict_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_strict_subset(set_to_map(set1), set_to_map(set2)); } /* Is "bmap" obviously equal to the universe with the same space? * * That is, does it not have any constraints? */ isl_bool isl_basic_map_plain_is_universe(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return bmap->n_eq == 0 && bmap->n_ineq == 0; } /* Is "bset" obviously equal to the universe with the same space? */ isl_bool isl_basic_set_plain_is_universe(__isl_keep isl_basic_set *bset) { return isl_basic_map_plain_is_universe(bset); } /* If "c" does not involve any existentially quantified variables, * then set *univ to false and abort */ static isl_stat involves_divs(__isl_take isl_constraint *c, void *user) { isl_bool *univ = user; unsigned n; n = isl_constraint_dim(c, isl_dim_div); *univ = isl_constraint_involves_dims(c, isl_dim_div, 0, n); isl_constraint_free(c); if (*univ < 0 || !*univ) return isl_stat_error; return isl_stat_ok; } /* Is "bmap" equal to the universe with the same space? * * First check if it is obviously equal to the universe. * If not and if there are any constraints not involving * existentially quantified variables, then it is certainly * not equal to the universe. * Otherwise, check if the universe is a subset of "bmap". */ isl_bool isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap) { isl_bool univ; isl_basic_map *test; univ = isl_basic_map_plain_is_universe(bmap); if (univ < 0 || univ) return univ; if (isl_basic_map_dim(bmap, isl_dim_div) == 0) return isl_bool_false; univ = isl_bool_true; if (isl_basic_map_foreach_constraint(bmap, &involves_divs, &univ) < 0 && univ) return isl_bool_error; if (univ < 0 || !univ) return univ; test = isl_basic_map_universe(isl_basic_map_get_space(bmap)); univ = isl_basic_map_is_subset(test, bmap); isl_basic_map_free(test); return univ; } /* Is "bset" equal to the universe with the same space? */ isl_bool isl_basic_set_is_universe(__isl_keep isl_basic_set *bset) { return isl_basic_map_is_universe(bset); } isl_bool isl_map_plain_is_universe(__isl_keep isl_map *map) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool r = isl_basic_map_plain_is_universe(map->p[i]); if (r < 0 || r) return r; } return isl_bool_false; } isl_bool isl_set_plain_is_universe(__isl_keep isl_set *set) { return isl_map_plain_is_universe(set_to_map(set)); } isl_bool isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap) { struct isl_basic_set *bset = NULL; struct isl_vec *sample = NULL; isl_bool empty, non_empty; if (!bmap) return isl_bool_error; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return isl_bool_true; if (isl_basic_map_plain_is_universe(bmap)) return isl_bool_false; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) { struct isl_basic_map *copy = isl_basic_map_copy(bmap); copy = isl_basic_map_remove_redundancies(copy); empty = isl_basic_map_plain_is_empty(copy); isl_basic_map_free(copy); return empty; } non_empty = isl_basic_map_plain_is_non_empty(bmap); if (non_empty < 0) return isl_bool_error; if (non_empty) return isl_bool_false; isl_vec_free(bmap->sample); bmap->sample = NULL; bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); if (!bset) return isl_bool_error; sample = isl_basic_set_sample_vec(bset); if (!sample) return isl_bool_error; empty = sample->size == 0; isl_vec_free(bmap->sample); bmap->sample = sample; if (empty) ISL_F_SET(bmap, ISL_BASIC_MAP_EMPTY); return empty; } isl_bool isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY); } isl_bool isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset) { if (!bset) return isl_bool_error; return ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY); } /* Is "bmap" known to be non-empty? * * That is, is the cached sample still valid? */ isl_bool isl_basic_map_plain_is_non_empty(__isl_keep isl_basic_map *bmap) { unsigned total; if (!bmap) return isl_bool_error; if (!bmap->sample) return isl_bool_false; total = 1 + isl_basic_map_total_dim(bmap); if (bmap->sample->size != total) return isl_bool_false; return isl_basic_map_contains(bmap, bmap->sample); } isl_bool isl_basic_set_is_empty(__isl_keep isl_basic_set *bset) { return isl_basic_map_is_empty(bset_to_bmap(bset)); } struct isl_map *isl_basic_map_union( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { struct isl_map *map; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); map = isl_map_alloc_space(isl_space_copy(bmap1->dim), 2, 0); if (!map) goto error; map = isl_map_add_basic_map(map, bmap1); map = isl_map_add_basic_map(map, bmap2); return map; error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_set *isl_basic_set_union( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { return set_from_map(isl_basic_map_union(bset_to_bmap(bset1), bset_to_bmap(bset2))); } /* Order divs such that any div only depends on previous divs */ struct isl_basic_map *isl_basic_map_order_divs(struct isl_basic_map *bmap) { int i; unsigned off; if (!bmap) return NULL; off = isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { int pos; if (isl_int_is_zero(bmap->div[i][0])) continue; pos = isl_seq_first_non_zero(bmap->div[i]+1+1+off+i, bmap->n_div-i); if (pos == -1) continue; if (pos == 0) isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal, "integer division depends on itself", return isl_basic_map_free(bmap)); isl_basic_map_swap_div(bmap, i, i + pos); --i; } return bmap; } struct isl_basic_set *isl_basic_set_order_divs(struct isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_order_divs(bset_to_bmap(bset))); } __isl_give isl_map *isl_map_order_divs(__isl_take isl_map *map) { int i; if (!map) return 0; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_order_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Sort the local variables of "bset". */ __isl_give isl_basic_set *isl_basic_set_sort_divs( __isl_take isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_sort_divs(bset_to_bmap(bset))); } /* Apply the expansion computed by isl_merge_divs. * The expansion itself is given by "exp" while the resulting * list of divs is given by "div". * * Move the integer divisions of "bmap" into the right position * according to "exp" and then introduce the additional integer * divisions, adding div constraints. * The moving should be done first to avoid moving coefficients * in the definitions of the extra integer divisions. */ __isl_give isl_basic_map *isl_basic_map_expand_divs( __isl_take isl_basic_map *bmap, __isl_take isl_mat *div, int *exp) { int i, j; int n_div; bmap = isl_basic_map_cow(bmap); if (!bmap || !div) goto error; if (div->n_row < bmap->n_div) isl_die(isl_mat_get_ctx(div), isl_error_invalid, "not an expansion", goto error); n_div = bmap->n_div; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), div->n_row - n_div, 0, 2 * (div->n_row - n_div)); for (i = n_div; i < div->n_row; ++i) if (isl_basic_map_alloc_div(bmap) < 0) goto error; for (j = n_div - 1; j >= 0; --j) { if (exp[j] == j) break; isl_basic_map_swap_div(bmap, j, exp[j]); } j = 0; for (i = 0; i < div->n_row; ++i) { if (j < n_div && exp[j] == i) { j++; } else { isl_seq_cpy(bmap->div[i], div->row[i], div->n_col); if (isl_basic_map_div_is_marked_unknown(bmap, i)) continue; if (isl_basic_map_add_div_constraints(bmap, i) < 0) goto error; } } isl_mat_free(div); return bmap; error: isl_basic_map_free(bmap); isl_mat_free(div); return NULL; } /* Apply the expansion computed by isl_merge_divs. * The expansion itself is given by "exp" while the resulting * list of divs is given by "div". */ __isl_give isl_basic_set *isl_basic_set_expand_divs( __isl_take isl_basic_set *bset, __isl_take isl_mat *div, int *exp) { return isl_basic_map_expand_divs(bset, div, exp); } /* Look for a div in dst that corresponds to the div "div" in src. * The divs before "div" in src and dst are assumed to be the same. * * Returns -1 if no corresponding div was found and the position * of the corresponding div in dst otherwise. */ static int find_div(struct isl_basic_map *dst, struct isl_basic_map *src, unsigned div) { int i; unsigned total = isl_space_dim(src->dim, isl_dim_all); isl_assert(dst->ctx, div <= dst->n_div, return -1); for (i = div; i < dst->n_div; ++i) if (isl_seq_eq(dst->div[i], src->div[div], 1+1+total+div) && isl_seq_first_non_zero(dst->div[i]+1+1+total+div, dst->n_div - div) == -1) return i; return -1; } /* Align the divs of "dst" to those of "src", adding divs from "src" * if needed. That is, make sure that the first src->n_div divs * of the result are equal to those of src. * * The result is not finalized as by design it will have redundant * divs if any divs from "src" were copied. */ __isl_give isl_basic_map *isl_basic_map_align_divs( __isl_take isl_basic_map *dst, __isl_keep isl_basic_map *src) { int i; int known, extended; unsigned total; if (!dst || !src) return isl_basic_map_free(dst); if (src->n_div == 0) return dst; known = isl_basic_map_divs_known(src); if (known < 0) return isl_basic_map_free(dst); if (!known) isl_die(isl_basic_map_get_ctx(src), isl_error_invalid, "some src divs are unknown", return isl_basic_map_free(dst)); src = isl_basic_map_order_divs(src); extended = 0; total = isl_space_dim(src->dim, isl_dim_all); for (i = 0; i < src->n_div; ++i) { int j = find_div(dst, src, i); if (j < 0) { if (!extended) { int extra = src->n_div - i; dst = isl_basic_map_cow(dst); if (!dst) return NULL; dst = isl_basic_map_extend_space(dst, isl_space_copy(dst->dim), extra, 0, 2 * extra); extended = 1; } j = isl_basic_map_alloc_div(dst); if (j < 0) return isl_basic_map_free(dst); isl_seq_cpy(dst->div[j], src->div[i], 1+1+total+i); isl_seq_clr(dst->div[j]+1+1+total+i, dst->n_div - i); if (isl_basic_map_add_div_constraints(dst, j) < 0) return isl_basic_map_free(dst); } if (j != i) isl_basic_map_swap_div(dst, i, j); } return dst; } struct isl_basic_set *isl_basic_set_align_divs( struct isl_basic_set *dst, struct isl_basic_set *src) { return bset_from_bmap(isl_basic_map_align_divs(bset_to_bmap(dst), bset_to_bmap(src))); } struct isl_map *isl_map_align_divs(struct isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_compute_divs(map); map = isl_map_cow(map); if (!map) return NULL; for (i = 1; i < map->n; ++i) map->p[0] = isl_basic_map_align_divs(map->p[0], map->p[i]); for (i = 1; i < map->n; ++i) { map->p[i] = isl_basic_map_align_divs(map->p[i], map->p[0]); if (!map->p[i]) return isl_map_free(map); } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; } struct isl_set *isl_set_align_divs(struct isl_set *set) { return set_from_map(isl_map_align_divs(set_to_map(set))); } /* Align the divs of the basic maps in "map" to those * of the basic maps in "list", as well as to the other basic maps in "map". * The elements in "list" are assumed to have known divs. */ __isl_give isl_map *isl_map_align_divs_to_basic_map_list( __isl_take isl_map *map, __isl_keep isl_basic_map_list *list) { int i, n; map = isl_map_compute_divs(map); map = isl_map_cow(map); if (!map || !list) return isl_map_free(map); if (map->n == 0) return map; n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap; bmap = isl_basic_map_list_get_basic_map(list, i); map->p[0] = isl_basic_map_align_divs(map->p[0], bmap); isl_basic_map_free(bmap); } if (!map->p[0]) return isl_map_free(map); return isl_map_align_divs(map); } /* Align the divs of each element of "list" to those of "bmap". * Both "bmap" and the elements of "list" are assumed to have known divs. */ __isl_give isl_basic_map_list *isl_basic_map_list_align_divs_to_basic_map( __isl_take isl_basic_map_list *list, __isl_keep isl_basic_map *bmap) { int i, n; if (!list || !bmap) return isl_basic_map_list_free(list); n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap_i; bmap_i = isl_basic_map_list_get_basic_map(list, i); bmap_i = isl_basic_map_align_divs(bmap_i, bmap); list = isl_basic_map_list_set_basic_map(list, i, bmap_i); } return list; } static __isl_give isl_set *set_apply( __isl_take isl_set *set, __isl_take isl_map *map) { if (!set || !map) goto error; isl_assert(set->ctx, isl_map_compatible_domain(map, set), goto error); map = isl_map_intersect_domain(map, set); set = isl_map_range(map); return set; error: isl_set_free(set); isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_apply( __isl_take isl_set *set, __isl_take isl_map *map) { return isl_map_align_params_map_map_and(set, map, &set_apply); } /* There is no need to cow as removing empty parts doesn't change * the meaning of the set. */ struct isl_map *isl_map_remove_empty_parts(struct isl_map *map) { int i; if (!map) return NULL; for (i = map->n - 1; i >= 0; --i) remove_if_empty(map, i); return map; } struct isl_set *isl_set_remove_empty_parts(struct isl_set *set) { return set_from_map(isl_map_remove_empty_parts(set_to_map(set))); } static __isl_give isl_basic_map *map_copy_basic_map(__isl_keep isl_map *map) { struct isl_basic_map *bmap; if (!map || map->n == 0) return NULL; bmap = map->p[map->n-1]; isl_assert(map->ctx, ISL_F_ISSET(bmap, ISL_BASIC_SET_FINAL), return NULL); return isl_basic_map_copy(bmap); } __isl_give isl_basic_map *isl_map_copy_basic_map(__isl_keep isl_map *map) { return map_copy_basic_map(map); } struct isl_basic_set *isl_set_copy_basic_set(struct isl_set *set) { return bset_from_bmap(map_copy_basic_map(set_to_map(set))); } static __isl_give isl_map *map_drop_basic_map(__isl_take isl_map *map, __isl_keep isl_basic_map *bmap) { int i; if (!map || !bmap) goto error; for (i = map->n-1; i >= 0; --i) { if (map->p[i] != bmap) continue; map = isl_map_cow(map); if (!map) goto error; isl_basic_map_free(map->p[i]); if (i != map->n-1) { ISL_F_CLR(map, ISL_SET_NORMALIZED); map->p[i] = map->p[map->n-1]; } map->n--; return map; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_drop_basic_map(__isl_take isl_map *map, __isl_keep isl_basic_map *bmap) { return map_drop_basic_map(map, bmap); } struct isl_set *isl_set_drop_basic_set(struct isl_set *set, struct isl_basic_set *bset) { return set_from_map(map_drop_basic_map(set_to_map(set), bset_to_bmap(bset))); } /* Given two basic sets bset1 and bset2, compute the maximal difference * between the values of dimension pos in bset1 and those in bset2 * for any common value of the parameters and dimensions preceding pos. */ static enum isl_lp_result basic_set_maximal_difference_at( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, int pos, isl_int *opt) { isl_basic_map *bmap1; isl_basic_map *bmap2; struct isl_ctx *ctx; struct isl_vec *obj; unsigned total; unsigned nparam; unsigned dim1; enum isl_lp_result res; if (!bset1 || !bset2) return isl_lp_error; nparam = isl_basic_set_n_param(bset1); dim1 = isl_basic_set_n_dim(bset1); bmap1 = isl_basic_map_from_range(isl_basic_set_copy(bset1)); bmap2 = isl_basic_map_from_range(isl_basic_set_copy(bset2)); bmap1 = isl_basic_map_move_dims(bmap1, isl_dim_in, 0, isl_dim_out, 0, pos); bmap2 = isl_basic_map_move_dims(bmap2, isl_dim_in, 0, isl_dim_out, 0, pos); bmap1 = isl_basic_map_range_product(bmap1, bmap2); if (!bmap1) return isl_lp_error; total = isl_basic_map_total_dim(bmap1); ctx = bmap1->ctx; obj = isl_vec_alloc(ctx, 1 + total); if (!obj) goto error; isl_seq_clr(obj->block.data, 1 + total); isl_int_set_si(obj->block.data[1+nparam+pos], 1); isl_int_set_si(obj->block.data[1+nparam+pos+(dim1-pos)], -1); res = isl_basic_map_solve_lp(bmap1, 1, obj->block.data, ctx->one, opt, NULL, NULL); isl_basic_map_free(bmap1); isl_vec_free(obj); return res; error: isl_basic_map_free(bmap1); return isl_lp_error; } /* Given two _disjoint_ basic sets bset1 and bset2, check whether * for any common value of the parameters and dimensions preceding pos * in both basic sets, the values of dimension pos in bset1 are * smaller or larger than those in bset2. * * Returns * 1 if bset1 follows bset2 * -1 if bset1 precedes bset2 * 0 if bset1 and bset2 are incomparable * -2 if some error occurred. */ int isl_basic_set_compare_at(struct isl_basic_set *bset1, struct isl_basic_set *bset2, int pos) { isl_int opt; enum isl_lp_result res; int cmp; isl_int_init(opt); res = basic_set_maximal_difference_at(bset1, bset2, pos, &opt); if (res == isl_lp_empty) cmp = 0; else if ((res == isl_lp_ok && isl_int_is_pos(opt)) || res == isl_lp_unbounded) cmp = 1; else if (res == isl_lp_ok && isl_int_is_neg(opt)) cmp = -1; else cmp = -2; isl_int_clear(opt); return cmp; } /* Given two basic sets bset1 and bset2, check whether * for any common value of the parameters and dimensions preceding pos * there is a value of dimension pos in bset1 that is larger * than a value of the same dimension in bset2. * * Return * 1 if there exists such a pair * 0 if there is no such pair, but there is a pair of equal values * -1 otherwise * -2 if some error occurred. */ int isl_basic_set_follows_at(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, int pos) { isl_int opt; enum isl_lp_result res; int cmp; isl_int_init(opt); res = basic_set_maximal_difference_at(bset1, bset2, pos, &opt); if (res == isl_lp_empty) cmp = -1; else if ((res == isl_lp_ok && isl_int_is_pos(opt)) || res == isl_lp_unbounded) cmp = 1; else if (res == isl_lp_ok && isl_int_is_neg(opt)) cmp = -1; else if (res == isl_lp_ok) cmp = 0; else cmp = -2; isl_int_clear(opt); return cmp; } /* Given two sets set1 and set2, check whether * for any common value of the parameters and dimensions preceding pos * there is a value of dimension pos in set1 that is larger * than a value of the same dimension in set2. * * Return * 1 if there exists such a pair * 0 if there is no such pair, but there is a pair of equal values * -1 otherwise * -2 if some error occurred. */ int isl_set_follows_at(__isl_keep isl_set *set1, __isl_keep isl_set *set2, int pos) { int i, j; int follows = -1; if (!set1 || !set2) return -2; for (i = 0; i < set1->n; ++i) for (j = 0; j < set2->n; ++j) { int f; f = isl_basic_set_follows_at(set1->p[i], set2->p[j], pos); if (f == 1 || f == -2) return f; if (f > follows) follows = f; } return follows; } static int isl_basic_map_plain_has_fixed_var(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *val) { int i; int d; unsigned total; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); for (i = 0, d = total-1; i < bmap->n_eq && d+1 > pos; ++i) { for (; d+1 > pos; --d) if (!isl_int_is_zero(bmap->eq[i][1+d])) break; if (d != pos) continue; if (isl_seq_first_non_zero(bmap->eq[i]+1, d) != -1) return 0; if (isl_seq_first_non_zero(bmap->eq[i]+1+d+1, total-d-1) != -1) return 0; if (!isl_int_is_one(bmap->eq[i][1+d])) return 0; if (val) isl_int_neg(*val, bmap->eq[i][0]); return 1; } return 0; } static int isl_map_plain_has_fixed_var(__isl_keep isl_map *map, unsigned pos, isl_int *val) { int i; isl_int v; isl_int tmp; int fixed; if (!map) return -1; if (map->n == 0) return 0; if (map->n == 1) return isl_basic_map_plain_has_fixed_var(map->p[0], pos, val); isl_int_init(v); isl_int_init(tmp); fixed = isl_basic_map_plain_has_fixed_var(map->p[0], pos, &v); for (i = 1; fixed == 1 && i < map->n; ++i) { fixed = isl_basic_map_plain_has_fixed_var(map->p[i], pos, &tmp); if (fixed == 1 && isl_int_ne(tmp, v)) fixed = 0; } if (val) isl_int_set(*val, v); isl_int_clear(tmp); isl_int_clear(v); return fixed; } static int isl_basic_set_plain_has_fixed_var(__isl_keep isl_basic_set *bset, unsigned pos, isl_int *val) { return isl_basic_map_plain_has_fixed_var(bset_to_bmap(bset), pos, val); } static int isl_set_plain_has_fixed_var(__isl_keep isl_set *set, unsigned pos, isl_int *val) { return isl_map_plain_has_fixed_var(set_to_map(set), pos, val); } int isl_basic_map_plain_is_fixed(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int *val) { if (pos >= isl_basic_map_dim(bmap, type)) return -1; return isl_basic_map_plain_has_fixed_var(bmap, isl_basic_map_offset(bmap, type) - 1 + pos, val); } /* If "bmap" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_basic_map_plain_get_val_if_fixed( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { isl_ctx *ctx; isl_val *v; int fixed; if (!bmap) return NULL; ctx = isl_basic_map_get_ctx(bmap); v = isl_val_alloc(ctx); if (!v) return NULL; fixed = isl_basic_map_plain_is_fixed(bmap, type, pos, &v->n); if (fixed < 0) return isl_val_free(v); if (fixed) { isl_int_set_si(v->d, 1); return v; } isl_val_free(v); return isl_val_nan(ctx); } int isl_map_plain_is_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_int *val) { if (pos >= isl_map_dim(map, type)) return -1; return isl_map_plain_has_fixed_var(map, map_offset(map, type) - 1 + pos, val); } /* If "map" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_map_plain_get_val_if_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { isl_ctx *ctx; isl_val *v; int fixed; if (!map) return NULL; ctx = isl_map_get_ctx(map); v = isl_val_alloc(ctx); if (!v) return NULL; fixed = isl_map_plain_is_fixed(map, type, pos, &v->n); if (fixed < 0) return isl_val_free(v); if (fixed) { isl_int_set_si(v->d, 1); return v; } isl_val_free(v); return isl_val_nan(ctx); } /* If "set" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_set_plain_get_val_if_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_plain_get_val_if_fixed(set, type, pos); } int isl_set_plain_is_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos, isl_int *val) { return isl_map_plain_is_fixed(set, type, pos, val); } /* Check if dimension dim has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_basic_set_plain_dim_is_fixed(__isl_keep isl_basic_set *bset, unsigned dim, isl_int *val) { return isl_basic_set_plain_has_fixed_var(bset, isl_basic_set_n_param(bset) + dim, val); } /* Check if dimension dim has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_set_plain_dim_is_fixed(__isl_keep isl_set *set, unsigned dim, isl_int *val) { return isl_set_plain_has_fixed_var(set, isl_set_n_param(set) + dim, val); } /* Check if input variable in has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_map_plain_input_is_fixed(__isl_keep isl_map *map, unsigned in, isl_int *val) { return isl_map_plain_has_fixed_var(map, isl_map_n_param(map) + in, val); } /* Check if dimension dim has an (obvious) fixed lower bound and if so * and if val is not NULL, then return this lower bound in *val. */ int isl_basic_set_plain_dim_has_fixed_lower_bound( __isl_keep isl_basic_set *bset, unsigned dim, isl_int *val) { int i, i_eq = -1, i_ineq = -1; isl_int *c; unsigned total; unsigned nparam; if (!bset) return -1; total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][1+nparam+dim])) continue; if (i_eq != -1) return 0; i_eq = i; } for (i = 0; i < bset->n_ineq; ++i) { if (!isl_int_is_pos(bset->ineq[i][1+nparam+dim])) continue; if (i_eq != -1 || i_ineq != -1) return 0; i_ineq = i; } if (i_eq == -1 && i_ineq == -1) return 0; c = i_eq != -1 ? bset->eq[i_eq] : bset->ineq[i_ineq]; /* The coefficient should always be one due to normalization. */ if (!isl_int_is_one(c[1+nparam+dim])) return 0; if (isl_seq_first_non_zero(c+1, nparam+dim) != -1) return 0; if (isl_seq_first_non_zero(c+1+nparam+dim+1, total - nparam - dim - 1) != -1) return 0; if (val) isl_int_neg(*val, c[0]); return 1; } int isl_set_plain_dim_has_fixed_lower_bound(__isl_keep isl_set *set, unsigned dim, isl_int *val) { int i; isl_int v; isl_int tmp; int fixed; if (!set) return -1; if (set->n == 0) return 0; if (set->n == 1) return isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[0], dim, val); isl_int_init(v); isl_int_init(tmp); fixed = isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[0], dim, &v); for (i = 1; fixed == 1 && i < set->n; ++i) { fixed = isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[i], dim, &tmp); if (fixed == 1 && isl_int_ne(tmp, v)) fixed = 0; } if (val) isl_int_set(*val, v); isl_int_clear(tmp); isl_int_clear(v); return fixed; } /* Return -1 if the constraint "c1" should be sorted before "c2" * and 1 if it should be sorted after "c2". * Return 0 if the two constraints are the same (up to the constant term). * * In particular, if a constraint involves later variables than another * then it is sorted after this other constraint. * uset_gist depends on constraints without existentially quantified * variables sorting first. * * For constraints that have the same latest variable, those * with the same coefficient for this latest variable (first in absolute value * and then in actual value) are grouped together. * This is useful for detecting pairs of constraints that can * be chained in their printed representation. * * Finally, within a group, constraints are sorted according to * their coefficients (excluding the constant term). */ static int sort_constraint_cmp(const void *p1, const void *p2, void *arg) { isl_int **c1 = (isl_int **) p1; isl_int **c2 = (isl_int **) p2; int l1, l2; unsigned size = *(unsigned *) arg; int cmp; l1 = isl_seq_last_non_zero(*c1 + 1, size); l2 = isl_seq_last_non_zero(*c2 + 1, size); if (l1 != l2) return l1 - l2; cmp = isl_int_abs_cmp((*c1)[1 + l1], (*c2)[1 + l1]); if (cmp != 0) return cmp; cmp = isl_int_cmp((*c1)[1 + l1], (*c2)[1 + l1]); if (cmp != 0) return -cmp; return isl_seq_cmp(*c1 + 1, *c2 + 1, size); } /* Return -1 if the constraint "c1" of "bmap" is sorted before "c2" * by isl_basic_map_sort_constraints, 1 if it is sorted after "c2" * and 0 if the two constraints are the same (up to the constant term). */ int isl_basic_map_constraint_cmp(__isl_keep isl_basic_map *bmap, isl_int *c1, isl_int *c2) { unsigned total; if (!bmap) return -2; total = isl_basic_map_total_dim(bmap); return sort_constraint_cmp(&c1, &c2, &total); } __isl_give isl_basic_map *isl_basic_map_sort_constraints( __isl_take isl_basic_map *bmap) { unsigned total; if (!bmap) return NULL; if (bmap->n_ineq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED)) return bmap; total = isl_basic_map_total_dim(bmap); if (isl_sort(bmap->ineq, bmap->n_ineq, sizeof(isl_int *), &sort_constraint_cmp, &total) < 0) return isl_basic_map_free(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_sort_constraints( __isl_take isl_basic_set *bset) { isl_basic_map *bmap = bset_to_bmap(bset); return bset_from_bmap(isl_basic_map_sort_constraints(bmap)); } struct isl_basic_map *isl_basic_map_normalize(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED)) return bmap; bmap = isl_basic_map_remove_redundancies(bmap); bmap = isl_basic_map_sort_constraints(bmap); if (bmap) ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED); return bmap; } struct isl_basic_set *isl_basic_set_normalize(struct isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_normalize(bset_to_bmap(bset))); } int isl_basic_map_plain_cmp(const __isl_keep isl_basic_map *bmap1, const __isl_keep isl_basic_map *bmap2) { int i, cmp; unsigned total; if (!bmap1 || !bmap2) return -1; if (bmap1 == bmap2) return 0; if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_RATIONAL) != ISL_F_ISSET(bmap2, ISL_BASIC_MAP_RATIONAL)) return ISL_F_ISSET(bmap1, ISL_BASIC_MAP_RATIONAL) ? -1 : 1; if (isl_basic_map_n_param(bmap1) != isl_basic_map_n_param(bmap2)) return isl_basic_map_n_param(bmap1) - isl_basic_map_n_param(bmap2); if (isl_basic_map_n_in(bmap1) != isl_basic_map_n_in(bmap2)) return isl_basic_map_n_out(bmap1) - isl_basic_map_n_out(bmap2); if (isl_basic_map_n_out(bmap1) != isl_basic_map_n_out(bmap2)) return isl_basic_map_n_out(bmap1) - isl_basic_map_n_out(bmap2); if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_EMPTY) && ISL_F_ISSET(bmap2, ISL_BASIC_MAP_EMPTY)) return 0; if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_EMPTY)) return 1; if (ISL_F_ISSET(bmap2, ISL_BASIC_MAP_EMPTY)) return -1; if (bmap1->n_eq != bmap2->n_eq) return bmap1->n_eq - bmap2->n_eq; if (bmap1->n_ineq != bmap2->n_ineq) return bmap1->n_ineq - bmap2->n_ineq; if (bmap1->n_div != bmap2->n_div) return bmap1->n_div - bmap2->n_div; total = isl_basic_map_total_dim(bmap1); for (i = 0; i < bmap1->n_eq; ++i) { cmp = isl_seq_cmp(bmap1->eq[i], bmap2->eq[i], 1+total); if (cmp) return cmp; } for (i = 0; i < bmap1->n_ineq; ++i) { cmp = isl_seq_cmp(bmap1->ineq[i], bmap2->ineq[i], 1+total); if (cmp) return cmp; } for (i = 0; i < bmap1->n_div; ++i) { cmp = isl_seq_cmp(bmap1->div[i], bmap2->div[i], 1+1+total); if (cmp) return cmp; } return 0; } int isl_basic_set_plain_cmp(const __isl_keep isl_basic_set *bset1, const __isl_keep isl_basic_set *bset2) { return isl_basic_map_plain_cmp(bset1, bset2); } int isl_set_plain_cmp(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { int i, cmp; if (set1 == set2) return 0; if (set1->n != set2->n) return set1->n - set2->n; for (i = 0; i < set1->n; ++i) { cmp = isl_basic_set_plain_cmp(set1->p[i], set2->p[i]); if (cmp) return cmp; } return 0; } isl_bool isl_basic_map_plain_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { if (!bmap1 || !bmap2) return isl_bool_error; return isl_basic_map_plain_cmp(bmap1, bmap2) == 0; } isl_bool isl_basic_set_plain_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_plain_is_equal(bset_to_bmap(bset1), bset_to_bmap(bset2)); } static int qsort_bmap_cmp(const void *p1, const void *p2) { const struct isl_basic_map *bmap1 = *(const struct isl_basic_map **)p1; const struct isl_basic_map *bmap2 = *(const struct isl_basic_map **)p2; return isl_basic_map_plain_cmp(bmap1, bmap2); } /* Sort the basic maps of "map" and remove duplicate basic maps. * * While removing basic maps, we make sure that the basic maps remain * sorted because isl_map_normalize expects the basic maps of the result * to be sorted. */ static __isl_give isl_map *sort_and_remove_duplicates(__isl_take isl_map *map) { int i, j; map = isl_map_remove_empty_parts(map); if (!map) return NULL; qsort(map->p, map->n, sizeof(struct isl_basic_map *), qsort_bmap_cmp); for (i = map->n - 1; i >= 1; --i) { if (!isl_basic_map_plain_is_equal(map->p[i - 1], map->p[i])) continue; isl_basic_map_free(map->p[i-1]); for (j = i; j < map->n; ++j) map->p[j - 1] = map->p[j]; map->n--; } return map; } /* Remove obvious duplicates among the basic maps of "map". * * Unlike isl_map_normalize, this function does not remove redundant * constraints and only removes duplicates that have exactly the same * constraints in the input. It does sort the constraints and * the basic maps to ease the detection of duplicates. * * If "map" has already been normalized or if the basic maps are * disjoint, then there can be no duplicates. */ __isl_give isl_map *isl_map_remove_obvious_duplicates(__isl_take isl_map *map) { int i; isl_basic_map *bmap; if (!map) return NULL; if (map->n <= 1) return map; if (ISL_F_ISSET(map, ISL_MAP_NORMALIZED | ISL_MAP_DISJOINT)) return map; for (i = 0; i < map->n; ++i) { bmap = isl_basic_map_copy(map->p[i]); bmap = isl_basic_map_sort_constraints(bmap); if (!bmap) return isl_map_free(map); isl_basic_map_free(map->p[i]); map->p[i] = bmap; } map = sort_and_remove_duplicates(map); return map; } /* We normalize in place, but if anything goes wrong we need * to return NULL, so we need to make sure we don't change the * meaning of any possible other copies of map. */ __isl_give isl_map *isl_map_normalize(__isl_take isl_map *map) { int i; struct isl_basic_map *bmap; if (!map) return NULL; if (ISL_F_ISSET(map, ISL_MAP_NORMALIZED)) return map; for (i = 0; i < map->n; ++i) { bmap = isl_basic_map_normalize(isl_basic_map_copy(map->p[i])); if (!bmap) goto error; isl_basic_map_free(map->p[i]); map->p[i] = bmap; } map = sort_and_remove_duplicates(map); if (map) ISL_F_SET(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_normalize(struct isl_set *set) { return set_from_map(isl_map_normalize(set_to_map(set))); } isl_bool isl_map_plain_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; isl_bool equal; if (!map1 || !map2) return isl_bool_error; if (map1 == map2) return isl_bool_true; if (!isl_space_is_equal(map1->dim, map2->dim)) return isl_bool_false; map1 = isl_map_copy(map1); map2 = isl_map_copy(map2); map1 = isl_map_normalize(map1); map2 = isl_map_normalize(map2); if (!map1 || !map2) goto error; equal = map1->n == map2->n; for (i = 0; equal && i < map1->n; ++i) { equal = isl_basic_map_plain_is_equal(map1->p[i], map2->p[i]); if (equal < 0) goto error; } isl_map_free(map1); isl_map_free(map2); return equal; error: isl_map_free(map1); isl_map_free(map2); return isl_bool_error; } isl_bool isl_set_plain_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_plain_is_equal(set_to_map(set1), set_to_map(set2)); } /* Return an interval that ranges from min to max (inclusive) */ struct isl_basic_set *isl_basic_set_interval(struct isl_ctx *ctx, isl_int min, isl_int max) { int k; struct isl_basic_set *bset = NULL; bset = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2); if (!bset) goto error; k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_int_set_si(bset->ineq[k][1], 1); isl_int_neg(bset->ineq[k][0], min); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_int_set_si(bset->ineq[k][1], -1); isl_int_set(bset->ineq[k][0], max); return bset; error: isl_basic_set_free(bset); return NULL; } /* Return the basic maps in "map" as a list. */ __isl_give isl_basic_map_list *isl_map_get_basic_map_list( __isl_keep isl_map *map) { int i; isl_ctx *ctx; isl_basic_map_list *list; if (!map) return NULL; ctx = isl_map_get_ctx(map); list = isl_basic_map_list_alloc(ctx, map->n); for (i = 0; i < map->n; ++i) { isl_basic_map *bmap; bmap = isl_basic_map_copy(map->p[i]); list = isl_basic_map_list_add(list, bmap); } return list; } /* Return the intersection of the elements in the non-empty list "list". * All elements are assumed to live in the same space. */ __isl_give isl_basic_map *isl_basic_map_list_intersect( __isl_take isl_basic_map_list *list) { int i, n; isl_basic_map *bmap; if (!list) return NULL; n = isl_basic_map_list_n_basic_map(list); if (n < 1) isl_die(isl_basic_map_list_get_ctx(list), isl_error_invalid, "expecting non-empty list", goto error); bmap = isl_basic_map_list_get_basic_map(list, 0); for (i = 1; i < n; ++i) { isl_basic_map *bmap_i; bmap_i = isl_basic_map_list_get_basic_map(list, i); bmap = isl_basic_map_intersect(bmap, bmap_i); } isl_basic_map_list_free(list); return bmap; error: isl_basic_map_list_free(list); return NULL; } /* Return the intersection of the elements in the non-empty list "list". * All elements are assumed to live in the same space. */ __isl_give isl_basic_set *isl_basic_set_list_intersect( __isl_take isl_basic_set_list *list) { return isl_basic_map_list_intersect(list); } /* Return the union of the elements of "list". * The list is required to have at least one element. */ __isl_give isl_set *isl_basic_set_list_union( __isl_take isl_basic_set_list *list) { int i, n; isl_space *space; isl_basic_set *bset; isl_set *set; if (!list) return NULL; n = isl_basic_set_list_n_basic_set(list); if (n < 1) isl_die(isl_basic_set_list_get_ctx(list), isl_error_invalid, "expecting non-empty list", goto error); bset = isl_basic_set_list_get_basic_set(list, 0); space = isl_basic_set_get_space(bset); isl_basic_set_free(bset); set = isl_set_alloc_space(space, n, 0); for (i = 0; i < n; ++i) { bset = isl_basic_set_list_get_basic_set(list, i); set = isl_set_add_basic_set(set, bset); } isl_basic_set_list_free(list); return set; error: isl_basic_set_list_free(list); return NULL; } /* Return the union of the elements in the non-empty list "list". * All elements are assumed to live in the same space. */ __isl_give isl_set *isl_set_list_union(__isl_take isl_set_list *list) { int i, n; isl_set *set; if (!list) return NULL; n = isl_set_list_n_set(list); if (n < 1) isl_die(isl_set_list_get_ctx(list), isl_error_invalid, "expecting non-empty list", goto error); set = isl_set_list_get_set(list, 0); for (i = 1; i < n; ++i) { isl_set *set_i; set_i = isl_set_list_get_set(list, i); set = isl_set_union(set, set_i); } isl_set_list_free(list); return set; error: isl_set_list_free(list); return NULL; } /* Return the Cartesian product of the basic sets in list (in the given order). */ __isl_give isl_basic_set *isl_basic_set_list_product( __isl_take struct isl_basic_set_list *list) { int i; unsigned dim; unsigned nparam; unsigned extra; unsigned n_eq; unsigned n_ineq; struct isl_basic_set *product = NULL; if (!list) goto error; isl_assert(list->ctx, list->n > 0, goto error); isl_assert(list->ctx, list->p[0], goto error); nparam = isl_basic_set_n_param(list->p[0]); dim = isl_basic_set_n_dim(list->p[0]); extra = list->p[0]->n_div; n_eq = list->p[0]->n_eq; n_ineq = list->p[0]->n_ineq; for (i = 1; i < list->n; ++i) { isl_assert(list->ctx, list->p[i], goto error); isl_assert(list->ctx, nparam == isl_basic_set_n_param(list->p[i]), goto error); dim += isl_basic_set_n_dim(list->p[i]); extra += list->p[i]->n_div; n_eq += list->p[i]->n_eq; n_ineq += list->p[i]->n_ineq; } product = isl_basic_set_alloc(list->ctx, nparam, dim, extra, n_eq, n_ineq); if (!product) goto error; dim = 0; for (i = 0; i < list->n; ++i) { isl_basic_set_add_constraints(product, isl_basic_set_copy(list->p[i]), dim); dim += isl_basic_set_n_dim(list->p[i]); } isl_basic_set_list_free(list); return product; error: isl_basic_set_free(product); isl_basic_set_list_free(list); return NULL; } struct isl_basic_map *isl_basic_map_product( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_space *dim_result = NULL; struct isl_basic_map *bmap; unsigned in1, in2, out1, out2, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param), goto error); dim_result = isl_space_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in1 = isl_basic_map_n_in(bmap1); in2 = isl_basic_map_n_in(bmap2); out1 = isl_basic_map_n_out(bmap1); out2 = isl_basic_map_n_out(bmap2); nparam = isl_basic_map_n_param(bmap1); total = nparam + in1 + in2 + out1 + out2 + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos += in1); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in2); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += out1); isl_dim_map_div(dim_map1, bmap1, pos += out2); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_flat_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_basic_map *prod; prod = isl_basic_map_product(bmap1, bmap2); prod = isl_basic_map_flatten(prod); return prod; } __isl_give isl_basic_set *isl_basic_set_flat_product( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) { return isl_basic_map_flat_range_product(bset1, bset2); } __isl_give isl_basic_map *isl_basic_map_domain_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_space *space_result = NULL; isl_basic_map *bmap; unsigned in1, in2, out, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; space_result = isl_space_domain_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in1 = isl_basic_map_dim(bmap1, isl_dim_in); in2 = isl_basic_map_dim(bmap2, isl_dim_in); out = isl_basic_map_dim(bmap1, isl_dim_out); nparam = isl_basic_map_dim(bmap1, isl_dim_param); total = nparam + in1 + in2 + out + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos += in1); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in2); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos); isl_dim_map_div(dim_map1, bmap1, pos += out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(space_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { int rational; isl_space *dim_result = NULL; isl_basic_map *bmap; unsigned in, out1, out2, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; rational = isl_basic_map_is_rational(bmap1); if (rational >= 0 && rational) rational = isl_basic_map_is_rational(bmap2); if (!bmap1 || !bmap2 || rational < 0) goto error; if (!isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "parameters don't match", goto error); dim_result = isl_space_range_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in = isl_basic_map_dim(bmap1, isl_dim_in); out1 = isl_basic_map_n_out(bmap1); out2 = isl_basic_map_n_out(bmap2); nparam = isl_basic_map_n_param(bmap1); total = nparam + in + out1 + out2 + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += out1); isl_dim_map_div(dim_map1, bmap1, pos += out2); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); if (rational) bmap = isl_basic_map_set_rational(bmap); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_flat_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_basic_map *prod; prod = isl_basic_map_range_product(bmap1, bmap2); prod = isl_basic_map_flatten_range(prod); return prod; } /* Apply "basic_map_product" to each pair of basic maps in "map1" and "map2" * and collect the results. * The result live in the space obtained by calling "space_product" * on the spaces of "map1" and "map2". * If "remove_duplicates" is set then the result may contain duplicates * (even if the inputs do not) and so we try and remove the obvious * duplicates. */ static __isl_give isl_map *map_product(__isl_take isl_map *map1, __isl_take isl_map *map2, __isl_give isl_space *(*space_product)(__isl_take isl_space *left, __isl_take isl_space *right), __isl_give isl_basic_map *(*basic_map_product)( __isl_take isl_basic_map *left, __isl_take isl_basic_map *right), int remove_duplicates) { unsigned flags = 0; struct isl_map *result; int i, j; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param), goto error); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(space_product(isl_space_copy(map1->dim), isl_space_copy(map2->dim)), map1->n * map2->n, flags); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = basic_map_product(isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part)) isl_basic_map_free(part); else result = isl_map_add_basic_map(result, part); if (!result) goto error; } if (remove_duplicates) result = isl_map_remove_obvious_duplicates(result); isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* Given two maps A -> B and C -> D, construct a map [A -> C] -> [B -> D] */ static __isl_give isl_map *map_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_product, &isl_basic_map_product, 0); } __isl_give isl_map *isl_map_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_product_aligned); } /* Given two maps A -> B and C -> D, construct a map (A, C) -> (B, D) */ __isl_give isl_map *isl_map_flat_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_product(map1, map2); prod = isl_map_flatten(prod); return prod; } /* Given two set A and B, construct its Cartesian product A x B. */ struct isl_set *isl_set_product(struct isl_set *set1, struct isl_set *set2) { return isl_map_range_product(set1, set2); } __isl_give isl_set *isl_set_flat_product(__isl_take isl_set *set1, __isl_take isl_set *set2) { return isl_map_flat_range_product(set1, set2); } /* Given two maps A -> B and C -> D, construct a map [A -> C] -> (B * D) */ static __isl_give isl_map *map_domain_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_domain_product, &isl_basic_map_domain_product, 1); } /* Given two maps A -> B and C -> D, construct a map (A * C) -> [B -> D] */ static __isl_give isl_map *map_range_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_range_product, &isl_basic_map_range_product, 1); } __isl_give isl_map *isl_map_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_domain_product_aligned); } __isl_give isl_map *isl_map_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_range_product_aligned); } /* Given a map of the form [A -> B] -> [C -> D], return the map A -> C. */ __isl_give isl_map *isl_map_factor_domain(__isl_take isl_map *map) { isl_space *space; int total1, keep1, total2, keep2; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim) || !isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "not a product", return isl_map_free(map)); space = isl_map_get_space(map); total1 = isl_space_dim(space, isl_dim_in); total2 = isl_space_dim(space, isl_dim_out); space = isl_space_factor_domain(space); keep1 = isl_space_dim(space, isl_dim_in); keep2 = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_in, keep1, total1 - keep1); map = isl_map_project_out(map, isl_dim_out, keep2, total2 - keep2); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> [C -> D], return the map B -> D. */ __isl_give isl_map *isl_map_factor_range(__isl_take isl_map *map) { isl_space *space; int total1, keep1, total2, keep2; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim) || !isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "not a product", return isl_map_free(map)); space = isl_map_get_space(map); total1 = isl_space_dim(space, isl_dim_in); total2 = isl_space_dim(space, isl_dim_out); space = isl_space_factor_range(space); keep1 = isl_space_dim(space, isl_dim_in); keep2 = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_in, 0, total1 - keep1); map = isl_map_project_out(map, isl_dim_out, 0, total2 - keep2); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> C, return the map A -> C. */ __isl_give isl_map *isl_map_domain_factor_domain(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "domain is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_in); space = isl_space_domain_factor_domain(space); keep = isl_space_dim(space, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, keep, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> C, return the map B -> C. */ __isl_give isl_map *isl_map_domain_factor_range(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "domain is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_in); space = isl_space_domain_factor_range(space); keep = isl_space_dim(space, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, 0, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map A -> [B -> C], extract the map A -> B. */ __isl_give isl_map *isl_map_range_factor_domain(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "range is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_domain(space); keep = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, keep, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map A -> [B -> C], extract the map A -> C. */ __isl_give isl_map *isl_map_range_factor_range(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "range is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_range(space); keep = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, 0, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given two maps A -> B and C -> D, construct a map (A, C) -> (B * D) */ __isl_give isl_map *isl_map_flat_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_domain_product(map1, map2); prod = isl_map_flatten_domain(prod); return prod; } /* Given two maps A -> B and C -> D, construct a map (A * C) -> (B, D) */ __isl_give isl_map *isl_map_flat_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_range_product(map1, map2); prod = isl_map_flatten_range(prod); return prod; } uint32_t isl_basic_map_get_hash(__isl_keep isl_basic_map *bmap) { int i; uint32_t hash = isl_hash_init(); unsigned total; if (!bmap) return 0; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_normalize(bmap); if (!bmap) return 0; total = isl_basic_map_total_dim(bmap); isl_hash_byte(hash, bmap->n_eq & 0xFF); for (i = 0; i < bmap->n_eq; ++i) { uint32_t c_hash; c_hash = isl_seq_get_hash(bmap->eq[i], 1 + total); isl_hash_hash(hash, c_hash); } isl_hash_byte(hash, bmap->n_ineq & 0xFF); for (i = 0; i < bmap->n_ineq; ++i) { uint32_t c_hash; c_hash = isl_seq_get_hash(bmap->ineq[i], 1 + total); isl_hash_hash(hash, c_hash); } isl_hash_byte(hash, bmap->n_div & 0xFF); for (i = 0; i < bmap->n_div; ++i) { uint32_t c_hash; if (isl_int_is_zero(bmap->div[i][0])) continue; isl_hash_byte(hash, i & 0xFF); c_hash = isl_seq_get_hash(bmap->div[i], 1 + 1 + total); isl_hash_hash(hash, c_hash); } isl_basic_map_free(bmap); return hash; } uint32_t isl_basic_set_get_hash(__isl_keep isl_basic_set *bset) { return isl_basic_map_get_hash(bset_to_bmap(bset)); } uint32_t isl_map_get_hash(__isl_keep isl_map *map) { int i; uint32_t hash; if (!map) return 0; map = isl_map_copy(map); map = isl_map_normalize(map); if (!map) return 0; hash = isl_hash_init(); for (i = 0; i < map->n; ++i) { uint32_t bmap_hash; bmap_hash = isl_basic_map_get_hash(map->p[i]); isl_hash_hash(hash, bmap_hash); } isl_map_free(map); return hash; } uint32_t isl_set_get_hash(__isl_keep isl_set *set) { return isl_map_get_hash(set_to_map(set)); } /* Check if the value for dimension dim is completely determined * by the values of the other parameters and variables. * That is, check if dimension dim is involved in an equality. */ int isl_basic_set_dim_is_unique(struct isl_basic_set *bset, unsigned dim) { int i; unsigned nparam; if (!bset) return -1; nparam = isl_basic_set_n_param(bset); for (i = 0; i < bset->n_eq; ++i) if (!isl_int_is_zero(bset->eq[i][1 + nparam + dim])) return 1; return 0; } /* Check if the value for dimension dim is completely determined * by the values of the other parameters and variables. * That is, check if dimension dim is involved in an equality * for each of the subsets. */ int isl_set_dim_is_unique(struct isl_set *set, unsigned dim) { int i; if (!set) return -1; for (i = 0; i < set->n; ++i) { int unique; unique = isl_basic_set_dim_is_unique(set->p[i], dim); if (unique != 1) return unique; } return 1; } /* Return the number of basic maps in the (current) representation of "map". */ int isl_map_n_basic_map(__isl_keep isl_map *map) { return map ? map->n : 0; } int isl_set_n_basic_set(__isl_keep isl_set *set) { return set ? set->n : 0; } isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map, isl_stat (*fn)(__isl_take isl_basic_map *bmap, void *user), void *user) { int i; if (!map) return isl_stat_error; for (i = 0; i < map->n; ++i) if (fn(isl_basic_map_copy(map->p[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) { int i; if (!set) return isl_stat_error; for (i = 0; i < set->n; ++i) if (fn(isl_basic_set_copy(set->p[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } /* Return a list of basic sets, the union of which is equal to "set". */ __isl_give isl_basic_set_list *isl_set_get_basic_set_list( __isl_keep isl_set *set) { int i; isl_basic_set_list *list; if (!set) return NULL; list = isl_basic_set_list_alloc(isl_set_get_ctx(set), set->n); for (i = 0; i < set->n; ++i) { isl_basic_set *bset; bset = isl_basic_set_copy(set->p[i]); list = isl_basic_set_list_add(list, bset); } return list; } __isl_give isl_basic_set *isl_basic_set_lift(__isl_take isl_basic_set *bset) { isl_space *dim; if (!bset) return NULL; bset = isl_basic_set_cow(bset); if (!bset) return NULL; dim = isl_basic_set_get_space(bset); dim = isl_space_lift(dim, bset->n_div); if (!dim) goto error; isl_space_free(bset->dim); bset->dim = dim; bset->extra -= bset->n_div; bset->n_div = 0; bset = isl_basic_set_finalize(bset); return bset; error: isl_basic_set_free(bset); return NULL; } __isl_give isl_set *isl_set_lift(__isl_take isl_set *set) { int i; isl_space *dim; unsigned n_div; set = isl_set_align_divs(set); if (!set) return NULL; set = isl_set_cow(set); if (!set) return NULL; n_div = set->p[0]->n_div; dim = isl_set_get_space(set); dim = isl_space_lift(dim, n_div); if (!dim) goto error; isl_space_free(set->dim); set->dim = dim; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_lift(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } __isl_give isl_map *isl_set_lifting(__isl_take isl_set *set) { isl_space *dim; struct isl_basic_map *bmap; unsigned n_set; unsigned n_div; unsigned n_param; unsigned total; int i, k, l; set = isl_set_align_divs(set); if (!set) return NULL; dim = isl_set_get_space(set); if (set->n == 0 || set->p[0]->n_div == 0) { isl_set_free(set); return isl_map_identity(isl_space_map_from_set(dim)); } n_div = set->p[0]->n_div; dim = isl_space_map_from_set(dim); n_param = isl_space_dim(dim, isl_dim_param); n_set = isl_space_dim(dim, isl_dim_in); dim = isl_space_extend(dim, n_param, n_set, n_set + n_div); bmap = isl_basic_map_alloc_space(dim, 0, n_set, 2 * n_div); for (i = 0; i < n_set; ++i) bmap = var_equal(bmap, i); total = n_param + n_set + n_set + n_div; for (i = 0; i < n_div; ++i) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], set->p[0]->div[i]+1, 1+n_param); isl_seq_clr(bmap->ineq[k]+1+n_param, n_set); isl_seq_cpy(bmap->ineq[k]+1+n_param+n_set, set->p[0]->div[i]+1+1+n_param, n_set + n_div); isl_int_neg(bmap->ineq[k][1+n_param+n_set+n_set+i], set->p[0]->div[i][0]); l = isl_basic_map_alloc_inequality(bmap); if (l < 0) goto error; isl_seq_neg(bmap->ineq[l], bmap->ineq[k], 1 + total); isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], set->p[0]->div[i][0]); isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); } isl_set_free(set); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return isl_map_from_basic_map(bmap); error: isl_set_free(set); isl_basic_map_free(bmap); return NULL; } int isl_basic_set_size(__isl_keep isl_basic_set *bset) { unsigned dim; int size = 0; if (!bset) return -1; dim = isl_basic_set_total_dim(bset); size += bset->n_eq * (1 + dim); size += bset->n_ineq * (1 + dim); size += bset->n_div * (2 + dim); return size; } int isl_set_size(__isl_keep isl_set *set) { int i; int size = 0; if (!set) return -1; for (i = 0; i < set->n; ++i) size += isl_basic_set_size(set->p[i]); return size; } /* Check if there is any lower bound (if lower == 0) and/or upper * bound (if upper == 0) on the specified dim. */ static isl_bool basic_map_dim_is_bounded(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int lower, int upper) { int i; if (!bmap) return isl_bool_error; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), return isl_bool_error); pos += isl_basic_map_offset(bmap, type); for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (!isl_int_is_zero(bmap->div[i][1 + pos])) return isl_bool_true; } for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][pos])) return isl_bool_true; for (i = 0; i < bmap->n_ineq; ++i) { int sgn = isl_int_sgn(bmap->ineq[i][pos]); if (sgn > 0) lower = 1; if (sgn < 0) upper = 1; } return lower && upper; } int isl_basic_map_dim_is_bounded(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 0, 0); } isl_bool isl_basic_map_dim_has_lower_bound(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 0, 1); } isl_bool isl_basic_map_dim_has_upper_bound(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 1, 0); } int isl_map_dim_is_bounded(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { int i; if (!map) return -1; for (i = 0; i < map->n; ++i) { int bounded; bounded = isl_basic_map_dim_is_bounded(map->p[i], type, pos); if (bounded < 0 || !bounded) return bounded; } return 1; } /* Return 1 if the specified dim is involved in both an upper bound * and a lower bound. */ int isl_set_dim_is_bounded(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_dim_is_bounded(set_to_map(set), type, pos); } /* Does "map" have a bound (according to "fn") for any of its basic maps? */ static isl_bool has_any_bound(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_bool (*fn)(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos)) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool bounded; bounded = fn(map->p[i], type, pos); if (bounded < 0 || bounded) return bounded; } return isl_bool_false; } /* Return 1 if the specified dim is involved in any lower bound. */ isl_bool isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_any_bound(set, type, pos, &isl_basic_map_dim_has_lower_bound); } /* Return 1 if the specified dim is involved in any upper bound. */ isl_bool isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_any_bound(set, type, pos, &isl_basic_map_dim_has_upper_bound); } /* Does "map" have a bound (according to "fn") for all of its basic maps? */ static isl_bool has_bound(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_bool (*fn)(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos)) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool bounded; bounded = fn(map->p[i], type, pos); if (bounded < 0 || !bounded) return bounded; } return isl_bool_true; } /* Return 1 if the specified dim has a lower bound (in each of its basic sets). */ isl_bool isl_set_dim_has_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_bound(set, type, pos, &isl_basic_map_dim_has_lower_bound); } /* Return 1 if the specified dim has an upper bound (in each of its basic sets). */ isl_bool isl_set_dim_has_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_bound(set, type, pos, &isl_basic_map_dim_has_upper_bound); } /* For each of the "n" variables starting at "first", determine * the sign of the variable and put the results in the first "n" * elements of the array "signs". * Sign * 1 means that the variable is non-negative * -1 means that the variable is non-positive * 0 means the variable attains both positive and negative values. */ int isl_basic_set_vars_get_sign(__isl_keep isl_basic_set *bset, unsigned first, unsigned n, int *signs) { isl_vec *bound = NULL; struct isl_tab *tab = NULL; struct isl_tab_undo *snap; int i; if (!bset || !signs) return -1; bound = isl_vec_alloc(bset->ctx, 1 + isl_basic_set_total_dim(bset)); tab = isl_tab_from_basic_set(bset, 0); if (!bound || !tab) goto error; isl_seq_clr(bound->el, bound->size); isl_int_set_si(bound->el[0], -1); snap = isl_tab_snap(tab); for (i = 0; i < n; ++i) { int empty; isl_int_set_si(bound->el[1 + first + i], -1); if (isl_tab_add_ineq(tab, bound->el) < 0) goto error; empty = tab->empty; isl_int_set_si(bound->el[1 + first + i], 0); if (isl_tab_rollback(tab, snap) < 0) goto error; if (empty) { signs[i] = 1; continue; } isl_int_set_si(bound->el[1 + first + i], 1); if (isl_tab_add_ineq(tab, bound->el) < 0) goto error; empty = tab->empty; isl_int_set_si(bound->el[1 + first + i], 0); if (isl_tab_rollback(tab, snap) < 0) goto error; signs[i] = empty ? -1 : 0; } isl_tab_free(tab); isl_vec_free(bound); return 0; error: isl_tab_free(tab); isl_vec_free(bound); return -1; } int isl_basic_set_dims_get_sign(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n, int *signs) { if (!bset || !signs) return -1; isl_assert(bset->ctx, first + n <= isl_basic_set_dim(bset, type), return -1); first += pos(bset->dim, type) - 1; return isl_basic_set_vars_get_sign(bset, first, n, signs); } /* Is it possible for the integer division "div" to depend (possibly * indirectly) on any output dimensions? * * If the div is undefined, then we conservatively assume that it * may depend on them. * Otherwise, we check if it actually depends on them or on any integer * divisions that may depend on them. */ static int div_may_involve_output(__isl_keep isl_basic_map *bmap, int div) { int i; unsigned n_out, o_out; unsigned n_div, o_div; if (isl_int_is_zero(bmap->div[div][0])) return 1; n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); if (isl_seq_first_non_zero(bmap->div[div] + 1 + o_out, n_out) != -1) return 1; n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(bmap->div[div][1 + o_div + i])) continue; if (div_may_involve_output(bmap, i)) return 1; } return 0; } /* Return the first integer division of "bmap" in the range * [first, first + n[ that may depend on any output dimensions and * that has a non-zero coefficient in "c" (where the first coefficient * in "c" corresponds to integer division "first"). */ static int first_div_may_involve_output(__isl_keep isl_basic_map *bmap, isl_int *c, int first, int n) { int k; if (!bmap) return -1; for (k = first; k < first + n; ++k) { if (isl_int_is_zero(c[k])) continue; if (div_may_involve_output(bmap, k)) return k; } return first + n; } /* Look for a pair of inequality constraints in "bmap" of the form * * -l + i >= 0 or i >= l * and * n + l - i >= 0 or i <= l + n * * with n < "m" and i the output dimension at position "pos". * (Note that n >= 0 as otherwise the two constraints would conflict.) * Furthermore, "l" is only allowed to involve parameters, input dimensions * and earlier output dimensions, as well as integer divisions that do * not involve any of the output dimensions. * * Return the index of the first inequality constraint or bmap->n_ineq * if no such pair can be found. */ static int find_modulo_constraint_pair(__isl_keep isl_basic_map *bmap, int pos, isl_int m) { int i, j; isl_ctx *ctx; unsigned total; unsigned n_div, o_div; unsigned n_out, o_out; int less; if (!bmap) return -1; ctx = isl_basic_map_get_ctx(bmap); total = isl_basic_map_total_dim(bmap); n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); for (i = 0; i < bmap->n_ineq; ++i) { if (!isl_int_abs_eq(bmap->ineq[i][o_out + pos], ctx->one)) continue; if (isl_seq_first_non_zero(bmap->ineq[i] + o_out + pos + 1, n_out - (pos + 1)) != -1) continue; if (first_div_may_involve_output(bmap, bmap->ineq[i] + o_div, 0, n_div) < n_div) continue; for (j = i + 1; j < bmap->n_ineq; ++j) { if (!isl_int_abs_eq(bmap->ineq[j][o_out + pos], ctx->one)) continue; if (!isl_seq_is_neg(bmap->ineq[i] + 1, bmap->ineq[j] + 1, total)) continue; break; } if (j >= bmap->n_ineq) continue; isl_int_add(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[j][0]); less = isl_int_abs_lt(bmap->ineq[i][0], m); isl_int_sub(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[j][0]); if (!less) continue; if (isl_int_is_one(bmap->ineq[i][o_out + pos])) return i; else return j; } return bmap->n_ineq; } /* Return the index of the equality of "bmap" that defines * the output dimension "pos" in terms of earlier dimensions. * The equality may also involve integer divisions, as long * as those integer divisions are defined in terms of * parameters or input dimensions. * In this case, *div is set to the number of integer divisions and * *ineq is set to the number of inequality constraints (provided * div and ineq are not NULL). * * The equality may also involve a single integer division involving * the output dimensions (typically only output dimension "pos") as * long as the coefficient of output dimension "pos" is 1 or -1 and * there is a pair of constraints i >= l and i <= l + n, with i referring * to output dimension "pos", l an expression involving only earlier * dimensions and n smaller than the coefficient of the integer division * in the equality. In this case, the output dimension can be defined * in terms of a modulo expression that does not involve the integer division. * *div is then set to this single integer division and * *ineq is set to the index of constraint i >= l. * * Return bmap->n_eq if there is no such equality. * Return -1 on error. */ int isl_basic_map_output_defining_equality(__isl_keep isl_basic_map *bmap, int pos, int *div, int *ineq) { int j, k, l; unsigned n_out, o_out; unsigned n_div, o_div; if (!bmap) return -1; n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); if (ineq) *ineq = bmap->n_ineq; if (div) *div = n_div; for (j = 0; j < bmap->n_eq; ++j) { if (isl_int_is_zero(bmap->eq[j][o_out + pos])) continue; if (isl_seq_first_non_zero(bmap->eq[j] + o_out + pos + 1, n_out - (pos + 1)) != -1) continue; k = first_div_may_involve_output(bmap, bmap->eq[j] + o_div, 0, n_div); if (k >= n_div) return j; if (!isl_int_is_one(bmap->eq[j][o_out + pos]) && !isl_int_is_negone(bmap->eq[j][o_out + pos])) continue; if (first_div_may_involve_output(bmap, bmap->eq[j] + o_div, k + 1, n_div - (k+1)) < n_div) continue; l = find_modulo_constraint_pair(bmap, pos, bmap->eq[j][o_div + k]); if (l < 0) return -1; if (l >= bmap->n_ineq) continue; if (div) *div = k; if (ineq) *ineq = l; return j; } return bmap->n_eq; } /* Check if the given basic map is obviously single-valued. * In particular, for each output dimension, check that there is * an equality that defines the output dimension in terms of * earlier dimensions. */ isl_bool isl_basic_map_plain_is_single_valued(__isl_keep isl_basic_map *bmap) { int i; unsigned n_out; if (!bmap) return isl_bool_error; n_out = isl_basic_map_dim(bmap, isl_dim_out); for (i = 0; i < n_out; ++i) { int eq; eq = isl_basic_map_output_defining_equality(bmap, i, NULL, NULL); if (eq < 0) return isl_bool_error; if (eq >= bmap->n_eq) return isl_bool_false; } return isl_bool_true; } /* Check if the given basic map is single-valued. * We simply compute * * M \circ M^-1 * * and check if the result is a subset of the identity mapping. */ isl_bool isl_basic_map_is_single_valued(__isl_keep isl_basic_map *bmap) { isl_space *space; isl_basic_map *test; isl_basic_map *id; isl_bool sv; sv = isl_basic_map_plain_is_single_valued(bmap); if (sv < 0 || sv) return sv; test = isl_basic_map_reverse(isl_basic_map_copy(bmap)); test = isl_basic_map_apply_range(test, isl_basic_map_copy(bmap)); space = isl_basic_map_get_space(bmap); space = isl_space_map_from_set(isl_space_range(space)); id = isl_basic_map_identity(space); sv = isl_basic_map_is_subset(test, id); isl_basic_map_free(test); isl_basic_map_free(id); return sv; } /* Check if the given map is obviously single-valued. */ isl_bool isl_map_plain_is_single_valued(__isl_keep isl_map *map) { if (!map) return isl_bool_error; if (map->n == 0) return isl_bool_true; if (map->n >= 2) return isl_bool_false; return isl_basic_map_plain_is_single_valued(map->p[0]); } /* Check if the given map is single-valued. * We simply compute * * M \circ M^-1 * * and check if the result is a subset of the identity mapping. */ isl_bool isl_map_is_single_valued(__isl_keep isl_map *map) { isl_space *dim; isl_map *test; isl_map *id; isl_bool sv; sv = isl_map_plain_is_single_valued(map); if (sv < 0 || sv) return sv; test = isl_map_reverse(isl_map_copy(map)); test = isl_map_apply_range(test, isl_map_copy(map)); dim = isl_space_map_from_set(isl_space_range(isl_map_get_space(map))); id = isl_map_identity(dim); sv = isl_map_is_subset(test, id); isl_map_free(test); isl_map_free(id); return sv; } isl_bool isl_map_is_injective(__isl_keep isl_map *map) { isl_bool in; map = isl_map_copy(map); map = isl_map_reverse(map); in = isl_map_is_single_valued(map); isl_map_free(map); return in; } /* Check if the given map is obviously injective. */ isl_bool isl_map_plain_is_injective(__isl_keep isl_map *map) { isl_bool in; map = isl_map_copy(map); map = isl_map_reverse(map); in = isl_map_plain_is_single_valued(map); isl_map_free(map); return in; } isl_bool isl_map_is_bijective(__isl_keep isl_map *map) { isl_bool sv; sv = isl_map_is_single_valued(map); if (sv < 0 || !sv) return sv; return isl_map_is_injective(map); } isl_bool isl_set_is_singleton(__isl_keep isl_set *set) { return isl_map_is_single_valued(set_to_map(set)); } /* Does "map" only map elements to themselves? * * If the domain and range spaces are different, then "map" * is considered not to be an identity relation, even if it is empty. * Otherwise, construct the maximal identity relation and * check whether "map" is a subset of this relation. */ isl_bool isl_map_is_identity(__isl_keep isl_map *map) { isl_space *space; isl_map *id; isl_bool equal, is_identity; space = isl_map_get_space(map); equal = isl_space_tuple_is_equal(space, isl_dim_in, space, isl_dim_out); isl_space_free(space); if (equal < 0 || !equal) return equal; id = isl_map_identity(isl_map_get_space(map)); is_identity = isl_map_is_subset(map, id); isl_map_free(id); return is_identity; } int isl_map_is_translation(__isl_keep isl_map *map) { int ok; isl_set *delta; delta = isl_map_deltas(isl_map_copy(map)); ok = isl_set_is_singleton(delta); isl_set_free(delta); return ok; } static int unique(isl_int *p, unsigned pos, unsigned len) { if (isl_seq_first_non_zero(p, pos) != -1) return 0; if (isl_seq_first_non_zero(p + pos + 1, len - pos - 1) != -1) return 0; return 1; } int isl_basic_set_is_box(__isl_keep isl_basic_set *bset) { int i, j; unsigned nvar; unsigned ovar; if (!bset) return -1; if (isl_basic_set_dim(bset, isl_dim_div) != 0) return 0; nvar = isl_basic_set_dim(bset, isl_dim_set); ovar = isl_space_offset(bset->dim, isl_dim_set); for (j = 0; j < nvar; ++j) { int lower = 0, upper = 0; for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][1 + ovar + j])) continue; if (!unique(bset->eq[i] + 1 + ovar, j, nvar)) return 0; break; } if (i < bset->n_eq) continue; for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][1 + ovar + j])) continue; if (!unique(bset->ineq[i] + 1 + ovar, j, nvar)) return 0; if (isl_int_is_pos(bset->ineq[i][1 + ovar + j])) lower = 1; else upper = 1; } if (!lower || !upper) return 0; } return 1; } int isl_set_is_box(__isl_keep isl_set *set) { if (!set) return -1; if (set->n != 1) return 0; return isl_basic_set_is_box(set->p[0]); } isl_bool isl_basic_set_is_wrapping(__isl_keep isl_basic_set *bset) { if (!bset) return isl_bool_error; return isl_space_is_wrapping(bset->dim); } isl_bool isl_set_is_wrapping(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_is_wrapping(set->dim); } /* Modify the space of "map" through a call to "change". * If "can_change" is set (not NULL), then first call it to check * if the modification is allowed, printing the error message "cannot_change" * if it is not. */ static __isl_give isl_map *isl_map_change_space(__isl_take isl_map *map, isl_bool (*can_change)(__isl_keep isl_map *map), const char *cannot_change, __isl_give isl_space *(*change)(__isl_take isl_space *space)) { isl_bool ok; isl_space *space; if (!map) return NULL; ok = can_change ? can_change(map) : isl_bool_true; if (ok < 0) return isl_map_free(map); if (!ok) isl_die(isl_map_get_ctx(map), isl_error_invalid, cannot_change, return isl_map_free(map)); space = change(isl_map_get_space(map)); map = isl_map_reset_space(map, space); return map; } /* Is the domain of "map" a wrapped relation? */ isl_bool isl_map_domain_is_wrapping(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_domain_is_wrapping(map->dim); } /* Is the range of "map" a wrapped relation? */ isl_bool isl_map_range_is_wrapping(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_range_is_wrapping(map->dim); } __isl_give isl_basic_set *isl_basic_map_wrap(__isl_take isl_basic_map *bmap) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_wrap(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bset_from_bmap(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Given a map A -> B, return the set (A -> B). */ __isl_give isl_set *isl_map_wrap(__isl_take isl_map *map) { return isl_map_change_space(map, NULL, NULL, &isl_space_wrap); } __isl_give isl_basic_map *isl_basic_set_unwrap(__isl_take isl_basic_set *bset) { bset = isl_basic_set_cow(bset); if (!bset) return NULL; bset->dim = isl_space_unwrap(bset->dim); if (!bset->dim) goto error; bset = isl_basic_set_finalize(bset); return bset_to_bmap(bset); error: isl_basic_set_free(bset); return NULL; } /* Given a set (A -> B), return the map A -> B. * Error out if "set" is not of the form (A -> B). */ __isl_give isl_map *isl_set_unwrap(__isl_take isl_set *set) { return isl_map_change_space(set, &isl_set_is_wrapping, "not a wrapping set", &isl_space_unwrap); } __isl_give isl_basic_map *isl_basic_map_reset(__isl_take isl_basic_map *bmap, enum isl_dim_type type) { if (!bmap) return NULL; if (!isl_space_is_named_or_nested(bmap->dim, type)) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_reset(bmap->dim, type); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_map *isl_map_reset(__isl_take isl_map *map, enum isl_dim_type type) { int i; if (!map) return NULL; if (!isl_space_is_named_or_nested(map->dim, type)) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reset(map->p[i], type); if (!map->p[i]) goto error; } map->dim = isl_space_reset(map->dim, type); if (!map->dim) goto error; return map; error: isl_map_free(map); return NULL; } __isl_give isl_basic_map *isl_basic_map_flatten(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[0] && !bmap->dim->nested[1]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_flatten(__isl_take isl_basic_set *bset) { return bset_from_bmap(isl_basic_map_flatten(bset_to_bmap(bset))); } __isl_give isl_basic_map *isl_basic_map_flatten_domain( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[0]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten_domain(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_flatten_range( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[1]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten_range(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Remove any internal structure from the spaces of domain and range of "map". */ __isl_give isl_map *isl_map_flatten(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[0] && !map->dim->nested[1]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten); } __isl_give isl_set *isl_set_flatten(__isl_take isl_set *set) { return set_from_map(isl_map_flatten(set_to_map(set))); } __isl_give isl_map *isl_set_flatten_map(__isl_take isl_set *set) { isl_space *dim, *flat_dim; isl_map *map; dim = isl_set_get_space(set); flat_dim = isl_space_flatten(isl_space_copy(dim)); map = isl_map_identity(isl_space_join(isl_space_reverse(dim), flat_dim)); map = isl_map_intersect_domain(map, set); return map; } /* Remove any internal structure from the space of the domain of "map". */ __isl_give isl_map *isl_map_flatten_domain(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[0]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten_domain); } /* Remove any internal structure from the space of the range of "map". */ __isl_give isl_map *isl_map_flatten_range(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[1]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten_range); } /* Reorder the dimensions of "bmap" according to the given dim_map * and set the dimension specification to "dim" and * perform Gaussian elimination on the result. */ __isl_give isl_basic_map *isl_basic_map_realign(__isl_take isl_basic_map *bmap, __isl_take isl_space *dim, __isl_take struct isl_dim_map *dim_map) { isl_basic_map *res; unsigned flags; bmap = isl_basic_map_cow(bmap); if (!bmap || !dim || !dim_map) goto error; flags = bmap->flags; ISL_FL_CLR(flags, ISL_BASIC_MAP_FINAL); ISL_FL_CLR(flags, ISL_BASIC_MAP_NORMALIZED); ISL_FL_CLR(flags, ISL_BASIC_MAP_NORMALIZED_DIVS); res = isl_basic_map_alloc_space(dim, bmap->n_div, bmap->n_eq, bmap->n_ineq); res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); if (res) res->flags = flags; res = isl_basic_map_gauss(res, NULL); res = isl_basic_map_finalize(res); return res; error: free(dim_map); isl_basic_map_free(bmap); isl_space_free(dim); return NULL; } /* Reorder the dimensions of "map" according to given reordering. */ __isl_give isl_map *isl_map_realign(__isl_take isl_map *map, __isl_take isl_reordering *r) { int i; struct isl_dim_map *dim_map; map = isl_map_cow(map); dim_map = isl_dim_map_from_reordering(r); if (!map || !r || !dim_map) goto error; for (i = 0; i < map->n; ++i) { struct isl_dim_map *dim_map_i; dim_map_i = isl_dim_map_extend(dim_map, map->p[i]); map->p[i] = isl_basic_map_realign(map->p[i], isl_space_copy(r->dim), dim_map_i); if (!map->p[i]) goto error; } map = isl_map_reset_space(map, isl_space_copy(r->dim)); isl_reordering_free(r); free(dim_map); return map; error: free(dim_map); isl_map_free(map); isl_reordering_free(r); return NULL; } __isl_give isl_set *isl_set_realign(__isl_take isl_set *set, __isl_take isl_reordering *r) { return set_from_map(isl_map_realign(set_to_map(set), r)); } __isl_give isl_map *isl_map_align_params(__isl_take isl_map *map, __isl_take isl_space *model) { isl_ctx *ctx; if (!map || !model) goto error; ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(map->dim)) isl_die(ctx, isl_error_invalid, "relation has unnamed parameters", goto error); if (!isl_space_match(map->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(map->dim, model); exp = isl_reordering_extend_space(exp, isl_map_get_space(map)); map = isl_map_realign(map, exp); } isl_space_free(model); return map; error: isl_space_free(model); isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_align_params(__isl_take isl_set *set, __isl_take isl_space *model) { return isl_map_align_params(set, model); } /* Align the parameters of "bmap" to those of "model", introducing * additional parameters if needed. */ __isl_give isl_basic_map *isl_basic_map_align_params( __isl_take isl_basic_map *bmap, __isl_take isl_space *model) { isl_ctx *ctx; if (!bmap || !model) goto error; ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(bmap->dim)) isl_die(ctx, isl_error_invalid, "relation has unnamed parameters", goto error); if (!isl_space_match(bmap->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; struct isl_dim_map *dim_map; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(bmap->dim, model); exp = isl_reordering_extend_space(exp, isl_basic_map_get_space(bmap)); dim_map = isl_dim_map_from_reordering(exp); bmap = isl_basic_map_realign(bmap, exp ? isl_space_copy(exp->dim) : NULL, isl_dim_map_extend(dim_map, bmap)); isl_reordering_free(exp); free(dim_map); } isl_space_free(model); return bmap; error: isl_space_free(model); isl_basic_map_free(bmap); return NULL; } /* Align the parameters of "bset" to those of "model", introducing * additional parameters if needed. */ __isl_give isl_basic_set *isl_basic_set_align_params( __isl_take isl_basic_set *bset, __isl_take isl_space *model) { return isl_basic_map_align_params(bset, model); } __isl_give isl_mat *isl_basic_map_equalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; struct isl_mat *mat; int i, j, k; int pos; if (!bmap) return NULL; mat = isl_mat_alloc(bmap->ctx, bmap->n_eq, isl_basic_map_total_dim(bmap) + 1); if (!mat) return NULL; for (i = 0; i < bmap->n_eq; ++i) for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(mat->row[i][pos], bmap->eq[i][off + k]); ++pos; } } return mat; } __isl_give isl_mat *isl_basic_map_inequalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; struct isl_mat *mat; int i, j, k; int pos; if (!bmap) return NULL; mat = isl_mat_alloc(bmap->ctx, bmap->n_ineq, isl_basic_map_total_dim(bmap) + 1); if (!mat) return NULL; for (i = 0; i < bmap->n_ineq; ++i) for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(mat->row[i][pos], bmap->ineq[i][off + k]); ++pos; } } return mat; } __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; isl_basic_map *bmap; unsigned total; unsigned extra; int i, j, k, l; int pos; if (!dim || !eq || !ineq) goto error; if (eq->n_col != ineq->n_col) isl_die(dim->ctx, isl_error_invalid, "equalities and inequalities matrices should have " "same number of columns", goto error); total = 1 + isl_space_dim(dim, isl_dim_all); if (eq->n_col < total) isl_die(dim->ctx, isl_error_invalid, "number of columns too small", goto error); extra = eq->n_col - total; bmap = isl_basic_map_alloc_space(isl_space_copy(dim), extra, eq->n_row, ineq->n_row); if (!bmap) goto error; for (i = 0; i < extra; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_int_set_si(bmap->div[k][0], 0); } for (i = 0; i < eq->n_row; ++i) { l = isl_basic_map_alloc_equality(bmap); if (l < 0) goto error; for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(bmap->eq[l][off + k], eq->row[i][pos]); ++pos; } } } for (i = 0; i < ineq->n_row; ++i) { l = isl_basic_map_alloc_inequality(bmap); if (l < 0) goto error; for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(bmap->ineq[l][off + k], ineq->row[i][pos]); ++pos; } } } isl_space_free(dim); isl_mat_free(eq); isl_mat_free(ineq); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_space_free(dim); isl_mat_free(eq); isl_mat_free(ineq); return NULL; } __isl_give isl_mat *isl_basic_set_equalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { return isl_basic_map_equalities_matrix(bset_to_bmap(bset), c1, c2, c3, c4, isl_dim_in); } __isl_give isl_mat *isl_basic_set_inequalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { return isl_basic_map_inequalities_matrix(bset_to_bmap(bset), c1, c2, c3, c4, isl_dim_in); } __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { isl_basic_map *bmap; bmap = isl_basic_map_from_constraint_matrices(dim, eq, ineq, c1, c2, c3, c4, isl_dim_in); return bset_from_bmap(bmap); } isl_bool isl_basic_map_can_zip(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_zip(bmap->dim); } isl_bool isl_map_can_zip(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_zip(map->dim); } /* Given a basic map (A -> B) -> (C -> D), return the corresponding basic map * (A -> C) -> (B -> D). */ __isl_give isl_basic_map *isl_basic_map_zip(__isl_take isl_basic_map *bmap) { unsigned pos; unsigned n1; unsigned n2; if (!bmap) return NULL; if (!isl_basic_map_can_zip(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be zipped", goto error); pos = isl_basic_map_offset(bmap, isl_dim_in) + isl_space_dim(bmap->dim->nested[0], isl_dim_in); n1 = isl_space_dim(bmap->dim->nested[0], isl_dim_out); n2 = isl_space_dim(bmap->dim->nested[1], isl_dim_in); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_swap_vars(bmap, pos, n1, n2); if (!bmap) return NULL; bmap->dim = isl_space_zip(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_mark_final(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Given a map (A -> B) -> (C -> D), return the corresponding map * (A -> C) -> (B -> D). */ __isl_give isl_map *isl_map_zip(__isl_take isl_map *map) { int i; if (!map) return NULL; if (!isl_map_can_zip(map)) isl_die(map->ctx, isl_error_invalid, "map cannot be zipped", goto error); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_zip(map->p[i]); if (!map->p[i]) goto error; } map->dim = isl_space_zip(map->dim); if (!map->dim) goto error; return map; error: isl_map_free(map); return NULL; } /* Can we apply isl_basic_map_curry to "bmap"? * That is, does it have a nested relation in its domain? */ isl_bool isl_basic_map_can_curry(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_curry(bmap->dim); } /* Can we apply isl_map_curry to "map"? * That is, does it have a nested relation in its domain? */ isl_bool isl_map_can_curry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_curry(map->dim); } /* Given a basic map (A -> B) -> C, return the corresponding basic map * A -> (B -> C). */ __isl_give isl_basic_map *isl_basic_map_curry(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!isl_basic_map_can_curry(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be curried", goto error); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_curry(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_mark_final(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Given a map (A -> B) -> C, return the corresponding map * A -> (B -> C). */ __isl_give isl_map *isl_map_curry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_curry, "map cannot be curried", &isl_space_curry); } /* Can isl_map_range_curry be applied to "map"? * That is, does it have a nested relation in its range, * the domain of which is itself a nested relation? */ isl_bool isl_map_can_range_curry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_range_curry(map->dim); } /* Given a map A -> ((B -> C) -> D), return the corresponding map * A -> (B -> (C -> D)). */ __isl_give isl_map *isl_map_range_curry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_range_curry, "map range cannot be curried", &isl_space_range_curry); } /* Can we apply isl_basic_map_uncurry to "bmap"? * That is, does it have a nested relation in its domain? */ isl_bool isl_basic_map_can_uncurry(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_uncurry(bmap->dim); } /* Can we apply isl_map_uncurry to "map"? * That is, does it have a nested relation in its domain? */ isl_bool isl_map_can_uncurry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_uncurry(map->dim); } /* Given a basic map A -> (B -> C), return the corresponding basic map * (A -> B) -> C. */ __isl_give isl_basic_map *isl_basic_map_uncurry(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!isl_basic_map_can_uncurry(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be uncurried", return isl_basic_map_free(bmap)); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_uncurry(bmap->dim); if (!bmap->dim) return isl_basic_map_free(bmap); bmap = isl_basic_map_mark_final(bmap); return bmap; } /* Given a map A -> (B -> C), return the corresponding map * (A -> B) -> C. */ __isl_give isl_map *isl_map_uncurry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_uncurry, "map cannot be uncurried", &isl_space_uncurry); } /* Construct a basic map mapping the domain of the affine expression * to a one-dimensional range prescribed by the affine expression. * If "rational" is set, then construct a rational basic map. * * A NaN affine expression cannot be converted to a basic map. */ static __isl_give isl_basic_map *isl_basic_map_from_aff2( __isl_take isl_aff *aff, int rational) { int k; int pos; isl_bool is_nan; isl_local_space *ls; isl_basic_map *bmap = NULL; if (!aff) return NULL; is_nan = isl_aff_is_nan(aff); if (is_nan < 0) goto error; if (is_nan) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot convert NaN", goto error); ls = isl_aff_get_local_space(aff); bmap = isl_basic_map_from_local_space(ls); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; pos = isl_basic_map_offset(bmap, isl_dim_out); isl_seq_cpy(bmap->eq[k], aff->v->el + 1, pos); isl_int_neg(bmap->eq[k][pos], aff->v->el[0]); isl_seq_cpy(bmap->eq[k] + pos + 1, aff->v->el + 1 + pos, aff->v->size - (pos + 1)); isl_aff_free(aff); if (rational) bmap = isl_basic_map_set_rational(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_aff_free(aff); isl_basic_map_free(bmap); return NULL; } /* Construct a basic map mapping the domain of the affine expression * to a one-dimensional range prescribed by the affine expression. */ __isl_give isl_basic_map *isl_basic_map_from_aff(__isl_take isl_aff *aff) { return isl_basic_map_from_aff2(aff, 0); } /* Construct a map mapping the domain of the affine expression * to a one-dimensional range prescribed by the affine expression. */ __isl_give isl_map *isl_map_from_aff(__isl_take isl_aff *aff) { isl_basic_map *bmap; bmap = isl_basic_map_from_aff(aff); return isl_map_from_basic_map(bmap); } /* Construct a basic map mapping the domain the multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression. * If "rational" is set, then construct a rational basic map. */ __isl_give isl_basic_map *isl_basic_map_from_multi_aff2( __isl_take isl_multi_aff *maff, int rational) { int i; isl_space *space; isl_basic_map *bmap; if (!maff) return NULL; if (isl_space_dim(maff->space, isl_dim_out) != maff->n) isl_die(isl_multi_aff_get_ctx(maff), isl_error_internal, "invalid space", goto error); space = isl_space_domain(isl_multi_aff_get_space(maff)); bmap = isl_basic_map_universe(isl_space_from_domain(space)); if (rational) bmap = isl_basic_map_set_rational(bmap); for (i = 0; i < maff->n; ++i) { isl_aff *aff; isl_basic_map *bmap_i; aff = isl_aff_copy(maff->p[i]); bmap_i = isl_basic_map_from_aff2(aff, rational); bmap = isl_basic_map_flat_range_product(bmap, bmap_i); } bmap = isl_basic_map_reset_space(bmap, isl_multi_aff_get_space(maff)); isl_multi_aff_free(maff); return bmap; error: isl_multi_aff_free(maff); return NULL; } /* Construct a basic map mapping the domain the multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression. */ __isl_give isl_basic_map *isl_basic_map_from_multi_aff( __isl_take isl_multi_aff *ma) { return isl_basic_map_from_multi_aff2(ma, 0); } /* Construct a map mapping the domain the multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression. */ __isl_give isl_map *isl_map_from_multi_aff(__isl_take isl_multi_aff *maff) { isl_basic_map *bmap; bmap = isl_basic_map_from_multi_aff(maff); return isl_map_from_basic_map(bmap); } /* Construct a basic map mapping a domain in the given space to * to an n-dimensional range, with n the number of elements in the list, * where each coordinate in the range is prescribed by the * corresponding affine expression. * The domains of all affine expressions in the list are assumed to match * domain_dim. */ __isl_give isl_basic_map *isl_basic_map_from_aff_list( __isl_take isl_space *domain_dim, __isl_take isl_aff_list *list) { int i; isl_space *dim; isl_basic_map *bmap; if (!list) return NULL; dim = isl_space_from_domain(domain_dim); bmap = isl_basic_map_universe(dim); for (i = 0; i < list->n; ++i) { isl_aff *aff; isl_basic_map *bmap_i; aff = isl_aff_copy(list->p[i]); bmap_i = isl_basic_map_from_aff(aff); bmap = isl_basic_map_flat_range_product(bmap, bmap_i); } isl_aff_list_free(list); return bmap; } __isl_give isl_set *isl_set_equate(__isl_take isl_set *set, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_equate(set, type1, pos1, type2, pos2); } /* Construct a basic map where the given dimensions are equal to each other. */ static __isl_give isl_basic_map *equator(__isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!space) return NULL; if (pos1 >= isl_space_dim(space, type1)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_space_dim(space, type2)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (type1 == type2 && pos1 == pos2) return isl_basic_map_universe(space); bmap = isl_basic_map_alloc_space(isl_space_copy(space), 0, 1, 0); i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->eq[i][pos1], -1); isl_int_set_si(bmap->eq[i][pos2], 1); bmap = isl_basic_map_finalize(bmap); isl_space_free(space); return bmap; error: isl_space_free(space); isl_basic_map_free(bmap); return NULL; } /* Add a constraint imposing that the given two dimensions are equal. */ __isl_give isl_basic_map *isl_basic_map_equate(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *eq; eq = equator(isl_basic_map_get_space(bmap), type1, pos1, type2, pos2); bmap = isl_basic_map_intersect(bmap, eq); return bmap; } /* Add a constraint imposing that the given two dimensions are equal. */ __isl_give isl_map *isl_map_equate(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap; bmap = equator(isl_map_get_space(map), type1, pos1, type2, pos2); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; } /* Add a constraint imposing that the given two dimensions have opposite values. */ __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!map) return NULL; if (pos1 >= isl_map_dim(map, type1)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_map_dim(map, type2)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); bmap = isl_basic_map_alloc_space(isl_map_get_space(map), 0, 1, 0); i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->eq[i][pos1], 1); isl_int_set_si(bmap->eq[i][pos2], 1); bmap = isl_basic_map_finalize(bmap); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; error: isl_basic_map_free(bmap); isl_map_free(map); return NULL; } /* Construct a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ static __isl_give isl_constraint *constraint_order_ge( __isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; if (!space) return NULL; c = isl_constraint_alloc_inequality(isl_local_space_from_space(space)); if (pos1 >= isl_constraint_dim(c, type1)) isl_die(isl_constraint_get_ctx(c), isl_error_invalid, "index out of bounds", return isl_constraint_free(c)); if (pos2 >= isl_constraint_dim(c, type2)) isl_die(isl_constraint_get_ctx(c), isl_error_invalid, "index out of bounds", return isl_constraint_free(c)); if (type1 == type2 && pos1 == pos2) return c; c = isl_constraint_set_coefficient_si(c, type1, pos1, 1); c = isl_constraint_set_coefficient_si(c, type2, pos2, -1); return c; } /* Add a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ __isl_give isl_basic_map *isl_basic_map_order_ge(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; isl_space *space; if (type1 == type2 && pos1 == pos2) return bmap; space = isl_basic_map_get_space(bmap); c = constraint_order_ge(space, type1, pos1, type2, pos2); bmap = isl_basic_map_add_constraint(bmap, c); return bmap; } /* Add a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ __isl_give isl_map *isl_map_order_ge(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; isl_space *space; if (type1 == type2 && pos1 == pos2) return map; space = isl_map_get_space(map); c = constraint_order_ge(space, type1, pos1, type2, pos2); map = isl_map_add_constraint(map, c); return map; } /* Add a constraint imposing that the value of the first dimension is * less than or equal to that of the second. */ __isl_give isl_map *isl_map_order_le(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_order_ge(map, type2, pos2, type1, pos1); } /* Construct a basic map where the value of the first dimension is * greater than that of the second. */ static __isl_give isl_basic_map *greator(__isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!space) return NULL; if (pos1 >= isl_space_dim(space, type1)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_space_dim(space, type2)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (type1 == type2 && pos1 == pos2) return isl_basic_map_empty(space); bmap = isl_basic_map_alloc_space(space, 0, 0, 1); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return isl_basic_map_free(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->ineq[i][pos1], 1); isl_int_set_si(bmap->ineq[i][pos2], -1); isl_int_set_si(bmap->ineq[i][0], -1); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_space_free(space); isl_basic_map_free(bmap); return NULL; } /* Add a constraint imposing that the value of the first dimension is * greater than that of the second. */ __isl_give isl_basic_map *isl_basic_map_order_gt(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *gt; gt = greator(isl_basic_map_get_space(bmap), type1, pos1, type2, pos2); bmap = isl_basic_map_intersect(bmap, gt); return bmap; } /* Add a constraint imposing that the value of the first dimension is * greater than that of the second. */ __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap; bmap = greator(isl_map_get_space(map), type1, pos1, type2, pos2); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; } /* Add a constraint imposing that the value of the first dimension is * smaller than that of the second. */ __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_order_gt(map, type2, pos2, type1, pos1); } __isl_give isl_aff *isl_basic_map_get_div(__isl_keep isl_basic_map *bmap, int pos) { isl_aff *div; isl_local_space *ls; if (!bmap) return NULL; if (!isl_basic_map_divs_known(bmap)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "some divs are unknown", return NULL); ls = isl_basic_map_get_local_space(bmap); div = isl_local_space_get_div(ls, pos); isl_local_space_free(ls); return div; } __isl_give isl_aff *isl_basic_set_get_div(__isl_keep isl_basic_set *bset, int pos) { return isl_basic_map_get_div(bset, pos); } /* Plug in "subs" for dimension "type", "pos" of "bset". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) * * Constraints of the form * * a i + g * * are replaced by * * a f + d g * * We currently require that "subs" is an integral expression. * Handling rational expressions may require us to add stride constraints * as we do in isl_basic_set_preimage_multi_aff. */ __isl_give isl_basic_set *isl_basic_set_substitute( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { int i; isl_int v; isl_ctx *ctx; if (bset && isl_basic_set_plain_is_empty(bset)) return bset; bset = isl_basic_set_cow(bset); if (!bset || !subs) goto error; ctx = isl_basic_set_get_ctx(bset); if (!isl_space_is_equal(bset->dim, subs->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", goto error); if (isl_local_space_dim(subs->ls, isl_dim_div) != 0) isl_die(ctx, isl_error_unsupported, "cannot handle divs yet", goto error); if (!isl_int_is_one(subs->v->el[0])) isl_die(ctx, isl_error_invalid, "can only substitute integer expressions", goto error); pos += isl_basic_set_offset(bset, type); isl_int_init(v); for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][pos])) continue; isl_int_set(v, bset->eq[i][pos]); isl_int_set_si(bset->eq[i][pos], 0); isl_seq_combine(bset->eq[i], subs->v->el[0], bset->eq[i], v, subs->v->el + 1, subs->v->size - 1); } for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][pos])) continue; isl_int_set(v, bset->ineq[i][pos]); isl_int_set_si(bset->ineq[i][pos], 0); isl_seq_combine(bset->ineq[i], subs->v->el[0], bset->ineq[i], v, subs->v->el + 1, subs->v->size - 1); } for (i = 0; i < bset->n_div; ++i) { if (isl_int_is_zero(bset->div[i][1 + pos])) continue; isl_int_set(v, bset->div[i][1 + pos]); isl_int_set_si(bset->div[i][1 + pos], 0); isl_seq_combine(bset->div[i] + 1, subs->v->el[0], bset->div[i] + 1, v, subs->v->el + 1, subs->v->size - 1); isl_int_mul(bset->div[i][0], bset->div[i][0], subs->v->el[0]); } isl_int_clear(v); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } /* Plug in "subs" for dimension "type", "pos" of "set". */ __isl_give isl_set *isl_set_substitute(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { int i; if (set && isl_set_plain_is_empty(set)) return set; set = isl_set_cow(set); if (!set || !subs) goto error; for (i = set->n - 1; i >= 0; --i) { set->p[i] = isl_basic_set_substitute(set->p[i], type, pos, subs); if (remove_if_empty(set, i) < 0) goto error; } return set; error: isl_set_free(set); return NULL; } /* Check if the range of "ma" is compatible with the domain or range * (depending on "type") of "bmap". * Return -1 if anything is wrong. */ static int check_basic_map_compatible_range_multi_aff( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, __isl_keep isl_multi_aff *ma) { int m; isl_space *ma_space; ma_space = isl_multi_aff_get_space(ma); m = isl_space_match(bmap->dim, isl_dim_param, ma_space, isl_dim_param); if (m < 0) goto error; if (!m) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "parameters don't match", goto error); m = isl_space_tuple_is_equal(bmap->dim, type, ma_space, isl_dim_out); if (m < 0) goto error; if (!m) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "spaces don't match", goto error); isl_space_free(ma_space); return m; error: isl_space_free(ma_space); return -1; } /* Copy the divs from "ma" to "bmap", adding zeros for the "n_before" * coefficients before the transformed range of dimensions, * the "n_after" coefficients after the transformed range of dimensions * and the coefficients of the other divs in "bmap". */ static int set_ma_divs(__isl_keep isl_basic_map *bmap, __isl_keep isl_multi_aff *ma, int n_before, int n_after, int n_div) { int i; int n_param; int n_set; isl_local_space *ls; if (n_div == 0) return 0; ls = isl_aff_get_domain_local_space(ma->p[0]); if (!ls) return -1; n_param = isl_local_space_dim(ls, isl_dim_param); n_set = isl_local_space_dim(ls, isl_dim_set); for (i = 0; i < n_div; ++i) { int o_bmap = 0, o_ls = 0; isl_seq_cpy(bmap->div[i], ls->div->row[i], 1 + 1 + n_param); o_bmap += 1 + 1 + n_param; o_ls += 1 + 1 + n_param; isl_seq_clr(bmap->div[i] + o_bmap, n_before); o_bmap += n_before; isl_seq_cpy(bmap->div[i] + o_bmap, ls->div->row[i] + o_ls, n_set); o_bmap += n_set; o_ls += n_set; isl_seq_clr(bmap->div[i] + o_bmap, n_after); o_bmap += n_after; isl_seq_cpy(bmap->div[i] + o_bmap, ls->div->row[i] + o_ls, n_div); o_bmap += n_div; o_ls += n_div; isl_seq_clr(bmap->div[i] + o_bmap, bmap->n_div - n_div); if (isl_basic_set_add_div_constraints(bmap, i) < 0) goto error; } isl_local_space_free(ls); return 0; error: isl_local_space_free(ls); return -1; } /* How many stride constraints does "ma" enforce? * That is, how many of the affine expressions have a denominator * different from one? */ static int multi_aff_strides(__isl_keep isl_multi_aff *ma) { int i; int strides = 0; for (i = 0; i < ma->n; ++i) if (!isl_int_is_one(ma->p[i]->v->el[0])) strides++; return strides; } /* For each affine expression in ma of the form * * x_i = (f_i y + h_i)/m_i * * with m_i different from one, add a constraint to "bmap" * of the form * * f_i y + h_i = m_i alpha_i * * with alpha_i an additional existentially quantified variable. * * The input variables of "ma" correspond to a subset of the variables * of "bmap". There are "n_before" variables in "bmap" before this * subset and "n_after" variables after this subset. * The integer divisions of the affine expressions in "ma" are assumed * to have been aligned. There are "n_div_ma" of them and * they appear first in "bmap", straight after the "n_after" variables. */ static __isl_give isl_basic_map *add_ma_strides( __isl_take isl_basic_map *bmap, __isl_keep isl_multi_aff *ma, int n_before, int n_after, int n_div_ma) { int i, k; int div; int total; int n_param; int n_in; total = isl_basic_map_total_dim(bmap); n_param = isl_multi_aff_dim(ma, isl_dim_param); n_in = isl_multi_aff_dim(ma, isl_dim_in); for (i = 0; i < ma->n; ++i) { int o_bmap = 0, o_ma = 1; if (isl_int_is_one(ma->p[i]->v->el[0])) continue; div = isl_basic_map_alloc_div(bmap); k = isl_basic_map_alloc_equality(bmap); if (div < 0 || k < 0) goto error; isl_int_set_si(bmap->div[div][0], 0); isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, 1 + n_param); o_bmap += 1 + n_param; o_ma += 1 + n_param; isl_seq_clr(bmap->eq[k] + o_bmap, n_before); o_bmap += n_before; isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, n_in); o_bmap += n_in; o_ma += n_in; isl_seq_clr(bmap->eq[k] + o_bmap, n_after); o_bmap += n_after; isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, n_div_ma); o_bmap += n_div_ma; o_ma += n_div_ma; isl_seq_clr(bmap->eq[k] + o_bmap, 1 + total - o_bmap); isl_int_neg(bmap->eq[k][1 + total], ma->p[i]->v->el[0]); total++; } return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Replace the domain or range space (depending on "type) of "space" by "set". */ static __isl_give isl_space *isl_space_set(__isl_take isl_space *space, enum isl_dim_type type, __isl_take isl_space *set) { if (type == isl_dim_in) { space = isl_space_range(space); space = isl_space_map_from_domain_and_range(set, space); } else { space = isl_space_domain(space); space = isl_space_map_from_domain_and_range(space, set); } return space; } /* Compute the preimage of the domain or range (depending on "type") * of "bmap" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the domain or range has been replaced by * the domain space of "ma". * * If bmap is represented by * * A(p) + S u + B x + T v + C(divs) >= 0, * * where u and x are input and output dimensions if type == isl_dim_out * while x and v are input and output dimensions if type == isl_dim_in, * and ma is represented by * * x = D(p) + F(y) + G(divs') * * then the result is * * A(p) + B D(p) + S u + B F(y) + T v + B G(divs') + C(divs) >= 0 * * The divs in the input set are similarly adjusted. * In particular * * floor((a_i(p) + s u + b_i x + t v + c_i(divs))/n_i) * * becomes * * floor((a_i(p) + b_i D(p) + s u + b_i F(y) + t v + * B_i G(divs') + c_i(divs))/n_i) * * If bmap is not a rational map and if F(y) involves any denominators * * x_i = (f_i y + h_i)/m_i * * then additional constraints are added to ensure that we only * map back integer points. That is we enforce * * f_i y + h_i = m_i alpha_i * * with alpha_i an additional existentially quantified variable. * * We first copy over the divs from "ma". * Then we add the modified constraints and divs from "bmap". * Finally, we add the stride constraints, if needed. */ __isl_give isl_basic_map *isl_basic_map_preimage_multi_aff( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { int i, k; isl_space *space; isl_basic_map *res = NULL; int n_before, n_after, n_div_bmap, n_div_ma; isl_int f, c1, c2, g; int rational, strides; isl_int_init(f); isl_int_init(c1); isl_int_init(c2); isl_int_init(g); ma = isl_multi_aff_align_divs(ma); if (!bmap || !ma) goto error; if (check_basic_map_compatible_range_multi_aff(bmap, type, ma) < 0) goto error; if (type == isl_dim_in) { n_before = 0; n_after = isl_basic_map_dim(bmap, isl_dim_out); } else { n_before = isl_basic_map_dim(bmap, isl_dim_in); n_after = 0; } n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div); n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0; space = isl_multi_aff_get_domain_space(ma); space = isl_space_set(isl_basic_map_get_space(bmap), type, space); rational = isl_basic_map_is_rational(bmap); strides = rational ? 0 : multi_aff_strides(ma); res = isl_basic_map_alloc_space(space, n_div_ma + n_div_bmap + strides, bmap->n_eq + strides, bmap->n_ineq + 2 * n_div_ma); if (rational) res = isl_basic_map_set_rational(res); for (i = 0; i < n_div_ma + n_div_bmap; ++i) if (isl_basic_map_alloc_div(res) < 0) goto error; if (set_ma_divs(res, ma, n_before, n_after, n_div_ma) < 0) goto error; for (i = 0; i < bmap->n_eq; ++i) { k = isl_basic_map_alloc_equality(res); if (k < 0) goto error; isl_seq_preimage(res->eq[k], bmap->eq[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 0); } for (i = 0; i < bmap->n_ineq; ++i) { k = isl_basic_map_alloc_inequality(res); if (k < 0) goto error; isl_seq_preimage(res->ineq[k], bmap->ineq[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 0); } for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) { isl_int_set_si(res->div[n_div_ma + i][0], 0); continue; } isl_seq_preimage(res->div[n_div_ma + i], bmap->div[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 1); } if (strides) res = add_ma_strides(res, ma, n_before, n_after, n_div_ma); isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_basic_map_free(bmap); isl_multi_aff_free(ma); res = isl_basic_set_simplify(res); return isl_basic_map_finalize(res); error: isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_basic_map_free(bmap); isl_multi_aff_free(ma); isl_basic_map_free(res); return NULL; } /* Compute the preimage of "bset" under the function represented by "ma". * In other words, plug in "ma" in "bset". The result is a basic set * that lives in the domain space of "ma". */ __isl_give isl_basic_set *isl_basic_set_preimage_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bset, isl_dim_set, ma); } /* Compute the preimage of the domain of "bmap" under the function * represented by "ma". * In other words, plug in "ma" in the domain of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the domain has been replaced by the domain space of "ma". */ __isl_give isl_basic_map *isl_basic_map_preimage_domain_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bmap, isl_dim_in, ma); } /* Compute the preimage of the range of "bmap" under the function * represented by "ma". * In other words, plug in "ma" in the range of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the range has been replaced by the domain space of "ma". */ __isl_give isl_basic_map *isl_basic_map_preimage_range_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bmap, isl_dim_out, ma); } /* Check if the range of "ma" is compatible with the domain or range * (depending on "type") of "map". * Return -1 if anything is wrong. */ static int check_map_compatible_range_multi_aff( __isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_multi_aff *ma) { int m; isl_space *ma_space; ma_space = isl_multi_aff_get_space(ma); m = isl_space_tuple_is_equal(map->dim, type, ma_space, isl_dim_out); isl_space_free(ma_space); if (m >= 0 && !m) isl_die(isl_map_get_ctx(map), isl_error_invalid, "spaces don't match", return -1); return m; } /* Compute the preimage of the domain or range (depending on "type") * of "map" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "map". * The result is a map that lives in the same space as "map" * except that the domain or range has been replaced by * the domain space of "ma". * * The parameters are assumed to have been aligned. */ static __isl_give isl_map *map_preimage_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { int i; isl_space *space; map = isl_map_cow(map); ma = isl_multi_aff_align_divs(ma); if (!map || !ma) goto error; if (check_map_compatible_range_multi_aff(map, type, ma) < 0) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_preimage_multi_aff(map->p[i], type, isl_multi_aff_copy(ma)); if (!map->p[i]) goto error; } space = isl_multi_aff_get_domain_space(ma); space = isl_space_set(isl_map_get_space(map), type, space); isl_space_free(map->dim); map->dim = space; if (!map->dim) goto error; isl_multi_aff_free(ma); if (map->n > 1) ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_SET_NORMALIZED); return map; error: isl_multi_aff_free(ma); isl_map_free(map); return NULL; } /* Compute the preimage of the domain or range (depending on "type") * of "map" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "map". * The result is a map that lives in the same space as "map" * except that the domain or range has been replaced by * the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { if (!map || !ma) goto error; if (isl_space_match(map->dim, isl_dim_param, ma->space, isl_dim_param)) return map_preimage_multi_aff(map, type, ma); if (!isl_space_has_named_params(map->dim) || !isl_space_has_named_params(ma->space)) isl_die(map->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map = isl_map_align_params(map, isl_multi_aff_get_space(ma)); ma = isl_multi_aff_align_params(ma, isl_map_get_space(map)); return map_preimage_multi_aff(map, type, ma); error: isl_multi_aff_free(ma); return isl_map_free(map); } /* Compute the preimage of "set" under the function represented by "ma". * In other words, plug in "ma" in "set". The result is a set * that lives in the domain space of "ma". */ __isl_give isl_set *isl_set_preimage_multi_aff(__isl_take isl_set *set, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(set, isl_dim_set, ma); } /* Compute the preimage of the domain of "map" under the function * represented by "ma". * In other words, plug in "ma" in the domain of "map". * The result is a map that lives in the same space as "map" * except that the domain has been replaced by the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_domain_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(map, isl_dim_in, ma); } /* Compute the preimage of the range of "map" under the function * represented by "ma". * In other words, plug in "ma" in the range of "map". * The result is a map that lives in the same space as "map" * except that the range has been replaced by the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_range_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(map, isl_dim_out, ma); } /* Compute the preimage of "map" under the function represented by "pma". * In other words, plug in "pma" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "pma". * * The parameters of "map" and "pma" are assumed to have been aligned. */ static __isl_give isl_map *isl_map_preimage_pw_multi_aff_aligned( __isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_pw_multi_aff *pma) { int i; isl_map *res; if (!pma) goto error; if (pma->n == 0) { isl_pw_multi_aff_free(pma); res = isl_map_empty(isl_map_get_space(map)); isl_map_free(map); return res; } res = isl_map_preimage_multi_aff(isl_map_copy(map), type, isl_multi_aff_copy(pma->p[0].maff)); if (type == isl_dim_in) res = isl_map_intersect_domain(res, isl_map_copy(pma->p[0].set)); else res = isl_map_intersect_range(res, isl_map_copy(pma->p[0].set)); for (i = 1; i < pma->n; ++i) { isl_map *res_i; res_i = isl_map_preimage_multi_aff(isl_map_copy(map), type, isl_multi_aff_copy(pma->p[i].maff)); if (type == isl_dim_in) res_i = isl_map_intersect_domain(res_i, isl_map_copy(pma->p[i].set)); else res_i = isl_map_intersect_range(res_i, isl_map_copy(pma->p[i].set)); res = isl_map_union(res, res_i); } isl_pw_multi_aff_free(pma); isl_map_free(map); return res; error: isl_pw_multi_aff_free(pma); isl_map_free(map); return NULL; } /* Compute the preimage of "map" under the function represented by "pma". * In other words, plug in "pma" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_pw_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_pw_multi_aff *pma) { if (!map || !pma) goto error; if (isl_space_match(map->dim, isl_dim_param, pma->dim, isl_dim_param)) return isl_map_preimage_pw_multi_aff_aligned(map, type, pma); if (!isl_space_has_named_params(map->dim) || !isl_space_has_named_params(pma->dim)) isl_die(map->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map = isl_map_align_params(map, isl_pw_multi_aff_get_space(pma)); pma = isl_pw_multi_aff_align_params(pma, isl_map_get_space(map)); return isl_map_preimage_pw_multi_aff_aligned(map, type, pma); error: isl_pw_multi_aff_free(pma); return isl_map_free(map); } /* Compute the preimage of "set" under the function represented by "pma". * In other words, plug in "pma" in "set". The result is a set * that lives in the domain space of "pma". */ __isl_give isl_set *isl_set_preimage_pw_multi_aff(__isl_take isl_set *set, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(set, isl_dim_set, pma); } /* Compute the preimage of the domain of "map" under the function * represented by "pma". * In other words, plug in "pma" in the domain of "map". * The result is a map that lives in the same space as "map", * except that domain space has been replaced by the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_domain_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(map, isl_dim_in, pma); } /* Compute the preimage of the range of "map" under the function * represented by "pma". * In other words, plug in "pma" in the range of "map". * The result is a map that lives in the same space as "map", * except that range space has been replaced by the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_range_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(map, isl_dim_out, pma); } /* Compute the preimage of "map" under the function represented by "mpa". * In other words, plug in "mpa" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "mpa". * * If the map does not involve any constraints that refer to the * dimensions of the substituted space, then the only possible * effect of "mpa" on the map is to map the space to a different space. * We create a separate isl_multi_aff to effectuate this change * in order to avoid spurious splitting of the map along the pieces * of "mpa". */ __isl_give isl_map *isl_map_preimage_multi_pw_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_pw_aff *mpa) { int n; isl_pw_multi_aff *pma; if (!map || !mpa) goto error; n = isl_map_dim(map, type); if (!isl_map_involves_dims(map, type, 0, n)) { isl_space *space; isl_multi_aff *ma; space = isl_multi_pw_aff_get_space(mpa); isl_multi_pw_aff_free(mpa); ma = isl_multi_aff_zero(space); return isl_map_preimage_multi_aff(map, type, ma); } pma = isl_pw_multi_aff_from_multi_pw_aff(mpa); return isl_map_preimage_pw_multi_aff(map, type, pma); error: isl_map_free(map); isl_multi_pw_aff_free(mpa); return NULL; } /* Compute the preimage of "map" under the function represented by "mpa". * In other words, plug in "mpa" in the domain "map". * The result is a map that lives in the same space as "map", * except that domain space has been replaced by the domain space of "mpa". */ __isl_give isl_map *isl_map_preimage_domain_multi_pw_aff( __isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa) { return isl_map_preimage_multi_pw_aff(map, isl_dim_in, mpa); } /* Compute the preimage of "set" by the function represented by "mpa". * In other words, plug in "mpa" in "set". */ __isl_give isl_set *isl_set_preimage_multi_pw_aff(__isl_take isl_set *set, __isl_take isl_multi_pw_aff *mpa) { return isl_map_preimage_multi_pw_aff(set, isl_dim_set, mpa); } /* Is the point "inner" internal to inequality constraint "ineq" * of "bset"? * The point is considered to be internal to the inequality constraint, * if it strictly lies on the positive side of the inequality constraint, * or if it lies on the constraint and the constraint is lexico-positive. */ static isl_bool is_internal(__isl_keep isl_vec *inner, __isl_keep isl_basic_set *bset, int ineq) { isl_ctx *ctx; int pos; unsigned total; if (!inner || !bset) return isl_bool_error; ctx = isl_basic_set_get_ctx(bset); isl_seq_inner_product(inner->el, bset->ineq[ineq], inner->size, &ctx->normalize_gcd); if (!isl_int_is_zero(ctx->normalize_gcd)) return isl_int_is_nonneg(ctx->normalize_gcd); total = isl_basic_set_dim(bset, isl_dim_all); pos = isl_seq_first_non_zero(bset->ineq[ineq] + 1, total); return isl_int_is_pos(bset->ineq[ineq][1 + pos]); } /* Tighten the inequality constraints of "bset" that are outward with respect * to the point "vec". * That is, tighten the constraints that are not satisfied by "vec". * * "vec" is a point internal to some superset S of "bset" that is used * to make the subsets of S disjoint, by tightening one half of the constraints * that separate two subsets. In particular, the constraints of S * are all satisfied by "vec" and should not be tightened. * Of the internal constraints, those that have "vec" on the outside * are tightened. The shared facet is included in the adjacent subset * with the opposite constraint. * For constraints that saturate "vec", this criterion cannot be used * to determine which of the two sides should be tightened. * Instead, the sign of the first non-zero coefficient is used * to make this choice. Note that this second criterion is never used * on the constraints of S since "vec" is interior to "S". */ __isl_give isl_basic_set *isl_basic_set_tighten_outward( __isl_take isl_basic_set *bset, __isl_keep isl_vec *vec) { int j; bset = isl_basic_set_cow(bset); if (!bset) return NULL; for (j = 0; j < bset->n_ineq; ++j) { isl_bool internal; internal = is_internal(vec, bset, j); if (internal < 0) return isl_basic_set_free(bset); if (internal) continue; isl_int_sub_ui(bset->ineq[j][0], bset->ineq[j][0], 1); } return bset; }