/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return 0; case isl_dim_in: return dim->nparam; case isl_dim_out: return dim->nparam + dim->n_in; default: return 0; } } int isl_upoly_is_cst(__isl_keep struct isl_upoly *up) { if (!up) return -1; return up->var < 0; } __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up) { if (!up) return NULL; isl_assert(up->ctx, up->var < 0, return NULL); return (struct isl_upoly_cst *)up; } __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up) { if (!up) return NULL; isl_assert(up->ctx, up->var >= 0, return NULL); return (struct isl_upoly_rec *)up; } /* Compare two polynomials. * * Return -1 if "up1" is "smaller" than "up2", 1 if "up1" is "greater" * than "up2" and 0 if they are equal. */ static int isl_upoly_plain_cmp(__isl_keep struct isl_upoly *up1, __isl_keep struct isl_upoly *up2) { int i; struct isl_upoly_rec *rec1, *rec2; if (up1 == up2) return 0; if (!up1) return -1; if (!up2) return 1; if (up1->var != up2->var) return up1->var - up2->var; if (isl_upoly_is_cst(up1)) { struct isl_upoly_cst *cst1, *cst2; int cmp; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); if (!cst1 || !cst2) return 0; cmp = isl_int_cmp(cst1->n, cst2->n); if (cmp != 0) return cmp; return isl_int_cmp(cst1->d, cst2->d); } rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) return 0; if (rec1->n != rec2->n) return rec1->n - rec2->n; for (i = 0; i < rec1->n; ++i) { int cmp = isl_upoly_plain_cmp(rec1->p[i], rec2->p[i]); if (cmp != 0) return cmp; } return 0; } isl_bool isl_upoly_is_equal(__isl_keep struct isl_upoly *up1, __isl_keep struct isl_upoly *up2) { int i; struct isl_upoly_rec *rec1, *rec2; if (!up1 || !up2) return isl_bool_error; if (up1 == up2) return isl_bool_true; if (up1->var != up2->var) return isl_bool_false; if (isl_upoly_is_cst(up1)) { struct isl_upoly_cst *cst1, *cst2; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); if (!cst1 || !cst2) return isl_bool_error; return isl_int_eq(cst1->n, cst2->n) && isl_int_eq(cst1->d, cst2->d); } rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) return isl_bool_error; if (rec1->n != rec2->n) return isl_bool_false; for (i = 0; i < rec1->n; ++i) { isl_bool eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]); if (eq < 0 || !eq) return eq; } return isl_bool_true; } int isl_upoly_is_zero(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d); } int isl_upoly_sgn(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return 0; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return 0; return isl_int_sgn(cst->n); } int isl_upoly_is_nan(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_infty(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_one(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d); } int isl_upoly_is_negone(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d); } __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_alloc_type(ctx, struct isl_upoly_cst); if (!cst) return NULL; cst->up.ref = 1; cst->up.ctx = ctx; isl_ctx_ref(ctx); cst->up.var = -1; isl_int_init(cst->n); isl_int_init(cst->d); return cst; } __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 0); isl_int_set_si(cst->d, 1); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 1); isl_int_set_si(cst->d, 1); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 1); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, -1); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 0); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx, isl_int n, isl_int d) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set(cst->n, n); isl_int_set(cst->d, d); return &cst->up; } __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx, int var, int size) { struct isl_upoly_rec *rec; isl_assert(ctx, var >= 0, return NULL); isl_assert(ctx, size >= 0, return NULL); rec = isl_calloc(ctx, struct isl_upoly_rec, sizeof(struct isl_upoly_rec) + size * sizeof(struct isl_upoly *)); if (!rec) return NULL; rec->up.ref = 1; rec->up.ctx = ctx; isl_ctx_ref(ctx); rec->up.var = var; rec->n = 0; rec->size = size; return rec; } __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim) { qp = isl_qpolynomial_cow(qp); if (!qp || !dim) goto error; isl_space_free(qp->dim); qp->dim = dim; return qp; error: isl_qpolynomial_free(qp); isl_space_free(dim); return NULL; } /* Reset the space of "qp". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both. */ __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, __isl_take isl_space *domain) { isl_space_free(space); return isl_qpolynomial_reset_domain_space(qp, domain); } isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp) { return qp ? qp->dim->ctx : NULL; } __isl_give isl_space *isl_qpolynomial_get_domain_space( __isl_keep isl_qpolynomial *qp) { return qp ? isl_space_copy(qp->dim) : NULL; } __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp) { isl_space *space; if (!qp) return NULL; space = isl_space_copy(qp->dim); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); return space; } /* Return the number of variables of the given type in the domain of "qp". */ unsigned isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type) { if (!qp) return 0; if (type == isl_dim_div) return qp->div->n_row; if (type == isl_dim_all) return isl_space_dim(qp->dim, isl_dim_all) + isl_qpolynomial_domain_dim(qp, isl_dim_div); return isl_space_dim(qp->dim, type); } /* Externally, an isl_qpolynomial has a map space, but internally, the * ls field corresponds to the domain of that space. */ unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type) { if (!qp) return 0; if (type == isl_dim_out) return 1; if (type == isl_dim_in) type = isl_dim_set; return isl_qpolynomial_domain_dim(qp, type); } /* Return the offset of the first coefficient of type "type" in * the domain of "qp". */ unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type) { if (!qp) return 0; switch (type) { case isl_dim_cst: return 0; case isl_dim_param: case isl_dim_set: return 1 + isl_space_offset(qp->dim, type); case isl_dim_div: return 1 + isl_space_dim(qp->dim, isl_dim_all); default: return 0; } } isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_zero(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_one(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_nan(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_infty(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_neginfty(qp->upoly) : isl_bool_error; } int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_sgn(qp->upoly) : 0; } static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst) { isl_int_clear(cst->n); isl_int_clear(cst->d); } static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec) { int i; for (i = 0; i < rec->n; ++i) isl_upoly_free(rec->p[i]); } __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up) { if (!up) return NULL; up->ref++; return up; } __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; struct isl_upoly_cst *dup; cst = isl_upoly_as_cst(up); if (!cst) return NULL; dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx)); if (!dup) return NULL; isl_int_set(dup->n, cst->n); isl_int_set(dup->d, cst->d); return &dup->up; } __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up) { int i; struct isl_upoly_rec *rec; struct isl_upoly_rec *dup; rec = isl_upoly_as_rec(up); if (!rec) return NULL; dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n); if (!dup) return NULL; for (i = 0; i < rec->n; ++i) { dup->p[i] = isl_upoly_copy(rec->p[i]); if (!dup->p[i]) goto error; dup->n++; } return &dup->up; error: isl_upoly_free(&dup->up); return NULL; } __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up) { if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_dup_cst(up); else return isl_upoly_dup_rec(up); } __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up) { if (!up) return NULL; if (up->ref == 1) return up; up->ref--; return isl_upoly_dup(up); } void isl_upoly_free(__isl_take struct isl_upoly *up) { if (!up) return; if (--up->ref > 0) return; if (up->var < 0) upoly_free_cst((struct isl_upoly_cst *)up); else upoly_free_rec((struct isl_upoly_rec *)up); isl_ctx_deref(up->ctx); free(up); } static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst) { isl_int gcd; isl_int_init(gcd); isl_int_gcd(gcd, cst->n, cst->d); if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) { isl_int_divexact(cst->n, cst->n, gcd); isl_int_divexact(cst->d, cst->d, gcd); } isl_int_clear(gcd); } __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_cst *cst1; struct isl_upoly_cst *cst2; up1 = isl_upoly_cow(up1); if (!up1 || !up2) goto error; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); if (isl_int_eq(cst1->d, cst2->d)) isl_int_add(cst1->n, cst1->n, cst2->n); else { isl_int_mul(cst1->n, cst1->n, cst2->d); isl_int_addmul(cst1->n, cst2->n, cst1->d); isl_int_mul(cst1->d, cst1->d, cst2->d); } isl_upoly_cst_reduce(cst1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } static __isl_give struct isl_upoly *replace_by_zero( __isl_take struct isl_upoly *up) { struct isl_ctx *ctx; if (!up) return NULL; ctx = up->ctx; isl_upoly_free(up); return isl_upoly_zero(ctx); } static __isl_give struct isl_upoly *replace_by_constant_term( __isl_take struct isl_upoly *up) { struct isl_upoly_rec *rec; struct isl_upoly *cst; if (!up) return NULL; rec = isl_upoly_as_rec(up); if (!rec) goto error; cst = isl_upoly_copy(rec->p[0]); isl_upoly_free(up); return cst; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { int i; struct isl_upoly_rec *rec1, *rec2; if (!up1 || !up2) goto error; if (isl_upoly_is_nan(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_nan(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up1)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up2)) { isl_upoly_free(up2); return up1; } if (up1->var < up2->var) return isl_upoly_sum(up2, up1); if (up2->var < up1->var) { struct isl_upoly_rec *rec; if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { isl_upoly_free(up1); return up2; } up1 = isl_upoly_cow(up1); rec = isl_upoly_as_rec(up1); if (!rec) goto error; rec->p[0] = isl_upoly_sum(rec->p[0], up2); if (rec->n == 1) up1 = replace_by_constant_term(up1); return up1; } if (isl_upoly_is_cst(up1)) return isl_upoly_sum_cst(up1, up2); rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) goto error; if (rec1->n < rec2->n) return isl_upoly_sum(up2, up1); up1 = isl_upoly_cow(up1); rec1 = isl_upoly_as_rec(up1); if (!rec1) goto error; for (i = rec2->n - 1; i >= 0; --i) { rec1->p[i] = isl_upoly_sum(rec1->p[i], isl_upoly_copy(rec2->p[i])); if (!rec1->p[i]) goto error; if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) { isl_upoly_free(rec1->p[i]); rec1->n--; } } if (rec1->n == 0) up1 = replace_by_zero(up1); else if (rec1->n == 1) up1 = replace_by_constant_term(up1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_cst *cst; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_addmul(cst->n, cst->d, v); return up; } __isl_give struct isl_upoly *isl_upoly_add_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_add_isl_int(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v); if (!rec->p[0]) goto error; return up; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_cst *cst; if (isl_upoly_is_zero(up)) return up; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_mul(cst->n, cst->n, v); return up; } __isl_give struct isl_upoly *isl_upoly_mul_isl_int( __isl_take struct isl_upoly *up, isl_int v) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_mul_isl_int(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } /* Multiply the constant polynomial "up" by "v". */ static __isl_give struct isl_upoly *isl_upoly_cst_scale_val( __isl_take struct isl_upoly *up, __isl_keep isl_val *v) { struct isl_upoly_cst *cst; if (isl_upoly_is_zero(up)) return up; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_mul(cst->n, cst->n, v->n); isl_int_mul(cst->d, cst->d, v->d); isl_upoly_cst_reduce(cst); return up; } /* Multiply the polynomial "up" by "v". */ static __isl_give struct isl_upoly *isl_upoly_scale_val( __isl_take struct isl_upoly *up, __isl_keep isl_val *v) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_scale_val(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_scale_val(rec->p[i], v); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_cst *cst1; struct isl_upoly_cst *cst2; up1 = isl_upoly_cow(up1); if (!up1 || !up2) goto error; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); isl_int_mul(cst1->n, cst1->n, cst2->n); isl_int_mul(cst1->d, cst1->d, cst2->d); isl_upoly_cst_reduce(cst1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_rec *rec1; struct isl_upoly_rec *rec2; struct isl_upoly_rec *res = NULL; int i, j; int size; rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) goto error; size = rec1->n + rec2->n - 1; res = isl_upoly_alloc_rec(up1->ctx, up1->var, size); if (!res) goto error; for (i = 0; i < rec1->n; ++i) { res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]), isl_upoly_copy(rec1->p[i])); if (!res->p[i]) goto error; res->n++; } for (; i < size; ++i) { res->p[i] = isl_upoly_zero(up1->ctx); if (!res->p[i]) goto error; res->n++; } for (i = 0; i < rec1->n; ++i) { for (j = 1; j < rec2->n; ++j) { struct isl_upoly *up; up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]), isl_upoly_copy(rec1->p[i])); res->p[i + j] = isl_upoly_sum(res->p[i + j], up); if (!res->p[i + j]) goto error; } } isl_upoly_free(up1); isl_upoly_free(up2); return &res->up; error: isl_upoly_free(up1); isl_upoly_free(up2); isl_upoly_free(&res->up); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { if (!up1 || !up2) goto error; if (isl_upoly_is_nan(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_nan(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_zero(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_one(up1)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_one(up2)) { isl_upoly_free(up2); return up1; } if (up1->var < up2->var) return isl_upoly_mul(up2, up1); if (up2->var < up1->var) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { isl_ctx *ctx = up1->ctx; isl_upoly_free(up1); isl_upoly_free(up2); return isl_upoly_nan(ctx); } up1 = isl_upoly_cow(up1); rec = isl_upoly_as_rec(up1); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_mul(rec->p[i], isl_upoly_copy(up2)); if (!rec->p[i]) goto error; } isl_upoly_free(up2); return up1; } if (isl_upoly_is_cst(up1)) return isl_upoly_mul_cst(up1, up2); return isl_upoly_mul_rec(up1, up2); error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up, unsigned power) { struct isl_upoly *res; if (!up) return NULL; if (power == 1) return up; if (power % 2) res = isl_upoly_copy(up); else res = isl_upoly_one(up->ctx); while (power >>= 1) { up = isl_upoly_mul(up, isl_upoly_copy(up)); if (power % 2) res = isl_upoly_mul(res, isl_upoly_copy(up)); } isl_upoly_free(up); return res; } __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim, unsigned n_div, __isl_take struct isl_upoly *up) { struct isl_qpolynomial *qp = NULL; unsigned total; if (!dim || !up) goto error; if (!isl_space_is_set(dim)) isl_die(isl_space_get_ctx(dim), isl_error_invalid, "domain of polynomial should be a set", goto error); total = isl_space_dim(dim, isl_dim_all); qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial); if (!qp) goto error; qp->ref = 1; qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div); if (!qp->div) goto error; qp->dim = dim; qp->upoly = up; return qp; error: isl_space_free(dim); isl_upoly_free(up); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp) { if (!qp) return NULL; qp->ref++; return qp; } __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp) { struct isl_qpolynomial *dup; if (!qp) return NULL; dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, isl_upoly_copy(qp->upoly)); if (!dup) return NULL; isl_mat_free(dup->div); dup->div = isl_mat_copy(qp->div); if (!dup->div) goto error; return dup; error: isl_qpolynomial_free(dup); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp) { if (!qp) return NULL; if (qp->ref == 1) return qp; qp->ref--; return isl_qpolynomial_dup(qp); } __isl_null isl_qpolynomial *isl_qpolynomial_free( __isl_take isl_qpolynomial *qp) { if (!qp) return NULL; if (--qp->ref > 0) return NULL; isl_space_free(qp->dim); isl_mat_free(qp->div); isl_upoly_free(qp->upoly); free(qp); return NULL; } __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power) { int i; struct isl_upoly_rec *rec; struct isl_upoly_cst *cst; rec = isl_upoly_alloc_rec(ctx, pos, 1 + power); if (!rec) return NULL; for (i = 0; i < 1 + power; ++i) { rec->p[i] = isl_upoly_zero(ctx); if (!rec->p[i]) goto error; rec->n++; } cst = isl_upoly_as_cst(rec->p[power]); isl_int_set_si(cst->n, 1); return &rec->up; error: isl_upoly_free(&rec->up); return NULL; } /* r array maps original positions to new positions. */ static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up, int *r) { int i; struct isl_upoly_rec *rec; struct isl_upoly *base; struct isl_upoly *res; if (isl_upoly_is_cst(up)) return up; rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); base = isl_upoly_var_pow(up->ctx, r[up->var], 1); res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r); for (i = rec->n - 2; i >= 0; --i) { res = isl_upoly_mul(res, isl_upoly_copy(base)); res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r)); } isl_upoly_free(base); isl_upoly_free(up); return res; error: isl_upoly_free(up); return NULL; } static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2) { int n_row, n_col; int equal; isl_assert(div1->ctx, div1->n_row >= div2->n_row && div1->n_col >= div2->n_col, return -1); if (div1->n_row == div2->n_row) return isl_mat_is_equal(div1, div2); n_row = div1->n_row; n_col = div1->n_col; div1->n_row = div2->n_row; div1->n_col = div2->n_col; equal = isl_mat_is_equal(div1, div2); div1->n_row = n_row; div1->n_col = n_col; return equal; } static int cmp_row(__isl_keep isl_mat *div, int i, int j) { int li, lj; li = isl_seq_last_non_zero(div->row[i], div->n_col); lj = isl_seq_last_non_zero(div->row[j], div->n_col); if (li != lj) return li - lj; return isl_seq_cmp(div->row[i], div->row[j], div->n_col); } struct isl_div_sort_info { isl_mat *div; int row; }; static int div_sort_cmp(const void *p1, const void *p2) { const struct isl_div_sort_info *i1, *i2; i1 = (const struct isl_div_sort_info *) p1; i2 = (const struct isl_div_sort_info *) p2; return cmp_row(i1->div, i1->row, i2->row); } /* Sort divs and remove duplicates. */ static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp) { int i; int skip; int len; struct isl_div_sort_info *array = NULL; int *pos = NULL, *at = NULL; int *reordering = NULL; unsigned div_pos; if (!qp) return NULL; if (qp->div->n_row <= 1) return qp; div_pos = isl_space_dim(qp->dim, isl_dim_all); array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info, qp->div->n_row); pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); len = qp->div->n_col - 2; reordering = isl_alloc_array(qp->div->ctx, int, len); if (!array || !pos || !at || !reordering) goto error; for (i = 0; i < qp->div->n_row; ++i) { array[i].div = qp->div; array[i].row = i; pos[i] = i; at[i] = i; } qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info), div_sort_cmp); for (i = 0; i < div_pos; ++i) reordering[i] = i; for (i = 0; i < qp->div->n_row; ++i) { if (pos[array[i].row] == i) continue; qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]); pos[at[i]] = pos[array[i].row]; at[pos[array[i].row]] = at[i]; at[i] = array[i].row; pos[array[i].row] = i; } skip = 0; for (i = 0; i < len - div_pos; ++i) { if (i > 0 && isl_seq_eq(qp->div->row[i - skip - 1], qp->div->row[i - skip], qp->div->n_col)) { qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1, 2 + div_pos + i - skip); qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + i - skip, 1); skip++; } reordering[div_pos + array[i].row] = div_pos + i - skip; } qp->upoly = reorder(qp->upoly, reordering); if (!qp->upoly || !qp->div) goto error; free(at); free(pos); free(array); free(reordering); return qp; error: free(at); free(pos); free(array); free(reordering); isl_qpolynomial_free(qp); return NULL; } static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up, int *exp, int first) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_cst(up)) return up; if (up->var < first) return up; if (exp[up->var - first] == up->var - first) return up; up = isl_upoly_cow(up); if (!up) goto error; up->var = exp[up->var - first] + first; rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = expand(rec->p[i], exp, first); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } static __isl_give isl_qpolynomial *with_merged_divs( __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2), __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { int *exp1 = NULL; int *exp2 = NULL; isl_mat *div = NULL; int n_div1, n_div2; qp1 = isl_qpolynomial_cow(qp1); qp2 = isl_qpolynomial_cow(qp2); if (!qp1 || !qp2) goto error; isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row && qp1->div->n_col >= qp2->div->n_col, goto error); n_div1 = qp1->div->n_row; n_div2 = qp2->div->n_row; exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1); exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2); if ((n_div1 && !exp1) || (n_div2 && !exp2)) goto error; div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2); if (!div) goto error; isl_mat_free(qp1->div); qp1->div = isl_mat_copy(div); isl_mat_free(qp2->div); qp2->div = isl_mat_copy(div); qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2); qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2); if (!qp1->upoly || !qp2->upoly) goto error; isl_mat_free(div); free(exp1); free(exp2); return fn(qp1, qp2); error: isl_mat_free(div); free(exp1); free(exp2); isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_cow(qp1); if (!qp1 || !qp2) goto error; if (qp1->div->n_row < qp2->div->n_row) return isl_qpolynomial_add(qp2, qp1); isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); if (!compatible_divs(qp1->div, qp2->div)) return with_merged_divs(isl_qpolynomial_add, qp1, qp2); qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly)); if (!qp1->upoly) goto error; isl_qpolynomial_free(qp2); return qp1; error: isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( __isl_keep isl_set *dom, __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_add(qp1, qp2); qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom)); return qp1; } __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2)); } __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( __isl_take isl_qpolynomial *qp, isl_int v) { if (isl_int_is_zero(v)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_add_isl_int(qp->upoly, v); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp) { if (!qp) return NULL; return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone); } __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( __isl_take isl_qpolynomial *qp, isl_int v) { if (isl_int_is_one(v)) return qp; if (qp && isl_int_is_zero(v)) { isl_qpolynomial *zero; zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim)); isl_qpolynomial_free(qp); return zero; } qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_scale( __isl_take isl_qpolynomial *qp, isl_int v) { return isl_qpolynomial_mul_isl_int(qp, v); } /* Multiply "qp" by "v". */ __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) { if (!qp || !v) goto error; if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_one(v)) { isl_val_free(v); return qp; } if (isl_val_is_zero(v)) { isl_space *space; space = isl_qpolynomial_get_domain_space(qp); isl_qpolynomial_free(qp); isl_val_free(v); return isl_qpolynomial_zero_on_domain(space); } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; qp->upoly = isl_upoly_scale_val(qp->upoly, v); if (!qp->upoly) qp = isl_qpolynomial_free(qp); isl_val_free(v); return qp; error: isl_val_free(v); isl_qpolynomial_free(qp); return NULL; } /* Divide "qp" by "v". */ __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) { if (!qp || !v) goto error; if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); return isl_qpolynomial_scale_val(qp, isl_val_inv(v)); error: isl_val_free(v); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_cow(qp1); if (!qp1 || !qp2) goto error; if (qp1->div->n_row < qp2->div->n_row) return isl_qpolynomial_mul(qp2, qp1); isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); if (!compatible_divs(qp1->div, qp2->div)) return with_merged_divs(isl_qpolynomial_mul, qp1, qp2); qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly)); if (!qp1->upoly) goto error; isl_qpolynomial_free(qp2); return qp1; error: isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, unsigned power) { qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_pow(qp->upoly, power); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( __isl_take isl_pw_qpolynomial *pwqp, unsigned power) { int i; if (power == 1) return pwqp; pwqp = isl_pw_qpolynomial_cow(pwqp); if (!pwqp) return NULL; for (i = 0; i < pwqp->n; ++i) { pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power); if (!pwqp->p[i].qp) return isl_pw_qpolynomial_free(pwqp); } return pwqp; } __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain( __isl_take isl_space *dim, isl_int v) { struct isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!dim) return NULL; qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); if (!qp) return NULL; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, v); return qp; } int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, isl_int *n, isl_int *d) { struct isl_upoly_cst *cst; if (!qp) return -1; if (!isl_upoly_is_cst(qp->upoly)) return 0; cst = isl_upoly_as_cst(qp->upoly); if (!cst) return -1; if (n) isl_int_set(*n, cst->n); if (d) isl_int_set(*d, cst->d); return 1; } /* Return the constant term of "up". */ static __isl_give isl_val *isl_upoly_get_constant_val( __isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return NULL; while (!isl_upoly_is_cst(up)) { struct isl_upoly_rec *rec; rec = isl_upoly_as_rec(up); if (!rec) return NULL; up = rec->p[0]; } cst = isl_upoly_as_cst(up); if (!cst) return NULL; return isl_val_rat_from_isl_int(cst->up.ctx, cst->n, cst->d); } /* Return the constant term of "qp". */ __isl_give isl_val *isl_qpolynomial_get_constant_val( __isl_keep isl_qpolynomial *qp) { if (!qp) return NULL; return isl_upoly_get_constant_val(qp->upoly); } int isl_upoly_is_affine(__isl_keep struct isl_upoly *up) { int is_cst; struct isl_upoly_rec *rec; if (!up) return -1; if (up->var < 0) return 1; rec = isl_upoly_as_rec(up); if (!rec) return -1; if (rec->n > 2) return 0; isl_assert(up->ctx, rec->n > 1, return -1); is_cst = isl_upoly_is_cst(rec->p[1]); if (is_cst < 0) return -1; if (!is_cst) return 0; return isl_upoly_is_affine(rec->p[0]); } int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp) { if (!qp) return -1; if (qp->div->n_row > 0) return 0; return isl_upoly_is_affine(qp->upoly); } static void update_coeff(__isl_keep isl_vec *aff, __isl_keep struct isl_upoly_cst *cst, int pos) { isl_int gcd; isl_int f; if (isl_int_is_zero(cst->n)) return; isl_int_init(gcd); isl_int_init(f); isl_int_gcd(gcd, cst->d, aff->el[0]); isl_int_divexact(f, cst->d, gcd); isl_int_divexact(gcd, aff->el[0], gcd); isl_seq_scale(aff->el, aff->el, f, aff->size); isl_int_mul(aff->el[1 + pos], gcd, cst->n); isl_int_clear(gcd); isl_int_clear(f); } int isl_upoly_update_affine(__isl_keep struct isl_upoly *up, __isl_keep isl_vec *aff) { struct isl_upoly_cst *cst; struct isl_upoly_rec *rec; if (!up || !aff) return -1; if (up->var < 0) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) return -1; update_coeff(aff, cst, 0); return 0; } rec = isl_upoly_as_rec(up); if (!rec) return -1; isl_assert(up->ctx, rec->n == 2, return -1); cst = isl_upoly_as_cst(rec->p[1]); if (!cst) return -1; update_coeff(aff, cst, 1 + up->var); return isl_upoly_update_affine(rec->p[0], aff); } __isl_give isl_vec *isl_qpolynomial_extract_affine( __isl_keep isl_qpolynomial *qp) { isl_vec *aff; unsigned d; if (!qp) return NULL; d = isl_space_dim(qp->dim, isl_dim_all); aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row); if (!aff) return NULL; isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row); isl_int_set_si(aff->el[0], 1); if (isl_upoly_update_affine(qp->upoly, aff) < 0) goto error; return aff; error: isl_vec_free(aff); return NULL; } /* Compare two quasi-polynomials. * * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater" * than "qp2" and 0 if they are equal. */ int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1, __isl_keep isl_qpolynomial *qp2) { int cmp; if (qp1 == qp2) return 0; if (!qp1) return -1; if (!qp2) return 1; cmp = isl_space_cmp(qp1->dim, qp2->dim); if (cmp != 0) return cmp; cmp = isl_local_cmp(qp1->div, qp2->div); if (cmp != 0) return cmp; return isl_upoly_plain_cmp(qp1->upoly, qp2->upoly); } /* Is "qp1" obviously equal to "qp2"? * * NaN is not equal to anything, not even to another NaN. */ isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, __isl_keep isl_qpolynomial *qp2) { isl_bool equal; if (!qp1 || !qp2) return isl_bool_error; if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2)) return isl_bool_false; equal = isl_space_is_equal(qp1->dim, qp2->dim); if (equal < 0 || !equal) return equal; equal = isl_mat_is_equal(qp1->div, qp2->div); if (equal < 0 || !equal) return equal; return isl_upoly_is_equal(qp1->upoly, qp2->upoly); } static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_cst(up)) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) return; isl_int_lcm(*d, *d, cst->d); return; } rec = isl_upoly_as_rec(up); if (!rec) return; for (i = 0; i < rec->n; ++i) upoly_update_den(rec->p[i], d); } void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d) { isl_int_set_si(*d, 1); if (!qp) return; upoly_update_den(qp->upoly, d); } __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain( __isl_take isl_space *dim, int pos, int power) { struct isl_ctx *ctx; if (!dim) return NULL; ctx = dim->ctx; return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power)); } __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos) { if (!dim) return NULL; isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error); isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error); if (type == isl_dim_set) pos += isl_space_dim(dim, isl_dim_param); return isl_qpolynomial_var_pow_on_domain(dim, pos, 1); error: isl_space_free(dim); return NULL; } __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up, unsigned first, unsigned n, __isl_keep struct isl_upoly **subs) { int i; struct isl_upoly_rec *rec; struct isl_upoly *base, *res; if (!up) return NULL; if (isl_upoly_is_cst(up)) return up; if (up->var < first) return up; rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); if (up->var >= first + n) base = isl_upoly_var_pow(up->ctx, up->var, 1); else base = isl_upoly_copy(subs[up->var - first]); res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs); for (i = rec->n - 2; i >= 0; --i) { struct isl_upoly *t; t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs); res = isl_upoly_mul(res, isl_upoly_copy(base)); res = isl_upoly_sum(res, t); } isl_upoly_free(base); isl_upoly_free(up); return res; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f, isl_int denom, unsigned len) { int i; struct isl_upoly *up; isl_assert(ctx, len >= 1, return NULL); up = isl_upoly_rat_cst(ctx, f[0], denom); for (i = 0; i < len - 1; ++i) { struct isl_upoly *t; struct isl_upoly *c; if (isl_int_is_zero(f[1 + i])) continue; c = isl_upoly_rat_cst(ctx, f[1 + i], denom); t = isl_upoly_var_pow(ctx, i, 1); t = isl_upoly_mul(c, t); up = isl_upoly_sum(up, t); } return up; } /* Remove common factor of non-constant terms and denominator. */ static void normalize_div(__isl_keep isl_qpolynomial *qp, int div) { isl_ctx *ctx = qp->div->ctx; unsigned total = qp->div->n_col - 2; isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, qp->div->row[div][0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2, ctx->normalize_gcd, total); isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0], ctx->normalize_gcd); isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1], ctx->normalize_gcd); } /* Replace the integer division identified by "div" by the polynomial "s". * The integer division is assumed not to appear in the definition * of any other integer divisions. */ static __isl_give isl_qpolynomial *substitute_div( __isl_take isl_qpolynomial *qp, int div, __isl_take struct isl_upoly *s) { int i; int total; int *reordering; if (!qp || !s) goto error; qp = isl_qpolynomial_cow(qp); if (!qp) goto error; total = isl_space_dim(qp->dim, isl_dim_all); qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s); if (!qp->upoly) goto error; reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row); if (!reordering) goto error; for (i = 0; i < total + div; ++i) reordering[i] = i; for (i = total + div + 1; i < total + qp->div->n_row; ++i) reordering[i] = i - 1; qp->div = isl_mat_drop_rows(qp->div, div, 1); qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1); qp->upoly = reorder(qp->upoly, reordering); free(reordering); if (!qp->upoly || !qp->div) goto error; isl_upoly_free(s); return qp; error: isl_qpolynomial_free(qp); isl_upoly_free(s); return NULL; } /* Replace all integer divisions [e/d] that turn out to not actually be integer * divisions because d is equal to 1 by their definition, i.e., e. */ static __isl_give isl_qpolynomial *substitute_non_divs( __isl_take isl_qpolynomial *qp) { int i, j; int total; struct isl_upoly *s; if (!qp) return NULL; total = isl_space_dim(qp->dim, isl_dim_all); for (i = 0; qp && i < qp->div->n_row; ++i) { if (!isl_int_is_one(qp->div->row[i][0])) continue; for (j = i + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + i])) continue; isl_seq_combine(qp->div->row[j] + 1, qp->div->ctx->one, qp->div->row[j] + 1, qp->div->row[j][2 + total + i], qp->div->row[i] + 1, 1 + total + i); isl_int_set_si(qp->div->row[j][2 + total + i], 0); normalize_div(qp, j); } s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, qp->div->row[i][0], qp->div->n_col - 1); qp = substitute_div(qp, i, s); --i; } return qp; } /* Reduce the coefficients of div "div" to lie in the interval [0, d-1], * with d the denominator. When replacing the coefficient e of x by * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x * inside the division, so we need to add floor(e/d) * x outside. * That is, we replace q by q' + floor(e/d) * x and we therefore need * to adjust the coefficient of x in each later div that depends on the * current div "div" and also in the affine expressions in the rows of "mat" * (if they too depend on "div"). */ static void reduce_div(__isl_keep isl_qpolynomial *qp, int div, __isl_keep isl_mat **mat) { int i, j; isl_int v; unsigned total = qp->div->n_col - qp->div->n_row - 2; isl_int_init(v); for (i = 0; i < 1 + total + div; ++i) { if (isl_int_is_nonneg(qp->div->row[div][1 + i]) && isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0])) continue; isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]); isl_int_fdiv_r(qp->div->row[div][1 + i], qp->div->row[div][1 + i], qp->div->row[div][0]); *mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div); for (j = div + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + div])) continue; isl_int_addmul(qp->div->row[j][1 + i], v, qp->div->row[j][2 + total + div]); } } isl_int_clear(v); } /* Check if the last non-zero coefficient is bigger that half of the * denominator. If so, we will invert the div to further reduce the number * of distinct divs that may appear. * If the last non-zero coefficient is exactly half the denominator, * then we continue looking for earlier coefficients that are bigger * than half the denominator. */ static int needs_invert(__isl_keep isl_mat *div, int row) { int i; int cmp; for (i = div->n_col - 1; i >= 1; --i) { if (isl_int_is_zero(div->row[row][i])) continue; isl_int_mul_ui(div->row[row][i], div->row[row][i], 2); cmp = isl_int_cmp(div->row[row][i], div->row[row][0]); isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2); if (cmp) return cmp > 0; if (i == 1) return 1; } return 0; } /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d]. * We only invert the coefficients of e (and the coefficient of q in * later divs and in the rows of "mat"). After calling this function, the * coefficients of e should be reduced again. */ static void invert_div(__isl_keep isl_qpolynomial *qp, int div, __isl_keep isl_mat **mat) { unsigned total = qp->div->n_col - qp->div->n_row - 2; isl_seq_neg(qp->div->row[div] + 1, qp->div->row[div] + 1, qp->div->n_col - 1); isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1); isl_int_add(qp->div->row[div][1], qp->div->row[div][1], qp->div->row[div][0]); *mat = isl_mat_col_neg(*mat, 1 + total + div); isl_mat_col_mul(qp->div, 2 + total + div, qp->div->ctx->negone, 2 + total + div); } /* Reduce all divs of "qp" to have coefficients * in the interval [0, d-1], with d the denominator and such that the * last non-zero coefficient that is not equal to d/2 is smaller than d/2. * The modifications to the integer divisions need to be reflected * in the factors of the polynomial that refer to the original * integer divisions. To this end, the modifications are collected * as a set of affine expressions and then plugged into the polynomial. * * After the reduction, some divs may have become redundant or identical, * so we call substitute_non_divs and sort_divs. If these functions * eliminate divs or merge two or more divs into one, the coefficients * of the enclosing divs may have to be reduced again, so we call * ourselves recursively if the number of divs decreases. */ static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp) { int i; isl_ctx *ctx; isl_mat *mat; struct isl_upoly **s; unsigned o_div, n_div, total; if (!qp) return NULL; total = isl_qpolynomial_domain_dim(qp, isl_dim_all); n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div); o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div); ctx = isl_qpolynomial_get_ctx(qp); mat = isl_mat_zero(ctx, n_div, 1 + total); for (i = 0; i < n_div; ++i) mat = isl_mat_set_element_si(mat, i, o_div + i, 1); for (i = 0; i < qp->div->n_row; ++i) { normalize_div(qp, i); reduce_div(qp, i, &mat); if (needs_invert(qp->div, i)) { invert_div(qp, i, &mat); reduce_div(qp, i, &mat); } } if (!mat) goto error; s = isl_alloc_array(ctx, struct isl_upoly *, n_div); if (n_div && !s) goto error; for (i = 0; i < n_div; ++i) s[i] = isl_upoly_from_affine(ctx, mat->row[i], ctx->one, 1 + total); qp->upoly = isl_upoly_subs(qp->upoly, o_div - 1, n_div, s); for (i = 0; i < n_div; ++i) isl_upoly_free(s[i]); free(s); if (!qp->upoly) goto error; isl_mat_free(mat); qp = substitute_non_divs(qp); qp = sort_divs(qp); if (qp && isl_qpolynomial_domain_dim(qp, isl_dim_div) < n_div) return reduce_divs(qp); return qp; error: isl_qpolynomial_free(qp); isl_mat_free(mat); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( __isl_take isl_space *dim, const isl_int n, const isl_int d) { struct isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!dim) return NULL; qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); if (!qp) return NULL; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, n); isl_int_set(cst->d, d); return qp; } /* Return an isl_qpolynomial that is equal to "val" on domain space "domain". */ __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( __isl_take isl_space *domain, __isl_take isl_val *val) { isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!domain || !val) goto error; qp = isl_qpolynomial_alloc(isl_space_copy(domain), 0, isl_upoly_zero(domain->ctx)); if (!qp) goto error; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, val->n); isl_int_set(cst->d, val->d); isl_space_free(domain); isl_val_free(val); return qp; error: isl_space_free(domain); isl_val_free(val); return NULL; } static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d) { struct isl_upoly_rec *rec; int i; if (!up) return -1; if (isl_upoly_is_cst(up)) return 0; if (up->var < d) active[up->var] = 1; rec = isl_upoly_as_rec(up); for (i = 0; i < rec->n; ++i) if (up_set_active(rec->p[i], active, d) < 0) return -1; return 0; } static int set_active(__isl_keep isl_qpolynomial *qp, int *active) { int i, j; int d = isl_space_dim(qp->dim, isl_dim_all); if (!qp || !active) return -1; for (i = 0; i < d; ++i) for (j = 0; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + i])) continue; active[i] = 1; break; } return up_set_active(qp->upoly, active, d); } isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { int i; int *active = NULL; isl_bool involves = isl_bool_false; if (!qp) return isl_bool_error; if (n == 0) return isl_bool_false; isl_assert(qp->dim->ctx, first + n <= isl_qpolynomial_dim(qp, type), return isl_bool_error); isl_assert(qp->dim->ctx, type == isl_dim_param || type == isl_dim_in, return isl_bool_error); active = isl_calloc_array(qp->dim->ctx, int, isl_space_dim(qp->dim, isl_dim_all)); if (set_active(qp, active) < 0) goto error; if (type == isl_dim_in) first += isl_space_dim(qp->dim, isl_dim_param); for (i = 0; i < n; ++i) if (active[first + i]) { involves = isl_bool_true; break; } free(active); return involves; error: free(active); return isl_bool_error; } /* Remove divs that do not appear in the quasi-polynomial, nor in any * of the divs that do appear in the quasi-polynomial. */ static __isl_give isl_qpolynomial *remove_redundant_divs( __isl_take isl_qpolynomial *qp) { int i, j; int d; int len; int skip; int *active = NULL; int *reordering = NULL; int redundant = 0; int n_div; isl_ctx *ctx; if (!qp) return NULL; if (qp->div->n_row == 0) return qp; d = isl_space_dim(qp->dim, isl_dim_all); len = qp->div->n_col - 2; ctx = isl_qpolynomial_get_ctx(qp); active = isl_calloc_array(ctx, int, len); if (!active) goto error; if (up_set_active(qp->upoly, active, len) < 0) goto error; for (i = qp->div->n_row - 1; i >= 0; --i) { if (!active[d + i]) { redundant = 1; continue; } for (j = 0; j < i; ++j) { if (isl_int_is_zero(qp->div->row[i][2 + d + j])) continue; active[d + j] = 1; break; } } if (!redundant) { free(active); return qp; } reordering = isl_alloc_array(qp->div->ctx, int, len); if (!reordering) goto error; for (i = 0; i < d; ++i) reordering[i] = i; skip = 0; n_div = qp->div->n_row; for (i = 0; i < n_div; ++i) { if (!active[d + i]) { qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); qp->div = isl_mat_drop_cols(qp->div, 2 + d + i - skip, 1); skip++; } reordering[d + i] = d + i - skip; } qp->upoly = reorder(qp->upoly, reordering); if (!qp->upoly || !qp->div) goto error; free(active); free(reordering); return qp; error: free(active); free(reordering); isl_qpolynomial_free(qp); return NULL; } __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up, unsigned first, unsigned n) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (n == 0 || up->var < 0 || up->var < first) return up; if (up->var < first + n) { up = replace_by_constant_term(up); return isl_upoly_drop(up, first, n); } up = isl_upoly_cow(up); if (!up) return NULL; up->var -= n; rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_drop(rec->p[i], first, n); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned pos, const char *s) { qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; if (type == isl_dim_out) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "cannot set name of output/set dimension", return isl_qpolynomial_free(qp)); if (type == isl_dim_in) type = isl_dim_set; qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot drop output/set dimension", goto error); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), goto error); isl_assert(qp->dim->ctx, type == isl_dim_param || type == isl_dim_set, goto error); qp->dim = isl_space_drop_dims(qp->dim, type, first, n); if (!qp->dim) goto error; if (type == isl_dim_set) first += isl_space_dim(qp->dim, isl_dim_param); qp->div = isl_mat_drop_cols(qp->div, 2 + first, n); if (!qp->div) goto error; qp->upoly = isl_upoly_drop(qp->upoly, first, n); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } /* Project the domain of the quasi-polynomial onto its parameter space. * The quasi-polynomial may not involve any of the domain dimensions. */ __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( __isl_take isl_qpolynomial *qp) { isl_space *space; unsigned n; int involves; n = isl_qpolynomial_dim(qp, isl_dim_in); involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n); if (involves < 0) return isl_qpolynomial_free(qp); if (involves) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "polynomial involves some of the domain dimensions", return isl_qpolynomial_free(qp)); qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n); space = isl_qpolynomial_get_domain_space(qp); space = isl_space_params(space); qp = isl_qpolynomial_reset_domain_space(qp, space); return qp; } static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted( __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) { int i, j, k; isl_int denom; unsigned total; unsigned n_div; struct isl_upoly *up; if (!eq) goto error; if (eq->n_eq == 0) { isl_basic_set_free(eq); return qp; } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; total = 1 + isl_space_dim(eq->dim, isl_dim_all); n_div = eq->n_div; isl_int_init(denom); for (i = 0; i < eq->n_eq; ++i) { j = isl_seq_last_non_zero(eq->eq[i], total + n_div); if (j < 0 || j == 0 || j >= total) continue; for (k = 0; k < qp->div->n_row; ++k) { if (isl_int_is_zero(qp->div->row[k][1 + j])) continue; isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total, &qp->div->row[k][0]); normalize_div(qp, k); } if (isl_int_is_pos(eq->eq[i][j])) isl_seq_neg(eq->eq[i], eq->eq[i], total); isl_int_abs(denom, eq->eq[i][j]); isl_int_set_si(eq->eq[i][j], 0); up = isl_upoly_from_affine(qp->dim->ctx, eq->eq[i], denom, total); qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up); isl_upoly_free(up); } isl_int_clear(denom); if (!qp->upoly) goto error; isl_basic_set_free(eq); qp = substitute_non_divs(qp); qp = sort_divs(qp); return qp; error: isl_basic_set_free(eq); isl_qpolynomial_free(qp); return NULL; } /* Exploit the equalities in "eq" to simplify the quasi-polynomial. */ __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) { if (!qp || !eq) goto error; if (qp->div->n_row > 0) eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row); return isl_qpolynomial_substitute_equalities_lifted(qp, eq); error: isl_basic_set_free(eq); isl_qpolynomial_free(qp); return NULL; } static __isl_give isl_basic_set *add_div_constraints( __isl_take isl_basic_set *bset, __isl_take isl_mat *div) { int i; unsigned total; if (!bset || !div) goto error; bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row); if (!bset) goto error; total = isl_basic_set_total_dim(bset); for (i = 0; i < div->n_row; ++i) if (isl_basic_set_add_div_constraints_var(bset, total - div->n_row + i, div->row[i]) < 0) goto error; isl_mat_free(div); return bset; error: isl_mat_free(div); isl_basic_set_free(bset); return NULL; } /* Look for equalities among the variables shared by context and qp * and the integer divisions of qp, if any. * The equalities are then used to eliminate variables and/or integer * divisions from qp. */ __isl_give isl_qpolynomial *isl_qpolynomial_gist( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) { isl_basic_set *aff; if (!qp) goto error; if (qp->div->n_row > 0) { isl_basic_set *bset; context = isl_set_add_dims(context, isl_dim_set, qp->div->n_row); bset = isl_basic_set_universe(isl_set_get_space(context)); bset = add_div_constraints(bset, isl_mat_copy(qp->div)); context = isl_set_intersect(context, isl_set_from_basic_set(bset)); } aff = isl_set_affine_hull(context); return isl_qpolynomial_substitute_equalities_lifted(qp, aff); error: isl_qpolynomial_free(qp); isl_set_free(context); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) { isl_space *space = isl_qpolynomial_get_domain_space(qp); isl_set *dom_context = isl_set_universe(space); dom_context = isl_set_intersect_params(dom_context, context); return isl_qpolynomial_gist(qp, dom_context); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial( __isl_take isl_qpolynomial *qp) { isl_set *dom; if (!qp) return NULL; if (isl_qpolynomial_is_zero(qp)) { isl_space *dim = isl_qpolynomial_get_space(qp); isl_qpolynomial_free(qp); return isl_pw_qpolynomial_zero(dim); } dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp)); return isl_pw_qpolynomial_alloc(dom, qp); } #undef PW #define PW isl_pw_qpolynomial #undef EL #define EL isl_qpolynomial #undef EL_IS_ZERO #define EL_IS_ZERO is_zero #undef ZERO #define ZERO zero #undef IS_ZERO #define IS_ZERO is_zero #undef FIELD #define FIELD qp #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 1 #define NO_PULLBACK #include #undef UNION #define UNION isl_union_pw_qpolynomial #undef PART #define PART isl_pw_qpolynomial #undef PARTS #define PARTS pw_qpolynomial #include #include #include int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp) { if (!pwqp) return -1; if (pwqp->n != -1) return 0; if (!isl_set_plain_is_universe(pwqp->p[0].set)) return 0; return isl_qpolynomial_is_one(pwqp->p[0].qp); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2) { return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2) { int i, j, n; struct isl_pw_qpolynomial *res; if (!pwqp1 || !pwqp2) goto error; isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim), goto error); if (isl_pw_qpolynomial_is_zero(pwqp1)) { isl_pw_qpolynomial_free(pwqp2); return pwqp1; } if (isl_pw_qpolynomial_is_zero(pwqp2)) { isl_pw_qpolynomial_free(pwqp1); return pwqp2; } if (isl_pw_qpolynomial_is_one(pwqp1)) { isl_pw_qpolynomial_free(pwqp1); return pwqp2; } if (isl_pw_qpolynomial_is_one(pwqp2)) { isl_pw_qpolynomial_free(pwqp2); return pwqp1; } n = pwqp1->n * pwqp2->n; res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n); for (i = 0; i < pwqp1->n; ++i) { for (j = 0; j < pwqp2->n; ++j) { struct isl_set *common; struct isl_qpolynomial *prod; common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set), isl_set_copy(pwqp2->p[j].set)); if (isl_set_plain_is_empty(common)) { isl_set_free(common); continue; } prod = isl_qpolynomial_mul( isl_qpolynomial_copy(pwqp1->p[i].qp), isl_qpolynomial_copy(pwqp2->p[j].qp)); res = isl_pw_qpolynomial_add_piece(res, common, prod); } } isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); return res; error: isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); return NULL; } __isl_give isl_val *isl_upoly_eval(__isl_take struct isl_upoly *up, __isl_take isl_vec *vec) { int i; struct isl_upoly_rec *rec; isl_val *res; isl_val *base; if (isl_upoly_is_cst(up)) { isl_vec_free(vec); res = isl_upoly_get_constant_val(up); isl_upoly_free(up); return res; } rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); base = isl_val_rat_from_isl_int(up->ctx, vec->el[1 + up->var], vec->el[0]); res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]), isl_vec_copy(vec)); for (i = rec->n - 2; i >= 0; --i) { res = isl_val_mul(res, isl_val_copy(base)); res = isl_val_add(res, isl_upoly_eval(isl_upoly_copy(rec->p[i]), isl_vec_copy(vec))); } isl_val_free(base); isl_upoly_free(up); isl_vec_free(vec); return res; error: isl_upoly_free(up); isl_vec_free(vec); return NULL; } /* Evaluate "qp" in the void point "pnt". * In particular, return the value NaN. */ static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt) { isl_ctx *ctx; ctx = isl_point_get_ctx(pnt); isl_qpolynomial_free(qp); isl_point_free(pnt); return isl_val_nan(ctx); } __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt) { isl_bool is_void; isl_vec *ext; isl_val *v; if (!qp || !pnt) goto error; isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error); is_void = isl_point_is_void(pnt); if (is_void < 0) goto error; if (is_void) return eval_void(qp, pnt); if (qp->div->n_row == 0) ext = isl_vec_copy(pnt->vec); else { int i; unsigned dim = isl_space_dim(qp->dim, isl_dim_all); ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row); if (!ext) goto error; isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size); for (i = 0; i < qp->div->n_row; ++i) { isl_seq_inner_product(qp->div->row[i] + 1, ext->el, 1 + dim + i, &ext->el[1+dim+i]); isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i], qp->div->row[i][0]); } } v = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext); isl_qpolynomial_free(qp); isl_point_free(pnt); return v; error: isl_qpolynomial_free(qp); isl_point_free(pnt); return NULL; } int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1, __isl_keep struct isl_upoly_cst *cst2) { int cmp; isl_int t; isl_int_init(t); isl_int_mul(t, cst1->n, cst2->d); isl_int_submul(t, cst2->n, cst1->d); cmp = isl_int_sgn(t); isl_int_clear(t); return cmp; } __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { unsigned total; unsigned g_pos; int *exp; if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->div->ctx, isl_error_invalid, "cannot insert output/set dimensions", goto error); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type), goto error); g_pos = pos(qp->dim, type) + first; qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n); if (!qp->div) goto error; total = qp->div->n_col - 2; if (total > g_pos) { int i; exp = isl_alloc_array(qp->div->ctx, int, total - g_pos); if (!exp) goto error; for (i = 0; i < total - g_pos; ++i) exp[i] = i + n; qp->upoly = expand(qp->upoly, exp, g_pos); free(exp); if (!qp->upoly) goto error; } qp->dim = isl_space_insert_dims(qp->dim, type, first, n); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_qpolynomial_dim(qp, type); return isl_qpolynomial_insert_dims(qp, type, pos, n); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_pw_qpolynomial_dim(pwqp, type); return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n); } static int *reordering_move(isl_ctx *ctx, unsigned len, unsigned dst, unsigned src, unsigned n) { int i; int *reordering; reordering = isl_alloc_array(ctx, int, len); if (!reordering) return NULL; if (dst <= src) { for (i = 0; i < dst; ++i) reordering[i] = i; for (i = 0; i < n; ++i) reordering[src + i] = dst + i; for (i = 0; i < src - dst; ++i) reordering[dst + i] = dst + n + i; for (i = 0; i < len - src - n; ++i) reordering[src + n + i] = src + n + i; } else { for (i = 0; i < src; ++i) reordering[i] = i; for (i = 0; i < n; ++i) reordering[src + i] = dst + i; for (i = 0; i < dst - src; ++i) reordering[src + n + i] = src + i; for (i = 0; i < len - dst - n; ++i) reordering[dst + n + i] = dst + n + i; } return reordering; } __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { unsigned g_dst_pos; unsigned g_src_pos; int *reordering; if (n == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; if (dst_type == isl_dim_out || src_type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot move output/set dimension", goto error); if (dst_type == isl_dim_in) dst_type = isl_dim_set; if (src_type == isl_dim_in) src_type = isl_dim_set; isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type), goto error); g_dst_pos = pos(qp->dim, dst_type) + dst_pos; g_src_pos = pos(qp->dim, src_type) + src_pos; if (dst_type > src_type) g_dst_pos -= n; qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n); if (!qp->div) goto error; qp = sort_divs(qp); if (!qp) goto error; reordering = reordering_move(qp->dim->ctx, qp->div->n_col - 2, g_dst_pos, g_src_pos, n); if (!reordering) goto error; qp->upoly = reorder(qp->upoly, reordering); free(reordering); if (!qp->upoly) goto error; qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim, isl_int *f, isl_int denom) { struct isl_upoly *up; dim = isl_space_domain(dim); if (!dim) return NULL; up = isl_upoly_from_affine(dim->ctx, f, denom, 1 + isl_space_dim(dim, isl_dim_all)); return isl_qpolynomial_alloc(dim, 0, up); } __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff) { isl_ctx *ctx; struct isl_upoly *up; isl_qpolynomial *qp; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0], aff->v->size - 1); qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff), aff->ls->div->n_row, up); if (!qp) goto error; isl_mat_free(qp->div); qp->div = isl_mat_copy(aff->ls->div); qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; isl_aff_free(aff); qp = reduce_divs(qp); qp = remove_redundant_divs(qp); return qp; error: isl_aff_free(aff); return isl_qpolynomial_free(qp); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( __isl_take isl_pw_aff *pwaff) { int i; isl_pw_qpolynomial *pwqp; if (!pwaff) return NULL; pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff), pwaff->n); for (i = 0; i < pwaff->n; ++i) { isl_set *dom; isl_qpolynomial *qp; dom = isl_set_copy(pwaff->p[i].set); qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff)); pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp); } isl_pw_aff_free(pwaff); return pwqp; } __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos) { isl_aff *aff; aff = isl_constraint_get_bound(c, type, pos); isl_constraint_free(c); return isl_qpolynomial_from_aff(aff); } /* For each 0 <= i < "n", replace variable "first" + i of type "type" * in "qp" by subs[i]. */ __isl_give isl_qpolynomial *isl_qpolynomial_substitute( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs) { int i; struct isl_upoly **ups; if (n == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot substitute output/set dimension", goto error); if (type == isl_dim_in) type = isl_dim_set; for (i = 0; i < n; ++i) if (!subs[i]) goto error; isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), goto error); for (i = 0; i < n; ++i) isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim), goto error); isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error); for (i = 0; i < n; ++i) isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error); first += pos(qp->dim, type); ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n); if (!ups) goto error; for (i = 0; i < n; ++i) ups[i] = subs[i]->upoly; qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups); free(ups); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } /* Extend "bset" with extra set dimensions for each integer division * in "qp" and then call "fn" with the extended bset and the polynomial * that results from replacing each of the integer divisions by the * corresponding extra set dimension. */ int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, __isl_keep isl_basic_set *bset, int (*fn)(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user), void *user) { isl_space *dim; isl_mat *div; isl_qpolynomial *poly; if (!qp || !bset) goto error; if (qp->div->n_row == 0) return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp), user); div = isl_mat_copy(qp->div); dim = isl_space_copy(qp->dim); dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row); poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly)); bset = isl_basic_set_copy(bset); bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row); bset = add_div_constraints(bset, div); return fn(bset, poly, user); error: return -1; } /* Return total degree in variables first (inclusive) up to last (exclusive). */ int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last) { int deg = -1; int i; struct isl_upoly_rec *rec; if (!up) return -2; if (isl_upoly_is_zero(up)) return -1; if (isl_upoly_is_cst(up) || up->var < first) return 0; rec = isl_upoly_as_rec(up); if (!rec) return -2; for (i = 0; i < rec->n; ++i) { int d; if (isl_upoly_is_zero(rec->p[i])) continue; d = isl_upoly_degree(rec->p[i], first, last); if (up->var < last) d += i; if (d > deg) deg = d; } return deg; } /* Return total degree in set variables. */ int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly) { unsigned ovar; unsigned nvar; if (!poly) return -2; ovar = isl_space_offset(poly->dim, isl_dim_set); nvar = isl_space_dim(poly->dim, isl_dim_set); return isl_upoly_degree(poly->upoly, ovar, ovar + nvar); } __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up, unsigned pos, int deg) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up) || up->var < pos) { if (deg == 0) return isl_upoly_copy(up); else return isl_upoly_zero(up->ctx); } rec = isl_upoly_as_rec(up); if (!rec) return NULL; if (up->var == pos) { if (deg < rec->n) return isl_upoly_copy(rec->p[deg]); else return isl_upoly_zero(up->ctx); } up = isl_upoly_copy(up); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { struct isl_upoly *t; t = isl_upoly_coeff(rec->p[i], pos, deg); if (!t) goto error; isl_upoly_free(rec->p[i]); rec->p[i] = t; } return up; error: isl_upoly_free(up); return NULL; } /* Return coefficient of power "deg" of variable "t_pos" of type "type". */ __isl_give isl_qpolynomial *isl_qpolynomial_coeff( __isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned t_pos, int deg) { unsigned g_pos; struct isl_upoly *up; isl_qpolynomial *c; if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->div->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return NULL); if (type == isl_dim_in) type = isl_dim_set; isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type), return NULL); g_pos = pos(qp->dim, type) + t_pos; up = isl_upoly_coeff(qp->upoly, g_pos, deg); c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up); if (!c) return NULL; isl_mat_free(c->div); c->div = isl_mat_copy(qp->div); if (!c->div) goto error; return c; error: isl_qpolynomial_free(c); return NULL; } /* Homogenize the polynomial in the variables first (inclusive) up to * last (exclusive) by inserting powers of variable first. * Variable first is assumed not to appear in the input. */ __isl_give struct isl_upoly *isl_upoly_homogenize( __isl_take struct isl_upoly *up, int deg, int target, int first, int last) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_zero(up)) return up; if (deg == target) return up; if (isl_upoly_is_cst(up) || up->var < first) { struct isl_upoly *hom; hom = isl_upoly_var_pow(up->ctx, first, target - deg); if (!hom) goto error; rec = isl_upoly_as_rec(hom); rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up); return hom; } up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { if (isl_upoly_is_zero(rec->p[i])) continue; rec->p[i] = isl_upoly_homogenize(rec->p[i], up->var < last ? deg + i : i, target, first, last); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } /* Homogenize the polynomial in the set variables by introducing * powers of an extra set variable at position 0. */ __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( __isl_take isl_qpolynomial *poly) { unsigned ovar; unsigned nvar; int deg = isl_qpolynomial_degree(poly); if (deg < -1) goto error; poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1); poly = isl_qpolynomial_cow(poly); if (!poly) goto error; ovar = isl_space_offset(poly->dim, isl_dim_set); nvar = isl_space_dim(poly->dim, isl_dim_set); poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg, ovar, ovar + nvar); if (!poly->upoly) goto error; return poly; error: isl_qpolynomial_free(poly); return NULL; } __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim, __isl_take isl_mat *div) { isl_term *term; int n; if (!dim || !div) goto error; n = isl_space_dim(dim, isl_dim_all) + div->n_row; term = isl_calloc(dim->ctx, struct isl_term, sizeof(struct isl_term) + (n - 1) * sizeof(int)); if (!term) goto error; term->ref = 1; term->dim = dim; term->div = div; isl_int_init(term->n); isl_int_init(term->d); return term; error: isl_space_free(dim); isl_mat_free(div); return NULL; } __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term) { if (!term) return NULL; term->ref++; return term; } __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term) { int i; isl_term *dup; unsigned total; if (!term) return NULL; total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div)); if (!dup) return NULL; isl_int_set(dup->n, term->n); isl_int_set(dup->d, term->d); for (i = 0; i < total; ++i) dup->pow[i] = term->pow[i]; return dup; } __isl_give isl_term *isl_term_cow(__isl_take isl_term *term) { if (!term) return NULL; if (term->ref == 1) return term; term->ref--; return isl_term_dup(term); } void isl_term_free(__isl_take isl_term *term) { if (!term) return; if (--term->ref > 0) return; isl_space_free(term->dim); isl_mat_free(term->div); isl_int_clear(term->n); isl_int_clear(term->d); free(term); } unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type) { if (!term) return 0; switch (type) { case isl_dim_param: case isl_dim_in: case isl_dim_out: return isl_space_dim(term->dim, type); case isl_dim_div: return term->div->n_row; case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; default: return 0; } } isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term) { return term ? term->dim->ctx : NULL; } void isl_term_get_num(__isl_keep isl_term *term, isl_int *n) { if (!term) return; isl_int_set(*n, term->n); } void isl_term_get_den(__isl_keep isl_term *term, isl_int *d) { if (!term) return; isl_int_set(*d, term->d); } /* Return the coefficient of the term "term". */ __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term) { if (!term) return NULL; return isl_val_rat_from_isl_int(isl_term_get_ctx(term), term->n, term->d); } int isl_term_get_exp(__isl_keep isl_term *term, enum isl_dim_type type, unsigned pos) { if (!term) return -1; isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1); if (type >= isl_dim_set) pos += isl_space_dim(term->dim, isl_dim_param); if (type >= isl_dim_div) pos += isl_space_dim(term->dim, isl_dim_set); return term->pow[pos]; } __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos) { isl_local_space *ls; isl_aff *aff; if (!term) return NULL; isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div), return NULL); ls = isl_local_space_alloc_div(isl_space_copy(term->dim), isl_mat_copy(term->div)); aff = isl_aff_alloc(ls); if (!aff) return NULL; isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size); aff = isl_aff_normalize(aff); return aff; } __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up, isl_stat (*fn)(__isl_take isl_term *term, void *user), __isl_take isl_term *term, void *user) { int i; struct isl_upoly_rec *rec; if (!up || !term) goto error; if (isl_upoly_is_zero(up)) return term; isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error); isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error); isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error); if (isl_upoly_is_cst(up)) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) goto error; term = isl_term_cow(term); if (!term) goto error; isl_int_set(term->n, cst->n); isl_int_set(term->d, cst->d); if (fn(isl_term_copy(term), user) < 0) goto error; return term; } rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { term = isl_term_cow(term); if (!term) goto error; term->pow[up->var] = i; term = isl_upoly_foreach_term(rec->p[i], fn, term, user); if (!term) goto error; } term->pow[up->var] = 0; return term; error: isl_term_free(term); return NULL; } isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user) { isl_term *term; if (!qp) return isl_stat_error; term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div)); if (!term) return isl_stat_error; term = isl_upoly_foreach_term(qp->upoly, fn, term, user); isl_term_free(term); return term ? isl_stat_ok : isl_stat_error; } __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term) { struct isl_upoly *up; isl_qpolynomial *qp; int i, n; if (!term) return NULL; n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d); for (i = 0; i < n; ++i) { if (!term->pow[i]) continue; up = isl_upoly_mul(up, isl_upoly_var_pow(term->dim->ctx, i, term->pow[i])); } qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up); if (!qp) goto error; isl_mat_free(qp->div); qp->div = isl_mat_copy(term->div); if (!qp->div) goto error; isl_term_free(term); return qp; error: isl_qpolynomial_free(qp); isl_term_free(term); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, __isl_take isl_space *dim) { int i; int extra; unsigned total; if (!qp || !dim) goto error; if (isl_space_is_equal(qp->dim, dim)) { isl_space_free(dim); return qp; } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; extra = isl_space_dim(dim, isl_dim_set) - isl_space_dim(qp->dim, isl_dim_set); total = isl_space_dim(qp->dim, isl_dim_all); if (qp->div->n_row) { int *exp; exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); if (!exp) goto error; for (i = 0; i < qp->div->n_row; ++i) exp[i] = extra + i; qp->upoly = expand(qp->upoly, exp, total); free(exp); if (!qp->upoly) goto error; } qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra); if (!qp->div) goto error; for (i = 0; i < qp->div->n_row; ++i) isl_seq_clr(qp->div->row[i] + 2 + total, extra); isl_space_free(qp->dim); qp->dim = dim; return qp; error: isl_space_free(dim); isl_qpolynomial_free(qp); return NULL; } /* For each parameter or variable that does not appear in qp, * first eliminate the variable from all constraints and then set it to zero. */ static __isl_give isl_set *fix_inactive(__isl_take isl_set *set, __isl_keep isl_qpolynomial *qp) { int *active = NULL; int i; int d; unsigned nparam; unsigned nvar; if (!set || !qp) goto error; d = isl_space_dim(set->dim, isl_dim_all); active = isl_calloc_array(set->ctx, int, d); if (set_active(qp, active) < 0) goto error; for (i = 0; i < d; ++i) if (!active[i]) break; if (i == d) { free(active); return set; } nparam = isl_space_dim(set->dim, isl_dim_param); nvar = isl_space_dim(set->dim, isl_dim_set); for (i = 0; i < nparam; ++i) { if (active[i]) continue; set = isl_set_eliminate(set, isl_dim_param, i, 1); set = isl_set_fix_si(set, isl_dim_param, i, 0); } for (i = 0; i < nvar; ++i) { if (active[nparam + i]) continue; set = isl_set_eliminate(set, isl_dim_set, i, 1); set = isl_set_fix_si(set, isl_dim_set, i, 0); } free(active); return set; error: free(active); isl_set_free(set); return NULL; } struct isl_opt_data { isl_qpolynomial *qp; int first; isl_val *opt; int max; }; static isl_stat opt_fn(__isl_take isl_point *pnt, void *user) { struct isl_opt_data *data = (struct isl_opt_data *)user; isl_val *val; val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt); if (data->first) { data->first = 0; data->opt = val; } else if (data->max) { data->opt = isl_val_max(data->opt, val); } else { data->opt = isl_val_min(data->opt, val); } return isl_stat_ok; } __isl_give isl_val *isl_qpolynomial_opt_on_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max) { struct isl_opt_data data = { NULL, 1, NULL, max }; if (!set || !qp) goto error; if (isl_upoly_is_cst(qp->upoly)) { isl_set_free(set); data.opt = isl_qpolynomial_get_constant_val(qp); isl_qpolynomial_free(qp); return data.opt; } set = fix_inactive(set, qp); data.qp = qp; if (isl_set_foreach_point(set, opt_fn, &data) < 0) goto error; if (data.first) data.opt = isl_val_zero(isl_set_get_ctx(set)); isl_set_free(set); isl_qpolynomial_free(qp); return data.opt; error: isl_set_free(set); isl_qpolynomial_free(qp); isl_val_free(data.opt); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph) { int i; int n_sub; isl_ctx *ctx; struct isl_upoly **subs; isl_mat *mat, *diag; qp = isl_qpolynomial_cow(qp); if (!qp || !morph) goto error; ctx = qp->dim->ctx; isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error); n_sub = morph->inv->n_row - 1; if (morph->inv->n_row != morph->inv->n_col) n_sub += qp->div->n_row; subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub); if (n_sub && !subs) goto error; for (i = 0; 1 + i < morph->inv->n_row; ++i) subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i], morph->inv->row[0][0], morph->inv->n_col); if (morph->inv->n_row != morph->inv->n_col) for (i = 0; i < qp->div->n_row; ++i) subs[morph->inv->n_row - 1 + i] = isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1); qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs); for (i = 0; i < n_sub; ++i) isl_upoly_free(subs[i]); free(subs); diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]); mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv)); diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]); mat = isl_mat_diagonal(mat, diag); qp->div = isl_mat_product(qp->div, mat); isl_space_free(qp->dim); qp->dim = isl_space_copy(morph->ran->dim); if (!qp->upoly || !qp->div || !qp->dim) goto error; isl_morph_free(morph); return qp; error: isl_qpolynomial_free(qp); isl_morph_free(morph); return NULL; } __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2) { return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul); } /* Reorder the columns of the given div definitions according to the * given reordering. */ static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div, __isl_take isl_reordering *r) { int i, j; isl_mat *mat; int extra; if (!div || !r) goto error; extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len; mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra); if (!mat) goto error; for (i = 0; i < div->n_row; ++i) { isl_seq_cpy(mat->row[i], div->row[i], 2); isl_seq_clr(mat->row[i] + 2, mat->n_col - 2); for (j = 0; j < r->len; ++j) isl_int_set(mat->row[i][2 + r->pos[j]], div->row[i][2 + j]); } isl_reordering_free(r); isl_mat_free(div); return mat; error: isl_reordering_free(r); isl_mat_free(div); return NULL; } /* Reorder the dimension of "qp" according to the given reordering. */ __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r) { qp = isl_qpolynomial_cow(qp); if (!qp) goto error; r = isl_reordering_extend(r, qp->div->n_row); if (!r) goto error; qp->div = reorder_divs(qp->div, isl_reordering_copy(r)); if (!qp->div) goto error; qp->upoly = reorder(qp->upoly, r->pos); if (!qp->upoly) goto error; qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim)); isl_reordering_free(r); return qp; error: isl_qpolynomial_free(qp); isl_reordering_free(r); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_align_params( __isl_take isl_qpolynomial *qp, __isl_take isl_space *model) { if (!qp || !model) goto error; if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(qp->dim, model); exp = isl_reordering_extend_space(exp, isl_qpolynomial_get_domain_space(qp)); qp = isl_qpolynomial_realign_domain(qp, exp); } isl_space_free(model); return qp; error: isl_space_free(model); isl_qpolynomial_free(qp); return NULL; } struct isl_split_periods_data { int max_periods; isl_pw_qpolynomial *res; }; /* Create a slice where the integer division "div" has the fixed value "v". * In particular, if "div" refers to floor(f/m), then create a slice * * m v <= f <= m v + (m - 1) * * or * * f - m v >= 0 * -f + m v + (m - 1) >= 0 */ static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim, __isl_keep isl_qpolynomial *qp, int div, isl_int v) { int total; isl_basic_set *bset = NULL; int k; if (!dim || !qp) goto error; total = isl_space_dim(dim, isl_dim_all); bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total); isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total); isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]); isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]); isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); isl_space_free(dim); return isl_set_from_basic_set(bset); error: isl_basic_set_free(bset); isl_space_free(dim); return NULL; } static isl_stat split_periods(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user); /* Create a slice of the domain "set" such that integer division "div" * has the fixed value "v" and add the results to data->res, * replacing the integer division by "v" in "qp". */ static isl_stat set_div(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, int div, isl_int v, struct isl_split_periods_data *data) { int i; int total; isl_set *slice; struct isl_upoly *cst; slice = set_div_slice(isl_set_get_space(set), qp, div, v); set = isl_set_intersect(set, slice); if (!qp) goto error; total = isl_space_dim(qp->dim, isl_dim_all); for (i = div + 1; i < qp->div->n_row; ++i) { if (isl_int_is_zero(qp->div->row[i][2 + total + div])) continue; isl_int_addmul(qp->div->row[i][1], qp->div->row[i][2 + total + div], v); isl_int_set_si(qp->div->row[i][2 + total + div], 0); } cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one); qp = substitute_div(qp, div, cst); return split_periods(set, qp, data); error: isl_set_free(set); isl_qpolynomial_free(qp); return -1; } /* Split the domain "set" such that integer division "div" * has a fixed value (ranging from "min" to "max") on each slice * and add the results to data->res. */ static isl_stat split_div(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max, struct isl_split_periods_data *data) { for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) { isl_set *set_i = isl_set_copy(set); isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp); if (set_div(set_i, qp_i, div, min, data) < 0) goto error; } isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_ok; error: isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_error; } /* If "qp" refers to any integer division * that can only attain "max_periods" distinct values on "set" * then split the domain along those distinct values. * Add the results (or the original if no splitting occurs) * to data->res. */ static isl_stat split_periods(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user) { int i; isl_pw_qpolynomial *pwqp; struct isl_split_periods_data *data; isl_int min, max; int total; isl_stat r = isl_stat_ok; data = (struct isl_split_periods_data *)user; if (!set || !qp) goto error; if (qp->div->n_row == 0) { pwqp = isl_pw_qpolynomial_alloc(set, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); return isl_stat_ok; } isl_int_init(min); isl_int_init(max); total = isl_space_dim(qp->dim, isl_dim_all); for (i = 0; i < qp->div->n_row; ++i) { enum isl_lp_result lp_res; if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total, qp->div->n_row) != -1) continue; lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1, set->ctx->one, &min, NULL, NULL); if (lp_res == isl_lp_error) goto error2; if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) continue; isl_int_fdiv_q(min, min, qp->div->row[i][0]); lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1, set->ctx->one, &max, NULL, NULL); if (lp_res == isl_lp_error) goto error2; if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) continue; isl_int_fdiv_q(max, max, qp->div->row[i][0]); isl_int_sub(max, max, min); if (isl_int_cmp_si(max, data->max_periods) < 0) { isl_int_add(max, max, min); break; } } if (i < qp->div->n_row) { r = split_div(set, qp, i, min, max, data); } else { pwqp = isl_pw_qpolynomial_alloc(set, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); } isl_int_clear(max); isl_int_clear(min); return r; error2: isl_int_clear(max); isl_int_clear(min); error: isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_error; } /* If any quasi-polynomial in pwqp refers to any integer division * that can only attain "max_periods" distinct values on its domain * then split the domain along those distinct values. */ __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( __isl_take isl_pw_qpolynomial *pwqp, int max_periods) { struct isl_split_periods_data data; data.max_periods = max_periods; data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0) goto error; isl_pw_qpolynomial_free(pwqp); return data.res; error: isl_pw_qpolynomial_free(data.res); isl_pw_qpolynomial_free(pwqp); return NULL; } /* Construct a piecewise quasipolynomial that is constant on the given * domain. In particular, it is * 0 if cst == 0 * 1 if cst == 1 * infinity if cst == -1 */ static __isl_give isl_pw_qpolynomial *constant_on_domain( __isl_take isl_basic_set *bset, int cst) { isl_space *dim; isl_qpolynomial *qp; if (!bset) return NULL; bset = isl_basic_set_params(bset); dim = isl_basic_set_get_space(bset); if (cst < 0) qp = isl_qpolynomial_infty_on_domain(dim); else if (cst == 0) qp = isl_qpolynomial_zero_on_domain(dim); else qp = isl_qpolynomial_one_on_domain(dim); return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp); } /* Factor bset, call fn on each of the factors and return the product. * * If no factors can be found, simply call fn on the input. * Otherwise, construct the factors based on the factorizer, * call fn on each factor and compute the product. */ static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call( __isl_take isl_basic_set *bset, __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) { int i, n; isl_space *dim; isl_set *set; isl_factorizer *f; isl_qpolynomial *qp; isl_pw_qpolynomial *pwqp; unsigned nparam; unsigned nvar; f = isl_basic_set_factorizer(bset); if (!f) goto error; if (f->n_group == 0) { isl_factorizer_free(f); return fn(bset); } nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); dim = isl_basic_set_get_space(bset); dim = isl_space_domain(dim); set = isl_set_universe(isl_space_copy(dim)); qp = isl_qpolynomial_one_on_domain(dim); pwqp = isl_pw_qpolynomial_alloc(set, qp); bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset); for (i = 0, n = 0; i < f->n_group; ++i) { isl_basic_set *bset_i; isl_pw_qpolynomial *pwqp_i; bset_i = isl_basic_set_copy(bset); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam + n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam, n); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n); pwqp_i = fn(bset_i); pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i); n += f->len[i]; } isl_basic_set_free(bset); isl_factorizer_free(f); return pwqp; error: isl_basic_set_free(bset); return NULL; } /* Factor bset, call fn on each of the factors and return the product. * The function is assumed to evaluate to zero on empty domains, * to one on zero-dimensional domains and to infinity on unbounded domains * and will not be called explicitly on zero-dimensional or unbounded domains. * * We first check for some special cases and remove all equalities. * Then we hand over control to compressed_multiplicative_call. */ __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( __isl_take isl_basic_set *bset, __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) { int bounded; isl_morph *morph; isl_pw_qpolynomial *pwqp; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return constant_on_domain(bset, 0); if (isl_basic_set_dim(bset, isl_dim_set) == 0) return constant_on_domain(bset, 1); bounded = isl_basic_set_is_bounded(bset); if (bounded < 0) goto error; if (!bounded) return constant_on_domain(bset, -1); if (bset->n_eq == 0) return compressed_multiplicative_call(bset, fn); morph = isl_basic_set_full_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); pwqp = compressed_multiplicative_call(bset, fn); morph = isl_morph_dom_params(morph); morph = isl_morph_ran_params(morph); morph = isl_morph_inverse(morph); pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph); return pwqp; error: isl_basic_set_free(bset); return NULL; } /* Drop all floors in "qp", turning each integer division [a/m] into * a rational division a/m. If "down" is set, then the integer division * is replaced by (a-(m-1))/m instead. */ static __isl_give isl_qpolynomial *qp_drop_floors( __isl_take isl_qpolynomial *qp, int down) { int i; struct isl_upoly *s; if (!qp) return NULL; if (qp->div->n_row == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; for (i = qp->div->n_row - 1; i >= 0; --i) { if (down) { isl_int_sub(qp->div->row[i][1], qp->div->row[i][1], qp->div->row[i][0]); isl_int_add_ui(qp->div->row[i][1], qp->div->row[i][1], 1); } s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, qp->div->row[i][0], qp->div->n_col - 1); qp = substitute_div(qp, i, s); if (!qp) return NULL; } return qp; } /* Drop all floors in "pwqp", turning each integer division [a/m] into * a rational division a/m. */ static __isl_give isl_pw_qpolynomial *pwqp_drop_floors( __isl_take isl_pw_qpolynomial *pwqp) { int i; if (!pwqp) return NULL; if (isl_pw_qpolynomial_is_zero(pwqp)) return pwqp; pwqp = isl_pw_qpolynomial_cow(pwqp); if (!pwqp) return NULL; for (i = 0; i < pwqp->n; ++i) { pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0); if (!pwqp->p[i].qp) goto error; } return pwqp; error: isl_pw_qpolynomial_free(pwqp); return NULL; } /* Adjust all the integer divisions in "qp" such that they are at least * one over the given orthant (identified by "signs"). This ensures * that they will still be non-negative even after subtracting (m-1)/m. * * In particular, f is replaced by f' + v, changing f = [a/m] * to f' = [(a - m v)/m]. * If the constant term k in a is smaller than m, * the constant term of v is set to floor(k/m) - 1. * For any other term, if the coefficient c and the variable x have * the same sign, then no changes are needed. * Otherwise, if the variable is positive (and c is negative), * then the coefficient of x in v is set to floor(c/m). * If the variable is negative (and c is positive), * then the coefficient of x in v is set to ceil(c/m). */ static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp, int *signs) { int i, j; int total; isl_vec *v = NULL; struct isl_upoly *s; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; total = isl_space_dim(qp->dim, isl_dim_all); v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1); for (i = 0; i < qp->div->n_row; ++i) { isl_int *row = qp->div->row[i]; v = isl_vec_clr(v); if (!v) goto error; if (isl_int_lt(row[1], row[0])) { isl_int_fdiv_q(v->el[0], row[1], row[0]); isl_int_sub_ui(v->el[0], v->el[0], 1); isl_int_submul(row[1], row[0], v->el[0]); } for (j = 0; j < total; ++j) { if (isl_int_sgn(row[2 + j]) * signs[j] >= 0) continue; if (signs[j] < 0) isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]); else isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]); isl_int_submul(row[2 + j], row[0], v->el[1 + j]); } for (j = 0; j < i; ++j) { if (isl_int_sgn(row[2 + total + j]) >= 0) continue; isl_int_fdiv_q(v->el[1 + total + j], row[2 + total + j], row[0]); isl_int_submul(row[2 + total + j], row[0], v->el[1 + total + j]); } for (j = i + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + i])) continue; isl_seq_combine(qp->div->row[j] + 1, qp->div->ctx->one, qp->div->row[j] + 1, qp->div->row[j][2 + total + i], v->el, v->size); } isl_int_set_si(v->el[1 + total + i], 1); s = isl_upoly_from_affine(qp->dim->ctx, v->el, qp->div->ctx->one, v->size); qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s); isl_upoly_free(s); if (!qp->upoly) goto error; } isl_vec_free(v); return qp; error: isl_vec_free(v); isl_qpolynomial_free(qp); return NULL; } struct isl_to_poly_data { int sign; isl_pw_qpolynomial *res; isl_qpolynomial *qp; }; /* Appoximate data->qp by a polynomial on the orthant identified by "signs". * We first make all integer divisions positive and then split the * quasipolynomials into terms with sign data->sign (the direction * of the requested approximation) and terms with the opposite sign. * In the first set of terms, each integer division [a/m] is * overapproximated by a/m, while in the second it is underapproximated * by (a-(m-1))/m. */ static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs, void *user) { struct isl_to_poly_data *data = user; isl_pw_qpolynomial *t; isl_qpolynomial *qp, *up, *down; qp = isl_qpolynomial_copy(data->qp); qp = make_divs_pos(qp, signs); up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign); up = qp_drop_floors(up, 0); down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign); down = qp_drop_floors(down, 1); isl_qpolynomial_free(qp); qp = isl_qpolynomial_add(up, down); t = isl_pw_qpolynomial_alloc(orthant, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, t); return 0; } /* Approximate each quasipolynomial by a polynomial. If "sign" is positive, * the polynomial will be an overapproximation. If "sign" is negative, * it will be an underapproximation. If "sign" is zero, the approximation * will lie somewhere in between. * * In particular, is sign == 0, we simply drop the floors, turning * the integer divisions into rational divisions. * Otherwise, we split the domains into orthants, make all integer divisions * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m, * depending on the requested sign and the sign of the term in which * the integer division appears. */ __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( __isl_take isl_pw_qpolynomial *pwqp, int sign) { int i; struct isl_to_poly_data data; if (sign == 0) return pwqp_drop_floors(pwqp); if (!pwqp) return NULL; data.sign = sign; data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); for (i = 0; i < pwqp->n; ++i) { if (pwqp->p[i].qp->div->n_row == 0) { isl_pw_qpolynomial *t; t = isl_pw_qpolynomial_alloc( isl_set_copy(pwqp->p[i].set), isl_qpolynomial_copy(pwqp->p[i].qp)); data.res = isl_pw_qpolynomial_add_disjoint(data.res, t); continue; } data.qp = pwqp->p[i].qp; if (isl_set_foreach_orthant(pwqp->p[i].set, &to_polynomial_on_orthant, &data) < 0) goto error; } isl_pw_qpolynomial_free(pwqp); return data.res; error: isl_pw_qpolynomial_free(pwqp); isl_pw_qpolynomial_free(data.res); return NULL; } static __isl_give isl_pw_qpolynomial *poly_entry( __isl_take isl_pw_qpolynomial *pwqp, void *user) { int *sign = user; return isl_pw_qpolynomial_to_polynomial(pwqp, *sign); } __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( __isl_take isl_union_pw_qpolynomial *upwqp, int sign) { return isl_union_pw_qpolynomial_transform_inplace(upwqp, &poly_entry, &sign); } __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( __isl_take isl_qpolynomial *qp) { int i, k; isl_space *dim; isl_vec *aff = NULL; isl_basic_map *bmap = NULL; unsigned pos; unsigned n_div; if (!qp) return NULL; if (!isl_upoly_is_affine(qp->upoly)) isl_die(qp->dim->ctx, isl_error_invalid, "input quasi-polynomial not affine", goto error); aff = isl_qpolynomial_extract_affine(qp); if (!aff) goto error; dim = isl_qpolynomial_get_space(qp); pos = 1 + isl_space_offset(dim, isl_dim_out); n_div = qp->div->n_row; bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div); for (i = 0; i < n_div; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col); isl_int_set_si(bmap->div[k][qp->div->n_col], 0); if (isl_basic_map_add_div_constraints(bmap, k) < 0) goto error; } k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_int_neg(bmap->eq[k][pos], aff->el[0]); isl_seq_cpy(bmap->eq[k], aff->el + 1, pos); isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div); isl_vec_free(aff); isl_qpolynomial_free(qp); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_vec_free(aff); isl_qpolynomial_free(qp); isl_basic_map_free(bmap); return NULL; }