/* * Copyright 2010-2011 INRIA Saclay * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_basic_set_get_ctx(morph->dom); } __isl_give isl_morph *isl_morph_alloc( __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran, __isl_take isl_mat *map, __isl_take isl_mat *inv) { isl_morph *morph; if (!dom || !ran || !map || !inv) goto error; morph = isl_alloc_type(dom->ctx, struct isl_morph); if (!morph) goto error; morph->ref = 1; morph->dom = dom; morph->ran = ran; morph->map = map; morph->inv = inv; return morph; error: isl_basic_set_free(dom); isl_basic_set_free(ran); isl_mat_free(map); isl_mat_free(inv); return NULL; } __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph) { if (!morph) return NULL; morph->ref++; return morph; } __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_morph_alloc(isl_basic_set_copy(morph->dom), isl_basic_set_copy(morph->ran), isl_mat_copy(morph->map), isl_mat_copy(morph->inv)); } __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph) { if (!morph) return NULL; if (morph->ref == 1) return morph; morph->ref--; return isl_morph_dup(morph); } void isl_morph_free(__isl_take isl_morph *morph) { if (!morph) return; if (--morph->ref > 0) return; isl_basic_set_free(morph->dom); isl_basic_set_free(morph->ran); isl_mat_free(morph->map); isl_mat_free(morph->inv); free(morph); } /* Is "morph" an identity on the parameters? */ static int identity_on_parameters(__isl_keep isl_morph *morph) { int is_identity; unsigned nparam; isl_mat *sub; nparam = isl_morph_dom_dim(morph, isl_dim_param); if (nparam != isl_morph_ran_dim(morph, isl_dim_param)) return 0; if (nparam == 0) return 1; sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam); is_identity = isl_mat_is_scaled_identity(sub); isl_mat_free(sub); return is_identity; } /* Return an affine expression of the variables of the range of "morph" * in terms of the parameters and the variables of the domain on "morph". * * In order for the space manipulations to make sense, we require * that the parameters are not modified by "morph". */ __isl_give isl_multi_aff *isl_morph_get_var_multi_aff( __isl_keep isl_morph *morph) { isl_space *dom, *ran, *space; isl_local_space *ls; isl_multi_aff *ma; unsigned nparam, nvar; int i; int is_identity; if (!morph) return NULL; is_identity = identity_on_parameters(morph); if (is_identity < 0) return NULL; if (!is_identity) isl_die(isl_morph_get_ctx(morph), isl_error_invalid, "cannot handle parameter compression", return NULL); dom = isl_morph_get_dom_space(morph); ls = isl_local_space_from_space(isl_space_copy(dom)); ran = isl_morph_get_ran_space(morph); space = isl_space_map_from_domain_and_range(dom, ran); ma = isl_multi_aff_zero(space); nparam = isl_multi_aff_dim(ma, isl_dim_param); nvar = isl_multi_aff_dim(ma, isl_dim_out); for (i = 0; i < nvar; ++i) { isl_val *val; isl_vec *v; isl_aff *aff; v = isl_mat_get_row(morph->map, 1 + nparam + i); v = isl_vec_insert_els(v, 0, 1); val = isl_mat_get_element_val(morph->map, 0, 0); v = isl_vec_set_element_val(v, 0, val); aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); return ma; } /* Return the domain space of "morph". */ __isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_basic_set_get_space(morph->dom); } __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_space_copy(morph->ran->dim); } unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type) { if (!morph) return 0; return isl_basic_set_dim(morph->dom, type); } unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type) { if (!morph) return 0; return isl_basic_set_dim(morph->ran, type); } __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n) { unsigned dom_offset; if (n == 0) return morph; morph = isl_morph_cow(morph); if (!morph) return NULL; dom_offset = 1 + isl_space_offset(morph->dom->dim, type); morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n); morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n); morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n); if (morph->dom && morph->ran && morph->map && morph->inv) return morph; isl_morph_free(morph); return NULL; } __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n) { unsigned ran_offset; if (n == 0) return morph; morph = isl_morph_cow(morph); if (!morph) return NULL; ran_offset = 1 + isl_space_offset(morph->ran->dim, type); morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n); morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n); morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n); if (morph->dom && morph->ran && morph->map && morph->inv) return morph; isl_morph_free(morph); return NULL; } /* Project domain of morph onto its parameter domain. */ __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph) { unsigned n; morph = isl_morph_cow(morph); if (!morph) return NULL; n = isl_basic_set_dim(morph->dom, isl_dim_set); morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n); if (!morph) return NULL; morph->dom = isl_basic_set_params(morph->dom); if (morph->dom) return morph; isl_morph_free(morph); return NULL; } /* Project range of morph onto its parameter domain. */ __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph) { unsigned n; morph = isl_morph_cow(morph); if (!morph) return NULL; n = isl_basic_set_dim(morph->ran, isl_dim_set); morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n); if (!morph) return NULL; morph->ran = isl_basic_set_params(morph->ran); if (morph->ran) return morph; isl_morph_free(morph); return NULL; } void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out) { if (!morph) return; isl_basic_set_dump(morph->dom); isl_basic_set_dump(morph->ran); isl_mat_print_internal(morph->map, out, 4); isl_mat_print_internal(morph->inv, out, 4); } void isl_morph_dump(__isl_take isl_morph *morph) { isl_morph_print_internal(morph, stderr); } __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *universe; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); universe = isl_basic_set_universe(isl_space_copy(bset->dim)); return isl_morph_alloc(universe, isl_basic_set_copy(universe), id, isl_mat_copy(id)); } /* Create a(n identity) morphism between empty sets of the same dimension * a "bset". */ __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *empty; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); empty = isl_basic_set_empty(isl_space_copy(bset->dim)); return isl_morph_alloc(empty, isl_basic_set_copy(empty), id, isl_mat_copy(id)); } /* Construct a basic set described by the "n" equalities of "bset" starting * at "first". */ static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset, unsigned first, unsigned n) { int i, k; isl_basic_set *eq; unsigned total; isl_assert(bset->ctx, bset->n_div == 0, return NULL); total = isl_basic_set_total_dim(bset); eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0); if (!eq) return NULL; for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_equality(eq); if (k < 0) goto error; isl_seq_cpy(eq->eq[k], bset->eq[first + i], 1 + total); } return eq; error: isl_basic_set_free(eq); return NULL; } /* Given a basic set, exploit the equalties in the basic set to construct * a morphishm that maps the basic set to a lower-dimensional space. * Specifically, the morphism reduces the number of dimensions of type "type". * * We first select the equalities of interest, that is those that involve * variables of type "type" and no later variables. * Denote those equalities as * * -C(p) + M x = 0 * * where C(p) depends on the parameters if type == isl_dim_set and * is a constant if type == isl_dim_param. * * Use isl_mat_final_variable_compression to construct a compression * * x = T x' * * x' = Q x * * If T is a zero-column matrix, then the set of equality constraints * do not admit a solution. In this case, an empty morphism is returned. * * Both matrices are extended to map the full original space to the full * compressed space. */ __isl_give isl_morph *isl_basic_set_variable_compression( __isl_keep isl_basic_set *bset, enum isl_dim_type type) { unsigned otype; unsigned ntype; unsigned orest; unsigned nrest; int f_eq, n_eq; isl_space *dim; isl_mat *E, *Q, *C; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); isl_assert(bset->ctx, bset->n_div == 0, return NULL); otype = 1 + isl_space_offset(bset->dim, type); ntype = isl_basic_set_dim(bset, type); orest = otype + ntype; nrest = isl_basic_set_total_dim(bset) - (orest - 1); for (f_eq = 0; f_eq < bset->n_eq; ++f_eq) if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1) break; for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq) if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1) break; if (n_eq == 0) return isl_morph_identity(bset); E = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, 0, orest); C = isl_mat_final_variable_compression(E, otype - 1, &Q); if (!Q) C = isl_mat_free(C); if (C && C->n_col == 0) { isl_mat_free(C); isl_mat_free(Q); return isl_morph_empty(bset); } Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest)); C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest)); dim = isl_space_copy(bset->dim); dim = isl_space_drop_dims(dim, type, 0, ntype); dim = isl_space_add_dims(dim, type, ntype - n_eq); ran = isl_basic_set_universe(dim); dom = copy_equalities(bset, f_eq, n_eq); return isl_morph_alloc(dom, ran, Q, C); } /* Construct a parameter compression for "bset". * We basically just call isl_mat_parameter_compression with the right input * and then extend the resulting matrix to include the variables. * * The implementation assumes that "bset" does not have any equalities * that only involve the parameters and that isl_basic_set_gauss has * been applied to "bset". * * Let the equalities be given as * * B(p) + A x = 0. * * We use isl_mat_parameter_compression_ext to compute the compression * * p = T p'. */ __isl_give isl_morph *isl_basic_set_parameter_compression( __isl_keep isl_basic_set *bset) { unsigned nparam; unsigned nvar; unsigned n_div; int n_eq; isl_mat *H, *B; isl_mat *map, *inv; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); if (bset->n_eq == 0) return isl_morph_identity(bset); n_eq = bset->n_eq; nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); n_div = isl_basic_set_dim(bset, isl_dim_div); if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam, nvar + n_div) == -1) isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid, "input not allowed to have parameter equalities", return NULL); if (n_eq > nvar + n_div) isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid, "input not gaussed", return NULL); B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam); H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar + n_div); inv = isl_mat_parameter_compression_ext(B, H); inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar)); map = isl_mat_right_inverse(isl_mat_copy(inv)); dom = isl_basic_set_universe(isl_space_copy(bset->dim)); ran = isl_basic_set_universe(isl_space_copy(bset->dim)); return isl_morph_alloc(dom, ran, map, inv); } /* Add stride constraints to "bset" based on the inverse mapping * that was plugged in. In particular, if morph maps x' to x, * the the constraints of the original input * * A x' + b >= 0 * * have been rewritten to * * A inv x + b >= 0 * * However, this substitution may loose information on the integrality of x', * so we need to impose that * * inv x * * is integral. If inv = B/d, this means that we need to impose that * * B x = 0 mod d * * or * * exists alpha in Z^m: B x = d alpha * * This function is similar to add_strides in isl_affine_hull.c */ static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset, __isl_keep isl_morph *morph) { int i, div, k; isl_int gcd; if (isl_int_is_one(morph->inv->row[0][0])) return bset; isl_int_init(gcd); for (i = 0; 1 + i < morph->inv->n_row; ++i) { isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd); if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0])) continue; div = isl_basic_set_alloc_div(bset); if (div < 0) goto error; isl_int_set_si(bset->div[div][0], 0); k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i], morph->inv->n_col); isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div); isl_int_set(bset->eq[k][morph->inv->n_col + div], morph->inv->row[0][0]); } isl_int_clear(gcd); return bset; error: isl_int_clear(gcd); isl_basic_set_free(bset); return NULL; } /* Apply the morphism to the basic set. * We basically just compute the preimage of "bset" under the inverse mapping * in morph, add in stride constraints and intersect with the range * of the morphism. */ __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph, __isl_take isl_basic_set *bset) { isl_basic_set *res = NULL; isl_mat *mat = NULL; int i, k; int max_stride; if (!morph || !bset) goto error; isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim), goto error); max_stride = morph->inv->n_row - 1; if (isl_int_is_one(morph->inv->row[0][0])) max_stride = 0; res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim), bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq); for (i = 0; i < bset->n_div; ++i) if (isl_basic_set_alloc_div(res) < 0) goto error; mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_eq; ++i) { k = isl_basic_set_alloc_equality(res); if (k < 0) goto error; isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col); isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq, 0, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(res); if (k < 0) goto error; isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col); isl_seq_scale(res->ineq[k] + mat->n_col, bset->ineq[i] + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div, 1, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_div; ++i) { isl_int_mul(res->div[i][0], morph->inv->row[0][0], bset->div[i][0]); isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col); isl_seq_scale(res->div[i] + 1 + mat->n_col, bset->div[i] + 1 + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); res = add_strides(res, morph); if (isl_basic_set_is_rational(bset)) res = isl_basic_set_set_rational(res); res = isl_basic_set_simplify(res); res = isl_basic_set_finalize(res); res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran)); isl_morph_free(morph); isl_basic_set_free(bset); return res; error: isl_mat_free(mat); isl_morph_free(morph); isl_basic_set_free(bset); isl_basic_set_free(res); return NULL; } /* Apply the morphism to the set. */ __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph, __isl_take isl_set *set) { int i; if (!morph || !set) goto error; isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error); set = isl_set_cow(set); if (!set) goto error; isl_space_free(set->dim); set->dim = isl_space_copy(morph->ran->dim); if (!set->dim) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]); if (!set->p[i]) goto error; } isl_morph_free(morph); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); isl_morph_free(morph); return NULL; } /* Construct a morphism that first does morph2 and then morph1. */ __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1, __isl_take isl_morph *morph2) { isl_mat *map, *inv; isl_basic_set *dom, *ran; if (!morph1 || !morph2) goto error; map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map)); inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv)); dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)), isl_basic_set_copy(morph1->dom)); dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom)); ran = isl_morph_basic_set(isl_morph_copy(morph1), isl_basic_set_copy(morph2->ran)); ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran)); isl_morph_free(morph1); isl_morph_free(morph2); return isl_morph_alloc(dom, ran, map, inv); error: isl_morph_free(morph1); isl_morph_free(morph2); return NULL; } __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph) { isl_basic_set *bset; isl_mat *mat; morph = isl_morph_cow(morph); if (!morph) return NULL; bset = morph->dom; morph->dom = morph->ran; morph->ran = bset; mat = morph->map; morph->map = morph->inv; morph->inv = mat; return morph; } /* We detect all the equalities first to avoid implicit equalties * being discovered during the computations. In particular, * the compression on the variables could expose additional stride * constraints on the parameters. This would result in existentially * quantified variables after applying the resulting morph, which * in turn could break invariants of the calling functions. */ __isl_give isl_morph *isl_basic_set_full_compression( __isl_keep isl_basic_set *bset) { isl_morph *morph, *morph2; bset = isl_basic_set_copy(bset); bset = isl_basic_set_detect_equalities(bset); morph = isl_basic_set_variable_compression(bset, isl_dim_param); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); morph2 = isl_basic_set_parameter_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph2), bset); morph = isl_morph_compose(morph2, morph); morph2 = isl_basic_set_variable_compression(bset, isl_dim_set); isl_basic_set_free(bset); morph = isl_morph_compose(morph2, morph); return morph; } __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph, __isl_take isl_vec *vec) { if (!morph) goto error; vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec); isl_morph_free(morph); return vec; error: isl_morph_free(morph); isl_vec_free(vec); return NULL; }