/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat) { return mat ? mat->ctx : NULL; } /* Return a hash value that digests "mat". */ uint32_t isl_mat_get_hash(__isl_keep isl_mat *mat) { int i; uint32_t hash; if (!mat) return 0; hash = isl_hash_init(); isl_hash_byte(hash, mat->n_row & 0xFF); isl_hash_byte(hash, mat->n_col & 0xFF); for (i = 0; i < mat->n_row; ++i) { uint32_t row_hash; row_hash = isl_seq_get_hash(mat->row[i], mat->n_col); isl_hash_hash(hash, row_hash); } return hash; } struct isl_mat *isl_mat_alloc(struct isl_ctx *ctx, unsigned n_row, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = NULL; mat->block = isl_blk_alloc(ctx, n_row * n_col); if (isl_blk_is_error(mat->block)) goto error; mat->row = isl_alloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; for (i = 0; i < n_row; ++i) mat->row[i] = mat->block.data + i * n_col; mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->max_col = n_col; mat->flags = 0; return mat; error: isl_blk_free(ctx, mat->block); free(mat); return NULL; } struct isl_mat *isl_mat_extend(struct isl_mat *mat, unsigned n_row, unsigned n_col) { int i; isl_int *old; isl_int **row; if (!mat) return NULL; if (mat->max_col >= n_col && mat->n_row >= n_row) { if (mat->n_col < n_col) mat->n_col = n_col; return mat; } if (mat->max_col < n_col) { struct isl_mat *new_mat; if (n_row < mat->n_row) n_row = mat->n_row; new_mat = isl_mat_alloc(mat->ctx, n_row, n_col); if (!new_mat) goto error; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(new_mat->row[i], mat->row[i], mat->n_col); isl_mat_free(mat); return new_mat; } mat = isl_mat_cow(mat); if (!mat) goto error; old = mat->block.data; mat->block = isl_blk_extend(mat->ctx, mat->block, n_row * mat->max_col); if (isl_blk_is_error(mat->block)) goto error; row = isl_realloc_array(mat->ctx, mat->row, isl_int *, n_row); if (n_row && !row) goto error; mat->row = row; for (i = 0; i < mat->n_row; ++i) mat->row[i] = mat->block.data + (mat->row[i] - old); for (i = mat->n_row; i < n_row; ++i) mat->row[i] = mat->block.data + i * mat->max_col; mat->n_row = n_row; if (mat->n_col < n_col) mat->n_col = n_col; return mat; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc6(isl_ctx *ctx, isl_int **row, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = isl_alloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; for (i = 0; i < n_row; ++i) mat->row[i] = row[first_row+i] + first_col; mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->block = isl_blk_empty(); mat->flags = ISL_MAT_BORROWED; return mat; error: free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc(__isl_keep isl_mat *mat, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { if (!mat) return NULL; return isl_mat_sub_alloc6(mat->ctx, mat->row, first_row, n_row, first_col, n_col); } void isl_mat_sub_copy(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_cpy(dst[i]+dst_col, src[i]+src_col, n_col); } void isl_mat_sub_neg(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_neg(dst[i]+dst_col, src[i]+src_col, n_col); } struct isl_mat *isl_mat_copy(struct isl_mat *mat) { if (!mat) return NULL; mat->ref++; return mat; } struct isl_mat *isl_mat_dup(struct isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!mat2) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(mat2->row[i], mat->row[i], mat->n_col); return mat2; } struct isl_mat *isl_mat_cow(struct isl_mat *mat) { struct isl_mat *mat2; if (!mat) return NULL; if (mat->ref == 1 && !ISL_F_ISSET(mat, ISL_MAT_BORROWED)) return mat; mat2 = isl_mat_dup(mat); isl_mat_free(mat); return mat2; } __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat) { if (!mat) return NULL; if (--mat->ref > 0) return NULL; if (!ISL_F_ISSET(mat, ISL_MAT_BORROWED)) isl_blk_free(mat->ctx, mat->block); isl_ctx_deref(mat->ctx); free(mat->row); free(mat); return NULL; } int isl_mat_rows(__isl_keep isl_mat *mat) { return mat ? mat->n_row : -1; } int isl_mat_cols(__isl_keep isl_mat *mat) { return mat ? mat->n_col : -1; } /* Check that "col" is a valid column position for "mat". */ static isl_stat check_col(__isl_keep isl_mat *mat, int col) { if (!mat) return isl_stat_error; if (col < 0 || col >= mat->n_col) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "column out of range", return isl_stat_error); return isl_stat_ok; } int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v) { if (!mat) return -1; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", return -1); if (check_col(mat, col) < 0) return -1; isl_int_set(*v, mat->row[row][col]); return 0; } /* Extract the element at row "row", oolumn "col" of "mat". */ __isl_give isl_val *isl_mat_get_element_val(__isl_keep isl_mat *mat, int row, int col) { isl_ctx *ctx; if (!mat) return NULL; ctx = isl_mat_get_ctx(mat); if (row < 0 || row >= mat->n_row) isl_die(ctx, isl_error_invalid, "row out of range", return NULL); if (check_col(mat, col) < 0) return NULL; return isl_val_int_from_isl_int(ctx, mat->row[row][col]); } __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v) { mat = isl_mat_cow(mat); if (!mat) return NULL; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", goto error); if (check_col(mat, col) < 0) return isl_mat_free(mat); isl_int_set(mat->row[row][col], v); return mat; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v) { mat = isl_mat_cow(mat); if (!mat) return NULL; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", goto error); if (check_col(mat, col) < 0) return isl_mat_free(mat); isl_int_set_si(mat->row[row][col], v); return mat; error: isl_mat_free(mat); return NULL; } /* Replace the element at row "row", column "col" of "mat" by "v". */ __isl_give isl_mat *isl_mat_set_element_val(__isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v) { if (!v) return isl_mat_free(mat); if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); mat = isl_mat_set_element(mat, row, col, v->n); isl_val_free(v); return mat; error: isl_val_free(v); return isl_mat_free(mat); } __isl_give isl_mat *isl_mat_diag(isl_ctx *ctx, unsigned n_row, isl_int d) { int i; struct isl_mat *mat; mat = isl_mat_alloc(ctx, n_row, n_row); if (!mat) return NULL; for (i = 0; i < n_row; ++i) { isl_seq_clr(mat->row[i], i); isl_int_set(mat->row[i][i], d); isl_seq_clr(mat->row[i]+i+1, n_row-(i+1)); } return mat; } /* Create an "n_row" by "n_col" matrix with zero elements. */ __isl_give isl_mat *isl_mat_zero(isl_ctx *ctx, unsigned n_row, unsigned n_col) { int i; isl_mat *mat; mat = isl_mat_alloc(ctx, n_row, n_col); if (!mat) return NULL; for (i = 0; i < n_row; ++i) isl_seq_clr(mat->row[i], n_col); return mat; } __isl_give isl_mat *isl_mat_identity(isl_ctx *ctx, unsigned n_row) { if (!ctx) return NULL; return isl_mat_diag(ctx, n_row, ctx->one); } /* Is "mat" a (possibly scaled) identity matrix? */ int isl_mat_is_scaled_identity(__isl_keep isl_mat *mat) { int i; if (!mat) return -1; if (mat->n_row != mat->n_col) return 0; for (i = 0; i < mat->n_row; ++i) { if (isl_seq_first_non_zero(mat->row[i], i) != -1) return 0; if (isl_int_ne(mat->row[0][0], mat->row[i][i])) return 0; if (isl_seq_first_non_zero(mat->row[i] + i + 1, mat->n_col - (i + 1)) != -1) return 0; } return 1; } struct isl_vec *isl_mat_vec_product(struct isl_mat *mat, struct isl_vec *vec) { int i; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_col == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_row); if (!prod) goto error; for (i = 0; i < prod->size; ++i) isl_seq_inner_product(mat->row[i], vec->el, vec->size, &prod->block.data[i]); isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_mat_vec_inverse_product(__isl_take isl_mat *mat, __isl_take isl_vec *vec) { struct isl_mat *vec_mat; int i; if (!mat || !vec) goto error; vec_mat = isl_mat_alloc(vec->ctx, vec->size, 1); if (!vec_mat) goto error; for (i = 0; i < vec->size; ++i) isl_int_set(vec_mat->row[i][0], vec->el[i]); vec_mat = isl_mat_inverse_product(mat, vec_mat); isl_vec_free(vec); if (!vec_mat) return NULL; vec = isl_vec_alloc(vec_mat->ctx, vec_mat->n_row); if (vec) for (i = 0; i < vec->size; ++i) isl_int_set(vec->el[i], vec_mat->row[i][0]); isl_mat_free(vec_mat); return vec; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } struct isl_vec *isl_vec_mat_product(struct isl_vec *vec, struct isl_mat *mat) { int i, j; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_row == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_col); if (!prod) goto error; for (i = 0; i < prod->size; ++i) { isl_int_set_si(prod->el[i], 0); for (j = 0; j < vec->size; ++j) isl_int_addmul(prod->el[i], vec->el[j], mat->row[j][i]); } isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } struct isl_mat *isl_mat_aff_direct_sum(struct isl_mat *left, struct isl_mat *right) { int i; struct isl_mat *sum; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == right->n_row, goto error); isl_assert(left->ctx, left->n_row >= 1, goto error); isl_assert(left->ctx, left->n_col >= 1, goto error); isl_assert(left->ctx, right->n_col >= 1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(left->row[0]+1, left->n_col-1) == -1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(right->row[0]+1, right->n_col-1) == -1, goto error); sum = isl_mat_alloc(left->ctx, left->n_row, left->n_col + right->n_col - 1); if (!sum) goto error; isl_int_lcm(sum->row[0][0], left->row[0][0], right->row[0][0]); isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_seq_clr(sum->row[0]+1, sum->n_col-1); for (i = 1; i < sum->n_row; ++i) { isl_int_mul(sum->row[i][0], left->row[0][0], left->row[i][0]); isl_int_addmul(sum->row[i][0], right->row[0][0], right->row[i][0]); isl_seq_scale(sum->row[i]+1, left->row[i]+1, left->row[0][0], left->n_col-1); isl_seq_scale(sum->row[i]+left->n_col, right->row[i]+1, right->row[0][0], right->n_col-1); } isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_mat_free(left); isl_mat_free(right); return sum; error: isl_mat_free(left); isl_mat_free(right); return NULL; } static void exchange(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned i, unsigned j) { int r; for (r = row; r < M->n_row; ++r) isl_int_swap(M->row[r][i], M->row[r][j]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_swap((*U)->row[r][i], (*U)->row[r][j]); } if (Q) isl_mat_swap_rows(*Q, i, j); } static void subtract(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned i, unsigned j, isl_int m) { int r; for (r = row; r < M->n_row; ++r) isl_int_submul(M->row[r][j], m, M->row[r][i]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_submul((*U)->row[r][j], m, (*U)->row[r][i]); } if (Q) { for (r = 0; r < (*Q)->n_col; ++r) isl_int_addmul((*Q)->row[i][r], m, (*Q)->row[j][r]); } } static void oppose(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned col) { int r; for (r = row; r < M->n_row; ++r) isl_int_neg(M->row[r][col], M->row[r][col]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_neg((*U)->row[r][col], (*U)->row[r][col]); } if (Q) isl_seq_neg((*Q)->row[col], (*Q)->row[col], (*Q)->n_col); } /* Given matrix M, compute * * M U = H * M = H Q * * with U and Q unimodular matrices and H a matrix in column echelon form * such that on each echelon row the entries in the non-echelon column * are non-negative (if neg == 0) or non-positive (if neg == 1) * and strictly smaller (in absolute value) than the entries in the echelon * column. * If U or Q are NULL, then these matrices are not computed. */ struct isl_mat *isl_mat_left_hermite(struct isl_mat *M, int neg, struct isl_mat **U, struct isl_mat **Q) { isl_int c; int row, col; if (U) *U = NULL; if (Q) *Q = NULL; if (!M) goto error; M = isl_mat_cow(M); if (!M) goto error; if (U) { *U = isl_mat_identity(M->ctx, M->n_col); if (!*U) goto error; } if (Q) { *Q = isl_mat_identity(M->ctx, M->n_col); if (!*Q) goto error; } col = 0; isl_int_init(c); for (row = 0; row < M->n_row; ++row) { int first, i, off; first = isl_seq_abs_min_non_zero(M->row[row]+col, M->n_col-col); if (first == -1) continue; first += col; if (first != col) exchange(M, U, Q, row, first, col); if (isl_int_is_neg(M->row[row][col])) oppose(M, U, Q, row, col); first = col+1; while ((off = isl_seq_first_non_zero(M->row[row]+first, M->n_col-first)) != -1) { first += off; isl_int_fdiv_q(c, M->row[row][first], M->row[row][col]); subtract(M, U, Q, row, col, first, c); if (!isl_int_is_zero(M->row[row][first])) exchange(M, U, Q, row, first, col); else ++first; } for (i = 0; i < col; ++i) { if (isl_int_is_zero(M->row[row][i])) continue; if (neg) isl_int_cdiv_q(c, M->row[row][i], M->row[row][col]); else isl_int_fdiv_q(c, M->row[row][i], M->row[row][col]); if (isl_int_is_zero(c)) continue; subtract(M, U, Q, row, col, i, c); } ++col; } isl_int_clear(c); return M; error: if (Q) { isl_mat_free(*Q); *Q = NULL; } if (U) { isl_mat_free(*U); *U = NULL; } isl_mat_free(M); return NULL; } struct isl_mat *isl_mat_right_kernel(struct isl_mat *mat) { int i, rank; struct isl_mat *U = NULL; struct isl_mat *K; mat = isl_mat_left_hermite(mat, 0, &U, NULL); if (!mat || !U) goto error; for (i = 0, rank = 0; rank < mat->n_col; ++rank) { while (i < mat->n_row && isl_int_is_zero(mat->row[i][rank])) ++i; if (i >= mat->n_row) break; } K = isl_mat_alloc(U->ctx, U->n_row, U->n_col - rank); if (!K) goto error; isl_mat_sub_copy(K->ctx, K->row, U->row, U->n_row, 0, rank, U->n_col-rank); isl_mat_free(mat); isl_mat_free(U); return K; error: isl_mat_free(mat); isl_mat_free(U); return NULL; } struct isl_mat *isl_mat_lin_to_aff(struct isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, 1+mat->n_row, 1+mat->n_col); if (!mat2) goto error; isl_int_set_si(mat2->row[0][0], 1); isl_seq_clr(mat2->row[0]+1, mat->n_col); for (i = 0; i < mat->n_row; ++i) { isl_int_set_si(mat2->row[1+i][0], 0); isl_seq_cpy(mat2->row[1+i]+1, mat->row[i], mat->n_col); } isl_mat_free(mat); return mat2; error: isl_mat_free(mat); return NULL; } /* Given two matrices M1 and M2, return the block matrix * * [ M1 0 ] * [ 0 M2 ] */ __isl_give isl_mat *isl_mat_diagonal(__isl_take isl_mat *mat1, __isl_take isl_mat *mat2) { int i; isl_mat *mat; if (!mat1 || !mat2) goto error; mat = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row, mat1->n_col + mat2->n_col); if (!mat) goto error; for (i = 0; i < mat1->n_row; ++i) { isl_seq_cpy(mat->row[i], mat1->row[i], mat1->n_col); isl_seq_clr(mat->row[i] + mat1->n_col, mat2->n_col); } for (i = 0; i < mat2->n_row; ++i) { isl_seq_clr(mat->row[mat1->n_row + i], mat1->n_col); isl_seq_cpy(mat->row[mat1->n_row + i] + mat1->n_col, mat2->row[i], mat2->n_col); } isl_mat_free(mat1); isl_mat_free(mat2); return mat; error: isl_mat_free(mat1); isl_mat_free(mat2); return NULL; } static int row_first_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i; for (i = 0; i < n_row; ++i) if (!isl_int_is_zero(row[i][col])) return i; return -1; } static int row_abs_min_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i, min = row_first_non_zero(row, n_row, col); if (min < 0) return -1; for (i = min + 1; i < n_row; ++i) { if (isl_int_is_zero(row[i][col])) continue; if (isl_int_abs_lt(row[i][col], row[min][col])) min = i; } return min; } static void inv_exchange(struct isl_mat *left, struct isl_mat *right, unsigned i, unsigned j) { left = isl_mat_swap_rows(left, i, j); right = isl_mat_swap_rows(right, i, j); } static void inv_oppose( struct isl_mat *left, struct isl_mat *right, unsigned row) { isl_seq_neg(left->row[row]+row, left->row[row]+row, left->n_col-row); isl_seq_neg(right->row[row], right->row[row], right->n_col); } static void inv_subtract(struct isl_mat *left, struct isl_mat *right, unsigned row, unsigned i, isl_int m) { isl_int_neg(m, m); isl_seq_combine(left->row[i]+row, left->ctx->one, left->row[i]+row, m, left->row[row]+row, left->n_col-row); isl_seq_combine(right->row[i], right->ctx->one, right->row[i], m, right->row[row], right->n_col); } /* Compute inv(left)*right */ struct isl_mat *isl_mat_inverse_product(struct isl_mat *left, struct isl_mat *right) { int row; isl_int a, b; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == left->n_col, goto error); isl_assert(left->ctx, left->n_row == right->n_row, goto error); if (left->n_row == 0) { isl_mat_free(left); return right; } left = isl_mat_cow(left); right = isl_mat_cow(right); if (!left || !right) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < left->n_row; ++row) { int pivot, first, i, off; pivot = row_abs_min_non_zero(left->row+row, left->n_row-row, row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(left->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) inv_exchange(left, right, pivot, row); if (isl_int_is_neg(left->row[row][row])) inv_oppose(left, right, row); first = row+1; while ((off = row_first_non_zero(left->row+first, left->n_row-first, row)) != -1) { first += off; isl_int_fdiv_q(a, left->row[first][row], left->row[row][row]); inv_subtract(left, right, row, first, a); if (!isl_int_is_zero(left->row[first][row])) inv_exchange(left, right, row, first); else ++first; } for (i = 0; i < row; ++i) { if (isl_int_is_zero(left->row[i][row])) continue; isl_int_gcd(a, left->row[row][row], left->row[i][row]); isl_int_divexact(b, left->row[i][row], a); isl_int_divexact(a, left->row[row][row], a); isl_int_neg(b, b); isl_seq_combine(left->row[i] + i, a, left->row[i] + i, b, left->row[row] + i, left->n_col - i); isl_seq_combine(right->row[i], a, right->row[i], b, right->row[row], right->n_col); } } isl_int_clear(b); isl_int_set(a, left->row[0][0]); for (row = 1; row < left->n_row; ++row) isl_int_lcm(a, a, left->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); isl_assert(left->ctx, 0, goto error); } for (row = 0; row < left->n_row; ++row) { isl_int_divexact(left->row[row][row], a, left->row[row][row]); if (isl_int_is_one(left->row[row][row])) continue; isl_seq_scale(right->row[row], right->row[row], left->row[row][row], right->n_col); } isl_int_clear(a); isl_mat_free(left); return right; error: isl_mat_free(left); isl_mat_free(right); return NULL; } void isl_mat_col_scale(struct isl_mat *mat, unsigned col, isl_int m) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][col], mat->row[i][col], m); } void isl_mat_col_combine(struct isl_mat *mat, unsigned dst, isl_int m1, unsigned src1, isl_int m2, unsigned src2) { int i; isl_int tmp; isl_int_init(tmp); for (i = 0; i < mat->n_row; ++i) { isl_int_mul(tmp, m1, mat->row[i][src1]); isl_int_addmul(tmp, m2, mat->row[i][src2]); isl_int_set(mat->row[i][dst], tmp); } isl_int_clear(tmp); } struct isl_mat *isl_mat_right_inverse(struct isl_mat *mat) { struct isl_mat *inv; int row; isl_int a, b; mat = isl_mat_cow(mat); if (!mat) return NULL; inv = isl_mat_identity(mat->ctx, mat->n_col); inv = isl_mat_cow(inv); if (!inv) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < mat->n_row; ++row) { int pivot, first, i, off; pivot = isl_seq_abs_min_non_zero(mat->row[row]+row, mat->n_col-row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(mat->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) exchange(mat, &inv, NULL, row, pivot, row); if (isl_int_is_neg(mat->row[row][row])) oppose(mat, &inv, NULL, row, row); first = row+1; while ((off = isl_seq_first_non_zero(mat->row[row]+first, mat->n_col-first)) != -1) { first += off; isl_int_fdiv_q(a, mat->row[row][first], mat->row[row][row]); subtract(mat, &inv, NULL, row, row, first, a); if (!isl_int_is_zero(mat->row[row][first])) exchange(mat, &inv, NULL, row, row, first); else ++first; } for (i = 0; i < row; ++i) { if (isl_int_is_zero(mat->row[row][i])) continue; isl_int_gcd(a, mat->row[row][row], mat->row[row][i]); isl_int_divexact(b, mat->row[row][i], a); isl_int_divexact(a, mat->row[row][row], a); isl_int_neg(a, a); isl_mat_col_combine(mat, i, a, i, b, row); isl_mat_col_combine(inv, i, a, i, b, row); } } isl_int_clear(b); isl_int_set(a, mat->row[0][0]); for (row = 1; row < mat->n_row; ++row) isl_int_lcm(a, a, mat->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); goto error; } for (row = 0; row < mat->n_row; ++row) { isl_int_divexact(mat->row[row][row], a, mat->row[row][row]); if (isl_int_is_one(mat->row[row][row])) continue; isl_mat_col_scale(inv, row, mat->row[row][row]); } isl_int_clear(a); isl_mat_free(mat); return inv; error: isl_mat_free(mat); isl_mat_free(inv); return NULL; } struct isl_mat *isl_mat_transpose(struct isl_mat *mat) { struct isl_mat *transpose = NULL; int i, j; if (!mat) return NULL; if (mat->n_col == mat->n_row) { mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) for (j = i + 1; j < mat->n_col; ++j) isl_int_swap(mat->row[i][j], mat->row[j][i]); return mat; } transpose = isl_mat_alloc(mat->ctx, mat->n_col, mat->n_row); if (!transpose) goto error; for (i = 0; i < mat->n_row; ++i) for (j = 0; j < mat->n_col; ++j) isl_int_set(transpose->row[j][i], mat->row[i][j]); isl_mat_free(mat); return transpose; error: isl_mat_free(mat); return NULL; } struct isl_mat *isl_mat_swap_cols(struct isl_mat *mat, unsigned i, unsigned j) { int r; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_assert(mat->ctx, i < mat->n_col, goto error); isl_assert(mat->ctx, j < mat->n_col, goto error); for (r = 0; r < mat->n_row; ++r) isl_int_swap(mat->row[r][i], mat->row[r][j]); return mat; error: isl_mat_free(mat); return NULL; } struct isl_mat *isl_mat_swap_rows(struct isl_mat *mat, unsigned i, unsigned j) { isl_int *t; if (!mat) return NULL; mat = isl_mat_cow(mat); if (!mat) return NULL; t = mat->row[i]; mat->row[i] = mat->row[j]; mat->row[j] = t; return mat; } /* Calculate the product of two matrices. * * This function is optimized for operand matrices that contain many zeros and * skips multiplications where we know one of the operands is zero. */ __isl_give isl_mat *isl_mat_product(__isl_take isl_mat *left, __isl_take isl_mat *right) { int i, j, k; struct isl_mat *prod; if (!left || !right) goto error; isl_assert(left->ctx, left->n_col == right->n_row, goto error); prod = isl_mat_alloc(left->ctx, left->n_row, right->n_col); if (!prod) goto error; if (left->n_col == 0) { for (i = 0; i < prod->n_row; ++i) isl_seq_clr(prod->row[i], prod->n_col); isl_mat_free(left); isl_mat_free(right); return prod; } for (i = 0; i < prod->n_row; ++i) { for (j = 0; j < prod->n_col; ++j) isl_int_mul(prod->row[i][j], left->row[i][0], right->row[0][j]); for (k = 1; k < left->n_col; ++k) { if (isl_int_is_zero(left->row[i][k])) continue; for (j = 0; j < prod->n_col; ++j) isl_int_addmul(prod->row[i][j], left->row[i][k], right->row[k][j]); } } isl_mat_free(left); isl_mat_free(right); return prod; error: isl_mat_free(left); isl_mat_free(right); return NULL; } /* Replace the variables x in the rows q by x' given by x = M x', * with M the matrix mat. * * If the number of new variables is greater than the original * number of variables, then the rows q have already been * preextended. If the new number is smaller, then the coefficients * of the divs, which are not changed, need to be shifted down. * The row q may be the equalities, the inequalities or the * div expressions. In the latter case, has_div is true and * we need to take into account the extra denominator column. */ static int preimage(struct isl_ctx *ctx, isl_int **q, unsigned n, unsigned n_div, int has_div, struct isl_mat *mat) { int i; struct isl_mat *t; int e; if (mat->n_col >= mat->n_row) e = 0; else e = mat->n_row - mat->n_col; if (has_div) for (i = 0; i < n; ++i) isl_int_mul(q[i][0], q[i][0], mat->row[0][0]); t = isl_mat_sub_alloc6(mat->ctx, q, 0, n, has_div, mat->n_row); t = isl_mat_product(t, mat); if (!t) return -1; for (i = 0; i < n; ++i) { isl_seq_swp_or_cpy(q[i] + has_div, t->row[i], t->n_col); isl_seq_cpy(q[i] + has_div + t->n_col, q[i] + has_div + t->n_col + e, n_div); isl_seq_clr(q[i] + has_div + t->n_col + n_div, e); } isl_mat_free(t); return 0; } /* Replace the variables x in bset by x' given by x = M x', with * M the matrix mat. * * If there are fewer variables x' then there are x, then we perform * the transformation in place, which means that, in principle, * this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_set *isl_basic_set_preimage(struct isl_basic_set *bset, struct isl_mat *mat) { struct isl_ctx *ctx; if (!bset || !mat) goto error; ctx = bset->ctx; bset = isl_basic_set_cow(bset); if (!bset) goto error; isl_assert(ctx, bset->dim->nparam == 0, goto error); isl_assert(ctx, 1+bset->dim->n_out == mat->n_row, goto error); isl_assert(ctx, mat->n_col > 0, goto error); if (mat->n_col > mat->n_row) { bset = isl_basic_set_extend(bset, 0, mat->n_col-1, 0, 0, 0); if (!bset) goto error; } else if (mat->n_col < mat->n_row) { bset->dim = isl_space_cow(bset->dim); if (!bset->dim) goto error; bset->dim->n_out -= mat->n_row - mat->n_col; } if (preimage(ctx, bset->eq, bset->n_eq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->ineq, bset->n_ineq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->div, bset->n_div, bset->n_div, 1, mat) < 0) goto error2; ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_CLR(bset, ISL_BASIC_SET_NO_REDUNDANT); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED_DIVS); ISL_F_CLR(bset, ISL_BASIC_SET_ALL_EQUALITIES); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); return bset; error: isl_mat_free(mat); error2: isl_basic_set_free(bset); return NULL; } struct isl_set *isl_set_preimage(struct isl_set *set, struct isl_mat *mat) { int i; set = isl_set_cow(set); if (!set) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_preimage(set->p[i], isl_mat_copy(mat)); if (!set->p[i]) goto error; } if (mat->n_col != mat->n_row) { set->dim = isl_space_cow(set->dim); if (!set->dim) goto error; set->dim->n_out += mat->n_col; set->dim->n_out -= mat->n_row; } isl_mat_free(mat); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); isl_mat_free(mat); return NULL; } /* Replace the variables x starting at pos in the rows q * by x' with x = M x' with M the matrix mat. * That is, replace the corresponding coefficients c by c M. */ static int transform(isl_ctx *ctx, isl_int **q, unsigned n, unsigned pos, __isl_take isl_mat *mat) { int i; isl_mat *t; t = isl_mat_sub_alloc6(ctx, q, 0, n, pos, mat->n_row); t = isl_mat_product(t, mat); if (!t) return -1; for (i = 0; i < n; ++i) isl_seq_swp_or_cpy(q[i] + pos, t->row[i], t->n_col); isl_mat_free(t); return 0; } /* Replace the variables x of type "type" starting at "first" in "bmap" * by x' with x = M x' with M the matrix trans. * That is, replace the corresponding coefficients c by c M. * * The transformation matrix should be a square matrix. */ __isl_give isl_basic_map *isl_basic_map_transform_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, __isl_take isl_mat *trans) { isl_ctx *ctx; unsigned pos; bmap = isl_basic_map_cow(bmap); if (!bmap || !trans) goto error; ctx = isl_basic_map_get_ctx(bmap); if (trans->n_row != trans->n_col) isl_die(trans->ctx, isl_error_invalid, "expecting square transformation matrix", goto error); if (first + trans->n_row > isl_basic_map_dim(bmap, type)) isl_die(trans->ctx, isl_error_invalid, "oversized transformation matrix", goto error); pos = isl_basic_map_offset(bmap, type) + first; if (transform(ctx, bmap->eq, bmap->n_eq, pos, isl_mat_copy(trans)) < 0) goto error; if (transform(ctx, bmap->ineq, bmap->n_ineq, pos, isl_mat_copy(trans)) < 0) goto error; if (transform(ctx, bmap->div, bmap->n_div, 1 + pos, isl_mat_copy(trans)) < 0) goto error; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); isl_mat_free(trans); return bmap; error: isl_mat_free(trans); isl_basic_map_free(bmap); return NULL; } /* Replace the variables x of type "type" starting at "first" in "bset" * by x' with x = M x' with M the matrix trans. * That is, replace the corresponding coefficients c by c M. * * The transformation matrix should be a square matrix. */ __isl_give isl_basic_set *isl_basic_set_transform_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, __isl_take isl_mat *trans) { return isl_basic_map_transform_dims(bset, type, first, trans); } void isl_mat_print_internal(__isl_keep isl_mat *mat, FILE *out, int indent) { int i, j; if (!mat) { fprintf(out, "%*snull mat\n", indent, ""); return; } if (mat->n_row == 0) fprintf(out, "%*s[]\n", indent, ""); for (i = 0; i < mat->n_row; ++i) { if (!i) fprintf(out, "%*s[[", indent, ""); else fprintf(out, "%*s[", indent+1, ""); for (j = 0; j < mat->n_col; ++j) { if (j) fprintf(out, ","); isl_int_print(out, mat->row[i][j], 0); } if (i == mat->n_row-1) fprintf(out, "]]\n"); else fprintf(out, "]\n"); } } void isl_mat_dump(__isl_keep isl_mat *mat) { isl_mat_print_internal(mat, stderr, 0); } struct isl_mat *isl_mat_drop_cols(struct isl_mat *mat, unsigned col, unsigned n) { int r; if (n == 0) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; if (col != mat->n_col-n) { for (r = 0; r < mat->n_row; ++r) isl_seq_cpy(mat->row[r]+col, mat->row[r]+col+n, mat->n_col - col - n); } mat->n_col -= n; return mat; } struct isl_mat *isl_mat_drop_rows(struct isl_mat *mat, unsigned row, unsigned n) { int r; mat = isl_mat_cow(mat); if (!mat) return NULL; for (r = row; r+n < mat->n_row; ++r) mat->row[r] = mat->row[r+n]; mat->n_row -= n; return mat; } __isl_give isl_mat *isl_mat_insert_cols(__isl_take isl_mat *mat, unsigned col, unsigned n) { isl_mat *ext; if (!mat) return NULL; if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col + n); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, 0, 0, col); isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, col + n, col, mat->n_col - col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_insert_zero_cols(__isl_take isl_mat *mat, unsigned first, unsigned n) { int i; if (!mat) return NULL; mat = isl_mat_insert_cols(mat, first, n); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_clr(mat->row[i] + first, n); return mat; } __isl_give isl_mat *isl_mat_add_zero_cols(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_cols(mat, mat->n_col, n); } __isl_give isl_mat *isl_mat_insert_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { isl_mat *ext; if (!mat) return NULL; if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row + n, mat->n_col); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, ext->row + row + n, mat->row + row, mat->n_row - row, 0, 0, mat->n_col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_add_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_rows(mat, mat->n_row, n); } __isl_give isl_mat *isl_mat_insert_zero_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { int i; mat = isl_mat_insert_rows(mat, row, n); if (!mat) return NULL; for (i = 0; i < n; ++i) isl_seq_clr(mat->row[row + i], mat->n_col); return mat; } __isl_give isl_mat *isl_mat_add_zero_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_rows(mat, mat->n_row, n); } void isl_mat_col_submul(struct isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_submul(mat->row[i][dst_col], f, mat->row[i][src_col]); } void isl_mat_col_add(__isl_keep isl_mat *mat, int dst_col, int src_col) { int i; if (!mat) return; for (i = 0; i < mat->n_row; ++i) isl_int_add(mat->row[i][dst_col], mat->row[i][dst_col], mat->row[i][src_col]); } void isl_mat_col_mul(struct isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][dst_col], f, mat->row[i][src_col]); } /* Add "f" times column "src_col" to column "dst_col" of "mat" and * return the result. */ __isl_give isl_mat *isl_mat_col_addmul(__isl_take isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; if (check_col(mat, dst_col) < 0 || check_col(mat, src_col) < 0) return isl_mat_free(mat); for (i = 0; i < mat->n_row; ++i) { if (isl_int_is_zero(mat->row[i][src_col])) continue; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_int_addmul(mat->row[i][dst_col], f, mat->row[i][src_col]); } return mat; } /* Negate column "col" of "mat" and return the result. */ __isl_give isl_mat *isl_mat_col_neg(__isl_take isl_mat *mat, int col) { int i; if (check_col(mat, col) < 0) return isl_mat_free(mat); for (i = 0; i < mat->n_row; ++i) { if (isl_int_is_zero(mat->row[i][col])) continue; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_int_neg(mat->row[i][col], mat->row[i][col]); } return mat; } struct isl_mat *isl_mat_unimodular_complete(struct isl_mat *M, int row) { int r; struct isl_mat *H = NULL, *Q = NULL; if (!M) return NULL; isl_assert(M->ctx, M->n_row == M->n_col, goto error); M->n_row = row; H = isl_mat_left_hermite(isl_mat_copy(M), 0, NULL, &Q); M->n_row = M->n_col; if (!H) goto error; for (r = 0; r < row; ++r) isl_assert(M->ctx, isl_int_is_one(H->row[r][r]), goto error); for (r = row; r < M->n_row; ++r) isl_seq_cpy(M->row[r], Q->row[r], M->n_col); isl_mat_free(H); isl_mat_free(Q); return M; error: isl_mat_free(H); isl_mat_free(Q); isl_mat_free(M); return NULL; } __isl_give isl_mat *isl_mat_concat(__isl_take isl_mat *top, __isl_take isl_mat *bot) { struct isl_mat *mat; if (!top || !bot) goto error; isl_assert(top->ctx, top->n_col == bot->n_col, goto error); if (top->n_row == 0) { isl_mat_free(top); return bot; } if (bot->n_row == 0) { isl_mat_free(bot); return top; } mat = isl_mat_alloc(top->ctx, top->n_row + bot->n_row, top->n_col); if (!mat) goto error; isl_mat_sub_copy(mat->ctx, mat->row, top->row, top->n_row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, mat->row + top->n_row, bot->row, bot->n_row, 0, 0, mat->n_col); isl_mat_free(top); isl_mat_free(bot); return mat; error: isl_mat_free(top); isl_mat_free(bot); return NULL; } int isl_mat_is_equal(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2) { int i; if (!mat1 || !mat2) return -1; if (mat1->n_row != mat2->n_row) return 0; if (mat1->n_col != mat2->n_col) return 0; for (i = 0; i < mat1->n_row; ++i) if (!isl_seq_eq(mat1->row[i], mat2->row[i], mat1->n_col)) return 0; return 1; } __isl_give isl_mat *isl_mat_from_row_vec(__isl_take isl_vec *vec) { struct isl_mat *mat; if (!vec) return NULL; mat = isl_mat_alloc(vec->ctx, 1, vec->size); if (!mat) goto error; isl_seq_cpy(mat->row[0], vec->el, vec->size); isl_vec_free(vec); return mat; error: isl_vec_free(vec); return NULL; } /* Return a copy of row "row" of "mat" as an isl_vec. */ __isl_give isl_vec *isl_mat_get_row(__isl_keep isl_mat *mat, unsigned row) { isl_vec *v; if (!mat) return NULL; if (row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", return NULL); v = isl_vec_alloc(isl_mat_get_ctx(mat), mat->n_col); if (!v) return NULL; isl_seq_cpy(v->el, mat->row[row], mat->n_col); return v; } __isl_give isl_mat *isl_mat_vec_concat(__isl_take isl_mat *top, __isl_take isl_vec *bot) { return isl_mat_concat(top, isl_mat_from_row_vec(bot)); } __isl_give isl_mat *isl_mat_move_cols(__isl_take isl_mat *mat, unsigned dst_col, unsigned src_col, unsigned n) { isl_mat *res; if (!mat) return NULL; if (n == 0 || dst_col == src_col) return mat; res = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!res) goto error; if (dst_col < src_col) { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col, src_col - dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col + n, src_col + n, res->n_col - src_col - n); } else { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col, src_col + n, dst_col - src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col + n, res->n_col - dst_col - n); } isl_mat_free(mat); return res; error: isl_mat_free(mat); return NULL; } /* Return the gcd of the elements in row "row" of "mat" in *gcd. * Return isl_stat_ok on success and isl_stat_error on failure. */ isl_stat isl_mat_row_gcd(__isl_keep isl_mat *mat, int row, isl_int *gcd) { if (!mat) return isl_stat_error; if (row < 0 || row >= mat->n_row) isl_die(isl_mat_get_ctx(mat), isl_error_invalid, "row out of range", return isl_stat_error); isl_seq_gcd(mat->row[row], mat->n_col, gcd); return isl_stat_ok; } void isl_mat_gcd(__isl_keep isl_mat *mat, isl_int *gcd) { int i; isl_int g; isl_int_set_si(*gcd, 0); if (!mat) return; isl_int_init(g); for (i = 0; i < mat->n_row; ++i) { isl_seq_gcd(mat->row[i], mat->n_col, &g); isl_int_gcd(*gcd, *gcd, g); } isl_int_clear(g); } /* Return the result of scaling "mat" by a factor of "m". */ __isl_give isl_mat *isl_mat_scale(__isl_take isl_mat *mat, isl_int m) { int i; if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_scale_down(__isl_take isl_mat *mat, isl_int m) { int i; if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_scale_down(mat->row[i], mat->row[i], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_scale_down_row(__isl_take isl_mat *mat, int row, isl_int m) { if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_scale_down(mat->row[row], mat->row[row], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_normalize(__isl_take isl_mat *mat) { isl_int gcd; if (!mat) return NULL; isl_int_init(gcd); isl_mat_gcd(mat, &gcd); mat = isl_mat_scale_down(mat, gcd); isl_int_clear(gcd); return mat; } __isl_give isl_mat *isl_mat_normalize_row(__isl_take isl_mat *mat, int row) { mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_normalize(mat->ctx, mat->row[row], mat->n_col); return mat; } /* Number of initial non-zero columns. */ int isl_mat_initial_non_zero_cols(__isl_keep isl_mat *mat) { int i; if (!mat) return -1; for (i = 0; i < mat->n_col; ++i) if (row_first_non_zero(mat->row, mat->n_row, i) < 0) break; return i; }