/* * Copyright 2013-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * Copyright 2016 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include /* Create a new schedule node in the given schedule, point at the given * tree with given ancestors and child positions. * "child_pos" may be NULL if there are no ancestors. */ __isl_give isl_schedule_node *isl_schedule_node_alloc( __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_tree_list *ancestors, int *child_pos) { isl_ctx *ctx; isl_schedule_node *node; int i, n; if (!schedule || !tree || !ancestors) goto error; n = isl_schedule_tree_list_n_schedule_tree(ancestors); if (n > 0 && !child_pos) goto error; ctx = isl_schedule_get_ctx(schedule); node = isl_calloc_type(ctx, isl_schedule_node); if (!node) goto error; node->ref = 1; node->schedule = schedule; node->tree = tree; node->ancestors = ancestors; node->child_pos = isl_alloc_array(ctx, int, n); if (n && !node->child_pos) return isl_schedule_node_free(node); for (i = 0; i < n; ++i) node->child_pos[i] = child_pos[i]; return node; error: isl_schedule_free(schedule); isl_schedule_tree_free(tree); isl_schedule_tree_list_free(ancestors); return NULL; } /* Return a pointer to the root of a schedule tree with as single * node a domain node with the given domain. */ __isl_give isl_schedule_node *isl_schedule_node_from_domain( __isl_take isl_union_set *domain) { isl_schedule *schedule; isl_schedule_node *node; schedule = isl_schedule_from_domain(domain); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); return node; } /* Return a pointer to the root of a schedule tree with as single * node a extension node with the given extension. */ __isl_give isl_schedule_node *isl_schedule_node_from_extension( __isl_take isl_union_map *extension) { isl_ctx *ctx; isl_schedule *schedule; isl_schedule_tree *tree; isl_schedule_node *node; if (!extension) return NULL; ctx = isl_union_map_get_ctx(extension); tree = isl_schedule_tree_from_extension(extension); schedule = isl_schedule_from_schedule_tree(ctx, tree); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); return node; } /* Return the isl_ctx to which "node" belongs. */ isl_ctx *isl_schedule_node_get_ctx(__isl_keep isl_schedule_node *node) { return node ? isl_schedule_get_ctx(node->schedule) : NULL; } /* Return a pointer to the leaf of the schedule into which "node" points. */ __isl_keep isl_schedule_tree *isl_schedule_node_peek_leaf( __isl_keep isl_schedule_node *node) { return node ? isl_schedule_peek_leaf(node->schedule) : NULL; } /* Return a copy of the leaf of the schedule into which "node" points. */ __isl_give isl_schedule_tree *isl_schedule_node_get_leaf( __isl_keep isl_schedule_node *node) { return isl_schedule_tree_copy(isl_schedule_node_peek_leaf(node)); } /* Return the type of the node or isl_schedule_node_error on error. */ enum isl_schedule_node_type isl_schedule_node_get_type( __isl_keep isl_schedule_node *node) { return node ? isl_schedule_tree_get_type(node->tree) : isl_schedule_node_error; } /* Return the type of the parent of "node" or isl_schedule_node_error on error. */ enum isl_schedule_node_type isl_schedule_node_get_parent_type( __isl_keep isl_schedule_node *node) { int pos; int has_parent; isl_schedule_tree *parent; enum isl_schedule_node_type type; if (!node) return isl_schedule_node_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return isl_schedule_node_error; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return isl_schedule_node_error); pos = isl_schedule_tree_list_n_schedule_tree(node->ancestors) - 1; parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, pos); type = isl_schedule_tree_get_type(parent); isl_schedule_tree_free(parent); return type; } /* Return a copy of the subtree that this node points to. */ __isl_give isl_schedule_tree *isl_schedule_node_get_tree( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_copy(node->tree); } /* Return a copy of the schedule into which "node" points. */ __isl_give isl_schedule *isl_schedule_node_get_schedule( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_copy(node->schedule); } /* Return a fresh copy of "node". */ __isl_take isl_schedule_node *isl_schedule_node_dup( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_node_alloc(isl_schedule_copy(node->schedule), isl_schedule_tree_copy(node->tree), isl_schedule_tree_list_copy(node->ancestors), node->child_pos); } /* Return an isl_schedule_node that is equal to "node" and that has only * a single reference. */ __isl_give isl_schedule_node *isl_schedule_node_cow( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (node->ref == 1) return node; node->ref--; return isl_schedule_node_dup(node); } /* Return a new reference to "node". */ __isl_give isl_schedule_node *isl_schedule_node_copy( __isl_keep isl_schedule_node *node) { if (!node) return NULL; node->ref++; return node; } /* Free "node" and return NULL. */ __isl_null isl_schedule_node *isl_schedule_node_free( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (--node->ref > 0) return NULL; isl_schedule_tree_list_free(node->ancestors); free(node->child_pos); isl_schedule_tree_free(node->tree); isl_schedule_free(node->schedule); free(node); return NULL; } /* Do "node1" and "node2" point to the same position in the same * schedule? */ isl_bool isl_schedule_node_is_equal(__isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2) { int i, n1, n2; if (!node1 || !node2) return isl_bool_error; if (node1 == node2) return isl_bool_true; if (node1->schedule != node2->schedule) return isl_bool_false; n1 = isl_schedule_node_get_tree_depth(node1); n2 = isl_schedule_node_get_tree_depth(node2); if (n1 != n2) return isl_bool_false; for (i = 0; i < n1; ++i) if (node1->child_pos[i] != node2->child_pos[i]) return isl_bool_false; return isl_bool_true; } /* Return the number of outer schedule dimensions of "node" * in its schedule tree. * * Return -1 on error. */ int isl_schedule_node_get_schedule_depth(__isl_keep isl_schedule_node *node) { int i, n; int depth = 0; if (!node) return -1; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *tree; tree = isl_schedule_tree_list_get_schedule_tree( node->ancestors, i); if (!tree) return -1; if (tree->type == isl_schedule_node_band) depth += isl_schedule_tree_band_n_member(tree); isl_schedule_tree_free(tree); } return depth; } /* Internal data structure for * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff * * "initialized" is set if the filter field has been initialized. * If "universe_domain" is not set, then the collected filter is intersected * with the the domain of the root domain node. * "universe_filter" is set if we are only collecting the universes of filters * "collect_prefix" is set if we are collecting prefixes. * "filter" collects all outer filters and is NULL until "initialized" is set. * "prefix" collects all outer band partial schedules (if "collect_prefix" * is set). If it is used, then it is initialized by the caller * of collect_filter_prefix to a zero-dimensional function. */ struct isl_schedule_node_get_filter_prefix_data { int initialized; int universe_domain; int universe_filter; int collect_prefix; isl_union_set *filter; isl_multi_union_pw_aff *prefix; }; static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data); /* Update the filter and prefix information in "data" based on the first "n" * elements in "list" and the expansion tree root "tree". * * We first collect the information from the elements in "list", * initializing the filter based on the domain of the expansion. * Then we map the results to the expanded space and combined them * with the results already in "data". */ static int collect_filter_prefix_expansion(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { struct isl_schedule_node_get_filter_prefix_data contracted; isl_union_pw_multi_aff *c; isl_union_map *exp, *universe; isl_union_set *filter; c = isl_schedule_tree_expansion_get_contraction(tree); exp = isl_schedule_tree_expansion_get_expansion(tree); contracted.initialized = 1; contracted.universe_domain = data->universe_domain; contracted.universe_filter = data->universe_filter; contracted.collect_prefix = data->collect_prefix; universe = isl_union_map_universe(isl_union_map_copy(exp)); filter = isl_union_map_domain(universe); if (data->collect_prefix) { isl_space *space = isl_union_set_get_space(filter); space = isl_space_set_from_params(space); contracted.prefix = isl_multi_union_pw_aff_zero(space); } contracted.filter = filter; if (collect_filter_prefix(list, n, &contracted) < 0) contracted.filter = isl_union_set_free(contracted.filter); if (data->collect_prefix) { isl_multi_union_pw_aff *prefix; prefix = contracted.prefix; prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix, isl_union_pw_multi_aff_copy(c)); data->prefix = isl_multi_union_pw_aff_flat_range_product( prefix, data->prefix); } filter = contracted.filter; if (data->universe_domain) filter = isl_union_set_preimage_union_pw_multi_aff(filter, isl_union_pw_multi_aff_copy(c)); else filter = isl_union_set_apply(filter, isl_union_map_copy(exp)); if (!data->initialized) data->filter = filter; else data->filter = isl_union_set_intersect(filter, data->filter); data->initialized = 1; isl_union_pw_multi_aff_free(c); isl_union_map_free(exp); isl_schedule_tree_free(tree); return 0; } /* Update the filter information in "data" based on the first "n" * elements in "list" and the extension tree root "tree", in case * data->universe_domain is set and data->collect_prefix is not. * * We collect the universe domain of the elements in "list" and * add it to the universe range of the extension (intersected * with the already collected filter, if any). */ static int collect_universe_domain_extension(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { struct isl_schedule_node_get_filter_prefix_data data_outer; isl_union_map *extension; isl_union_set *filter; data_outer.initialized = 0; data_outer.universe_domain = 1; data_outer.universe_filter = data->universe_filter; data_outer.collect_prefix = 0; data_outer.filter = NULL; data_outer.prefix = NULL; if (collect_filter_prefix(list, n, &data_outer) < 0) data_outer.filter = isl_union_set_free(data_outer.filter); extension = isl_schedule_tree_extension_get_extension(tree); extension = isl_union_map_universe(extension); filter = isl_union_map_range(extension); if (data_outer.initialized) filter = isl_union_set_union(filter, data_outer.filter); if (data->initialized) filter = isl_union_set_intersect(filter, data->filter); data->filter = filter; isl_schedule_tree_free(tree); return 0; } /* Update "data" based on the tree node "tree" in case "data" has * not been initialized yet. * * Return 0 on success and -1 on error. * * If "tree" is a filter, then we set data->filter to this filter * (or its universe). * If "tree" is a domain, then this means we have reached the root * of the schedule tree without being able to extract any information. * We therefore initialize data->filter to the universe of the domain, * or the domain itself if data->universe_domain is not set. * If "tree" is a band with at least one member, then we set data->filter * to the universe of the schedule domain and replace the zero-dimensional * data->prefix by the band schedule (if data->collect_prefix is set). */ static int collect_filter_prefix_init(__isl_keep isl_schedule_tree *tree, struct isl_schedule_node_get_filter_prefix_data *data) { enum isl_schedule_node_type type; isl_multi_union_pw_aff *mupa; isl_union_set *filter; type = isl_schedule_tree_get_type(tree); switch (type) { case isl_schedule_node_error: return -1; case isl_schedule_node_expansion: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "should be handled by caller", return -1); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot handle extension nodes", return -1); case isl_schedule_node_context: case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: return 0; case isl_schedule_node_domain: filter = isl_schedule_tree_domain_get_domain(tree); if (data->universe_domain) filter = isl_union_set_universe(filter); data->filter = filter; break; case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) return 0; mupa = isl_schedule_tree_band_get_partial_schedule(tree); if (data->collect_prefix) { isl_multi_union_pw_aff_free(data->prefix); mupa = isl_multi_union_pw_aff_reset_tuple_id(mupa, isl_dim_set); data->prefix = isl_multi_union_pw_aff_copy(mupa); } filter = isl_multi_union_pw_aff_domain(mupa); filter = isl_union_set_universe(filter); data->filter = filter; break; case isl_schedule_node_filter: filter = isl_schedule_tree_filter_get_filter(tree); if (data->universe_filter) filter = isl_union_set_universe(filter); data->filter = filter; break; } if ((data->collect_prefix && !data->prefix) || !data->filter) return -1; data->initialized = 1; return 0; } /* Update "data" based on the tree node "tree" in case "data" has * already been initialized. * * Return 0 on success and -1 on error. * * If "tree" is a domain and data->universe_domain is not set, then * intersect data->filter with the domain. * If "tree" is a filter, then we intersect data->filter with this filter * (or its universe). * If "tree" is a band with at least one member and data->collect_prefix * is set, then we extend data->prefix with the band schedule. * If "tree" is an extension, then we make sure that we are not collecting * information on any extended domain elements. */ static int collect_filter_prefix_update(__isl_keep isl_schedule_tree *tree, struct isl_schedule_node_get_filter_prefix_data *data) { enum isl_schedule_node_type type; isl_multi_union_pw_aff *mupa; isl_union_set *filter; isl_union_map *extension; int empty; type = isl_schedule_tree_get_type(tree); switch (type) { case isl_schedule_node_error: return -1; case isl_schedule_node_expansion: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "should be handled by caller", return -1); case isl_schedule_node_extension: extension = isl_schedule_tree_extension_get_extension(tree); extension = isl_union_map_intersect_range(extension, isl_union_set_copy(data->filter)); empty = isl_union_map_is_empty(extension); isl_union_map_free(extension); if (empty < 0) return -1; if (empty) break; isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot handle extension nodes", return -1); case isl_schedule_node_context: case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; case isl_schedule_node_domain: if (data->universe_domain) break; filter = isl_schedule_tree_domain_get_domain(tree); data->filter = isl_union_set_intersect(data->filter, filter); break; case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) break; if (!data->collect_prefix) break; mupa = isl_schedule_tree_band_get_partial_schedule(tree); data->prefix = isl_multi_union_pw_aff_flat_range_product(mupa, data->prefix); if (!data->prefix) return -1; break; case isl_schedule_node_filter: filter = isl_schedule_tree_filter_get_filter(tree); if (data->universe_filter) filter = isl_union_set_universe(filter); data->filter = isl_union_set_intersect(data->filter, filter); if (!data->filter) return -1; break; } return 0; } /* Collect filter and/or prefix information from the first "n" * elements in "list" (which represent the ancestors of a node). * Store the results in "data". * * Extension nodes are only supported if they do not affect the outcome, * i.e., if we are collecting information on non-extended domain elements, * or if we are collecting the universe domain (without prefix). * * Return 0 on success and -1 on error. * * We traverse the list from innermost ancestor (last element) * to outermost ancestor (first element), calling collect_filter_prefix_init * on each node as long as we have not been able to extract any information * yet and collect_filter_prefix_update afterwards. * If we come across an expansion node, then we interrupt the traversal * and call collect_filter_prefix_expansion to restart the traversal * over the remaining ancestors and to combine the results with those * that have already been collected. * If we come across an extension node and we are only computing * the universe domain, then we interrupt the traversal and call * collect_universe_domain_extension to restart the traversal * over the remaining ancestors and to combine the results with those * that have already been collected. * On successful return, data->initialized will be set since the outermost * ancestor is a domain node, which always results in an initialization. */ static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { int i; if (!list) return -1; for (i = n - 1; i >= 0; --i) { isl_schedule_tree *tree; enum isl_schedule_node_type type; int r; tree = isl_schedule_tree_list_get_schedule_tree(list, i); if (!tree) return -1; type = isl_schedule_tree_get_type(tree); if (type == isl_schedule_node_expansion) return collect_filter_prefix_expansion(tree, list, i, data); if (type == isl_schedule_node_extension && data->universe_domain && !data->collect_prefix) return collect_universe_domain_extension(tree, list, i, data); if (!data->initialized) r = collect_filter_prefix_init(tree, data); else r = collect_filter_prefix_update(tree, data); isl_schedule_tree_free(tree); if (r < 0) return -1; } return 0; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_multi_union_pw_aff. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * We collect all the filters and partial schedules in collect_filter_prefix * and intersect the domain of the combined schedule with the combined filter. */ __isl_give isl_multi_union_pw_aff * isl_schedule_node_get_prefix_schedule_multi_union_pw_aff( __isl_keep isl_schedule_node *node) { int n; isl_space *space; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); space = isl_space_set_from_params(space); if (node->tree == node->schedule->root) return isl_multi_union_pw_aff_zero(space); data.initialized = 0; data.universe_domain = 1; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); data.prefix = isl_multi_union_pw_aff_intersect_domain(data.prefix, data.filter); return data.prefix; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_union_pw_multi_aff. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * We collect all the filters and partial schedules in collect_filter_prefix. * The partial schedules are collected as an isl_multi_union_pw_aff. * If this isl_multi_union_pw_aff is zero-dimensional, then it does not * contain any domain information, so we construct the isl_union_pw_multi_aff * result as a zero-dimensional function on the collected filter. * Otherwise, we convert the isl_multi_union_pw_aff to * an isl_multi_union_pw_aff and intersect the domain with the filter. */ __isl_give isl_union_pw_multi_aff * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff( __isl_keep isl_schedule_node *node) { int n; isl_space *space; isl_union_pw_multi_aff *prefix; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); if (node->tree == node->schedule->root) return isl_union_pw_multi_aff_empty(space); space = isl_space_set_from_params(space); data.initialized = 0; data.universe_domain = 1; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); if (data.prefix && isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) { isl_multi_union_pw_aff_free(data.prefix); prefix = isl_union_pw_multi_aff_from_domain(data.filter); } else { prefix = isl_union_pw_multi_aff_from_multi_union_pw_aff(data.prefix); prefix = isl_union_pw_multi_aff_intersect_domain(prefix, data.filter); } return prefix; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_union_map. */ __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_union_pw_multi_aff *upma; upma = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node); return isl_union_map_from_union_pw_multi_aff(upma); } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" intersected with all outer domain constraints. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * Essentially, this function intersects the domain of the output * of isl_schedule_node_get_prefix_schedule_union_map with the output * of isl_schedule_node_get_domain, except that it only traverses * the ancestors of "node" once. */ __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_relation( __isl_keep isl_schedule_node *node) { int n; isl_space *space; isl_union_map *prefix; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); if (node->tree == node->schedule->root) return isl_union_map_empty(space); space = isl_space_set_from_params(space); data.initialized = 0; data.universe_domain = 0; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); if (data.prefix && isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) { isl_multi_union_pw_aff_free(data.prefix); prefix = isl_union_map_from_domain(data.filter); } else { prefix = isl_union_map_from_multi_union_pw_aff(data.prefix); prefix = isl_union_map_intersect_domain(prefix, data.filter); } return prefix; } /* Return the domain elements that reach "node". * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * Otherwise, we collect all filters reaching the node, * intersected with the root domain in collect_filter_prefix. */ __isl_give isl_union_set *isl_schedule_node_get_domain( __isl_keep isl_schedule_node *node) { int n; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; if (node->tree == node->schedule->root) { isl_space *space; space = isl_schedule_get_space(node->schedule); return isl_union_set_empty(space); } data.initialized = 0; data.universe_domain = 0; data.universe_filter = 0; data.collect_prefix = 0; data.filter = NULL; data.prefix = NULL; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.filter = isl_union_set_free(data.filter); return data.filter; } /* Return the union of universe sets of the domain elements that reach "node". * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * Otherwise, we collect the universes of all filters reaching the node * in collect_filter_prefix. */ __isl_give isl_union_set *isl_schedule_node_get_universe_domain( __isl_keep isl_schedule_node *node) { int n; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; if (node->tree == node->schedule->root) { isl_space *space; space = isl_schedule_get_space(node->schedule); return isl_union_set_empty(space); } data.initialized = 0; data.universe_domain = 1; data.universe_filter = 1; data.collect_prefix = 0; data.filter = NULL; data.prefix = NULL; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.filter = isl_union_set_free(data.filter); return data.filter; } /* Return the subtree schedule of "node". * * Since isl_schedule_tree_get_subtree_schedule_union_map does not handle * trees that do not contain any schedule information, we first * move down to the first relevant descendant and handle leaves ourselves. * * If the subtree rooted at "node" contains any expansion nodes, then * the returned subtree schedule is formulated in terms of the expanded * domains. * The subtree is not allowed to contain any extension nodes. */ __isl_give isl_union_map *isl_schedule_node_get_subtree_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_schedule_tree *tree, *leaf; isl_union_map *umap; tree = isl_schedule_node_get_tree(node); leaf = isl_schedule_node_peek_leaf(node); tree = isl_schedule_tree_first_schedule_descendant(tree, leaf); if (!tree) return NULL; if (tree == leaf) { isl_union_set *domain; domain = isl_schedule_node_get_universe_domain(node); isl_schedule_tree_free(tree); return isl_union_map_from_domain(domain); } umap = isl_schedule_tree_get_subtree_schedule_union_map(tree); isl_schedule_tree_free(tree); return umap; } /* Return the number of ancestors of "node" in its schedule tree. */ int isl_schedule_node_get_tree_depth(__isl_keep isl_schedule_node *node) { if (!node) return -1; return isl_schedule_tree_list_n_schedule_tree(node->ancestors); } /* Does "node" have a parent? * * That is, does it point to any node of the schedule other than the root? */ isl_bool isl_schedule_node_has_parent(__isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; if (!node->ancestors) return isl_bool_error; return isl_schedule_tree_list_n_schedule_tree(node->ancestors) != 0; } /* Return the position of "node" among the children of its parent. */ int isl_schedule_node_get_child_position(__isl_keep isl_schedule_node *node) { int n; int has_parent; if (!node) return -1; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return -1; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return -1); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); return node->child_pos[n - 1]; } /* Does the parent (if any) of "node" have any children with a smaller child * position than this one? */ isl_bool isl_schedule_node_has_previous_sibling( __isl_keep isl_schedule_node *node) { int n; isl_bool has_parent; if (!node) return isl_bool_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0 || !has_parent) return has_parent; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); return node->child_pos[n - 1] > 0; } /* Does the parent (if any) of "node" have any children with a greater child * position than this one? */ isl_bool isl_schedule_node_has_next_sibling(__isl_keep isl_schedule_node *node) { int n, n_child; isl_bool has_parent; isl_schedule_tree *tree; if (!node) return isl_bool_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0 || !has_parent) return has_parent; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!tree) return isl_bool_error; n_child = isl_schedule_tree_list_n_schedule_tree(tree->children); isl_schedule_tree_free(tree); return node->child_pos[n - 1] + 1 < n_child; } /* Does "node" have any children? * * Any node other than the leaf nodes is considered to have at least * one child, even if the corresponding isl_schedule_tree does not * have any children. */ isl_bool isl_schedule_node_has_children(__isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return !isl_schedule_tree_is_leaf(node->tree); } /* Return the number of children of "node"? * * Any node other than the leaf nodes is considered to have at least * one child, even if the corresponding isl_schedule_tree does not * have any children. That is, the number of children of "node" is * only zero if its tree is the explicit empty tree. Otherwise, * if the isl_schedule_tree has any children, then it is equal * to the number of children of "node". If it has zero children, * then "node" still has a leaf node as child. */ int isl_schedule_node_n_children(__isl_keep isl_schedule_node *node) { int n; if (!node) return -1; if (isl_schedule_tree_is_leaf(node->tree)) return 0; n = isl_schedule_tree_n_children(node->tree); if (n == 0) return 1; return n; } /* Move the "node" pointer to the ancestor of the given generation * of the node it currently points to, where generation 0 is the node * itself and generation 1 is its parent. */ __isl_give isl_schedule_node *isl_schedule_node_ancestor( __isl_take isl_schedule_node *node, int generation) { int n; isl_schedule_tree *tree; if (!node) return NULL; if (generation == 0) return node; n = isl_schedule_node_get_tree_depth(node); if (n < 0) return isl_schedule_node_free(node); if (generation < 0 || generation > n) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "generation out of bounds", return isl_schedule_node_free(node)); node = isl_schedule_node_cow(node); if (!node) return NULL; tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - generation); isl_schedule_tree_free(node->tree); node->tree = tree; node->ancestors = isl_schedule_tree_list_drop(node->ancestors, n - generation, generation); if (!node->ancestors || !node->tree) return isl_schedule_node_free(node); return node; } /* Move the "node" pointer to the parent of the node it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_parent( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (!isl_schedule_node_has_parent(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return isl_schedule_node_free(node)); return isl_schedule_node_ancestor(node, 1); } /* Move the "node" pointer to the root of its schedule tree. */ __isl_give isl_schedule_node *isl_schedule_node_root( __isl_take isl_schedule_node *node) { int n; if (!node) return NULL; n = isl_schedule_node_get_tree_depth(node); if (n < 0) return isl_schedule_node_free(node); return isl_schedule_node_ancestor(node, n); } /* Move the "node" pointer to the child at position "pos" of the node * it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_child( __isl_take isl_schedule_node *node, int pos) { int n; isl_ctx *ctx; isl_schedule_tree *tree; int *child_pos; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_children(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no children", return isl_schedule_node_free(node)); ctx = isl_schedule_node_get_ctx(node); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); child_pos = isl_realloc_array(ctx, node->child_pos, int, n + 1); if (!child_pos) return isl_schedule_node_free(node); node->child_pos = child_pos; node->child_pos[n] = pos; node->ancestors = isl_schedule_tree_list_add(node->ancestors, isl_schedule_tree_copy(node->tree)); tree = node->tree; if (isl_schedule_tree_has_children(tree)) tree = isl_schedule_tree_get_child(tree, pos); else tree = isl_schedule_node_get_leaf(node); isl_schedule_tree_free(node->tree); node->tree = tree; if (!node->tree || !node->ancestors) return isl_schedule_node_free(node); return node; } /* Move the "node" pointer to the first child of the node * it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_first_child( __isl_take isl_schedule_node *node) { return isl_schedule_node_child(node, 0); } /* Move the "node" pointer to the child of this node's parent in * the previous child position. */ __isl_give isl_schedule_node *isl_schedule_node_previous_sibling( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *parent, *tree; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_previous_sibling(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no previous sibling", return isl_schedule_node_free(node)); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!parent) return isl_schedule_node_free(node); node->child_pos[n - 1]--; tree = isl_schedule_tree_list_get_schedule_tree(parent->children, node->child_pos[n - 1]); isl_schedule_tree_free(parent); if (!tree) return isl_schedule_node_free(node); isl_schedule_tree_free(node->tree); node->tree = tree; return node; } /* Move the "node" pointer to the child of this node's parent in * the next child position. */ __isl_give isl_schedule_node *isl_schedule_node_next_sibling( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *parent, *tree; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_next_sibling(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no next sibling", return isl_schedule_node_free(node)); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!parent) return isl_schedule_node_free(node); node->child_pos[n - 1]++; tree = isl_schedule_tree_list_get_schedule_tree(parent->children, node->child_pos[n - 1]); isl_schedule_tree_free(parent); if (!tree) return isl_schedule_node_free(node); isl_schedule_tree_free(node->tree); node->tree = tree; return node; } /* Return a copy to the child at position "pos" of "node". */ __isl_give isl_schedule_node *isl_schedule_node_get_child( __isl_keep isl_schedule_node *node, int pos) { return isl_schedule_node_child(isl_schedule_node_copy(node), pos); } /* Traverse the descendant of "node" in depth-first order, including * "node" itself. Call "enter" whenever a node is entered and "leave" * whenever a node is left. The callback "enter" is responsible * for moving to the deepest initial subtree of its argument that * should be traversed. */ static __isl_give isl_schedule_node *traverse( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*enter)( __isl_take isl_schedule_node *node, void *user), __isl_give isl_schedule_node *(*leave)( __isl_take isl_schedule_node *node, void *user), void *user) { int depth; if (!node) return NULL; depth = isl_schedule_node_get_tree_depth(node); do { node = enter(node, user); node = leave(node, user); while (node && isl_schedule_node_get_tree_depth(node) > depth && !isl_schedule_node_has_next_sibling(node)) { node = isl_schedule_node_parent(node); node = leave(node, user); } if (node && isl_schedule_node_get_tree_depth(node) > depth) node = isl_schedule_node_next_sibling(node); } while (node && isl_schedule_node_get_tree_depth(node) > depth); return node; } /* Internal data structure for isl_schedule_node_foreach_descendant_top_down. * * "fn" is the user-specified callback function. * "user" is the user-specified argument for the callback. */ struct isl_schedule_node_preorder_data { isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user); void *user; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * for use in a preorder visit. * * If the user callback returns a negative value, then we abort * the traversal. If this callback returns zero, then we skip * the subtree rooted at the current node. Otherwise, we move * down to the first child and repeat the process until a leaf * is reached. */ static __isl_give isl_schedule_node *preorder_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_schedule_node_preorder_data *data = user; if (!node) return NULL; do { isl_bool r; r = data->fn(node, data->user); if (r < 0) return isl_schedule_node_free(node); if (r == isl_bool_false) return node; } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node * for use in a preorder visit. * Since we already visited the node when we entered it, * we do not need to do anything here. */ static __isl_give isl_schedule_node *preorder_leave( __isl_take isl_schedule_node *node, void *user) { return node; } /* Traverse the descendants of "node" (including the node itself) * in depth first preorder. * * If "fn" returns -1 on any of the nodes, then the traversal is aborted. * If "fn" returns 0 on any of the nodes, then the subtree rooted * at that node is skipped. * * Return 0 on success and -1 on failure. */ isl_stat isl_schedule_node_foreach_descendant_top_down( __isl_keep isl_schedule_node *node, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user) { struct isl_schedule_node_preorder_data data = { fn, user }; node = isl_schedule_node_copy(node); node = traverse(node, &preorder_enter, &preorder_leave, &data); isl_schedule_node_free(node); return node ? isl_stat_ok : isl_stat_error; } /* Internal data structure for isl_schedule_node_map_descendant_bottom_up. * * "fn" is the user-specified callback function. * "user" is the user-specified argument for the callback. */ struct isl_schedule_node_postorder_data { __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node, void *user); void *user; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * for use in a postorder visit. * * Since we are performing a postorder visit, we only need * to move to the deepest initial leaf here. */ static __isl_give isl_schedule_node *postorder_enter( __isl_take isl_schedule_node *node, void *user) { while (node && isl_schedule_node_has_children(node)) node = isl_schedule_node_first_child(node); return node; } /* Callback for "traverse" to leave a node * for use in a postorder visit. * * Since we are performing a postorder visit, we need * to call the user callback here. */ static __isl_give isl_schedule_node *postorder_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_schedule_node_postorder_data *data = user; return data->fn(node, data->user); } /* Traverse the descendants of "node" (including the node itself) * in depth first postorder, allowing the user to modify the visited node. * The traversal continues from the node returned by the callback function. * It is the responsibility of the user to ensure that this does not * lead to an infinite loop. It is safest to always return a pointer * to the same position (same ancestors and child positions) as the input node. */ __isl_give isl_schedule_node *isl_schedule_node_map_descendant_bottom_up( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node, void *user), void *user) { struct isl_schedule_node_postorder_data data = { fn, user }; return traverse(node, &postorder_enter, &postorder_leave, &data); } /* Traverse the ancestors of "node" from the root down to and including * the parent of "node", calling "fn" on each of them. * * If "fn" returns -1 on any of the nodes, then the traversal is aborted. * * Return 0 on success and -1 on failure. */ isl_stat isl_schedule_node_foreach_ancestor_top_down( __isl_keep isl_schedule_node *node, isl_stat (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user) { int i, n; if (!node) return isl_stat_error; n = isl_schedule_node_get_tree_depth(node); for (i = 0; i < n; ++i) { isl_schedule_node *ancestor; isl_stat r; ancestor = isl_schedule_node_copy(node); ancestor = isl_schedule_node_ancestor(ancestor, n - i); r = fn(ancestor, user); isl_schedule_node_free(ancestor); if (r < 0) return isl_stat_error; } return isl_stat_ok; } /* Is any node in the subtree rooted at "node" anchored? * That is, do any of these nodes reference the outer band nodes? */ isl_bool isl_schedule_node_is_subtree_anchored( __isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return isl_schedule_tree_is_subtree_anchored(node->tree); } /* Return the number of members in the given band node. */ unsigned isl_schedule_node_band_n_member(__isl_keep isl_schedule_node *node) { return node ? isl_schedule_tree_band_n_member(node->tree) : 0; } /* Is the band member at position "pos" of the band node "node" * marked coincident? */ isl_bool isl_schedule_node_band_member_get_coincident( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_bool_error; return isl_schedule_tree_band_member_get_coincident(node->tree, pos); } /* Mark the band member at position "pos" the band node "node" * as being coincident or not according to "coincident". */ __isl_give isl_schedule_node *isl_schedule_node_band_member_set_coincident( __isl_take isl_schedule_node *node, int pos, int coincident) { int c; isl_schedule_tree *tree; if (!node) return NULL; c = isl_schedule_node_band_member_get_coincident(node, pos); if (c == coincident) return node; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_coincident(tree, pos, coincident); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Is the band node "node" marked permutable? */ isl_bool isl_schedule_node_band_get_permutable( __isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return isl_schedule_tree_band_get_permutable(node->tree); } /* Mark the band node "node" permutable or not according to "permutable"? */ __isl_give isl_schedule_node *isl_schedule_node_band_set_permutable( __isl_take isl_schedule_node *node, int permutable) { isl_schedule_tree *tree; if (!node) return NULL; if (isl_schedule_node_band_get_permutable(node) == permutable) return node; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_set_permutable(tree, permutable); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Return the schedule space of the band node. */ __isl_give isl_space *isl_schedule_node_band_get_space( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_space(node->tree); } /* Return the schedule of the band node in isolation. */ __isl_give isl_multi_union_pw_aff *isl_schedule_node_band_get_partial_schedule( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_partial_schedule(node->tree); } /* Return the schedule of the band node in isolation in the form of * an isl_union_map. * * If the band does not have any members, then we construct a universe map * with the universe of the domain elements reaching the node as domain. * Otherwise, we extract an isl_multi_union_pw_aff representation and * convert that to an isl_union_map. */ __isl_give isl_union_map *isl_schedule_node_band_get_partial_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_multi_union_pw_aff *mupa; if (!node) return NULL; if (isl_schedule_node_get_type(node) != isl_schedule_node_band) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a band node", return NULL); if (isl_schedule_node_band_n_member(node) == 0) { isl_union_set *domain; domain = isl_schedule_node_get_universe_domain(node); return isl_union_map_from_domain(domain); } mupa = isl_schedule_node_band_get_partial_schedule(node); return isl_union_map_from_multi_union_pw_aff(mupa); } /* Return the loop AST generation type for the band member of band node "node" * at position "pos". */ enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_ast_loop_error; return isl_schedule_tree_band_member_get_ast_loop_type(node->tree, pos); } /* Set the loop AST generation type for the band member of band node "node" * at position "pos" to "type". */ __isl_give isl_schedule_node *isl_schedule_node_band_member_set_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type) { isl_schedule_tree *tree; if (!node) return NULL; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_ast_loop_type(tree, pos, type); return isl_schedule_node_graft_tree(node, tree); } /* Return the loop AST generation type for the band member of band node "node" * at position "pos" for the isolated part. */ enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_ast_loop_error; return isl_schedule_tree_band_member_get_isolate_ast_loop_type( node->tree, pos); } /* Set the loop AST generation type for the band member of band node "node" * at position "pos" for the isolated part to "type". */ __isl_give isl_schedule_node * isl_schedule_node_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type) { isl_schedule_tree *tree; if (!node) return NULL; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_isolate_ast_loop_type(tree, pos, type); return isl_schedule_node_graft_tree(node, tree); } /* Return the AST build options associated to band node "node". */ __isl_give isl_union_set *isl_schedule_node_band_get_ast_build_options( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_ast_build_options(node->tree); } /* Replace the AST build options associated to band node "node" by "options". */ __isl_give isl_schedule_node *isl_schedule_node_band_set_ast_build_options( __isl_take isl_schedule_node *node, __isl_take isl_union_set *options) { isl_schedule_tree *tree; if (!node || !options) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_set_ast_build_options(tree, options); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_set_free(options); return NULL; } /* Return the "isolate" option associated to band node "node". */ __isl_give isl_set *isl_schedule_node_band_get_ast_isolate_option( __isl_keep isl_schedule_node *node) { int depth; if (!node) return NULL; depth = isl_schedule_node_get_schedule_depth(node); return isl_schedule_tree_band_get_ast_isolate_option(node->tree, depth); } /* Make sure that that spaces of "node" and "mv" are the same. * Return -1 on error, reporting the error to the user. */ static int check_space_multi_val(__isl_keep isl_schedule_node *node, __isl_keep isl_multi_val *mv) { isl_space *node_space, *mv_space; int equal; node_space = isl_schedule_node_band_get_space(node); mv_space = isl_multi_val_get_space(mv); equal = isl_space_tuple_is_equal(node_space, isl_dim_set, mv_space, isl_dim_set); isl_space_free(mv_space); isl_space_free(node_space); if (equal < 0) return -1; if (!equal) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "spaces don't match", return -1); return 0; } /* Multiply the partial schedule of the band node "node" * with the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_scale( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; int anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot scale band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_scale(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Divide the partial schedule of the band node "node" * by the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_scale_down( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; int anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot scale down band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_scale_down(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Reduce the partial schedule of the band node "node" * modulo the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_mod( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; isl_bool anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot perform mod on band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_mod(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Make sure that that spaces of "node" and "mupa" are the same. * Return isl_stat_error on error, reporting the error to the user. */ static isl_stat check_space_multi_union_pw_aff( __isl_keep isl_schedule_node *node, __isl_keep isl_multi_union_pw_aff *mupa) { isl_space *node_space, *mupa_space; isl_bool equal; node_space = isl_schedule_node_band_get_space(node); mupa_space = isl_multi_union_pw_aff_get_space(mupa); equal = isl_space_tuple_is_equal(node_space, isl_dim_set, mupa_space, isl_dim_set); isl_space_free(mupa_space); isl_space_free(node_space); if (equal < 0) return isl_stat_error; if (!equal) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "spaces don't match", return isl_stat_error); return isl_stat_ok; } /* Shift the partial schedule of the band node "node" by "shift". */ __isl_give isl_schedule_node *isl_schedule_node_band_shift( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *shift) { isl_schedule_tree *tree; int anchored; if (!node || !shift) goto error; if (check_space_multi_union_pw_aff(node, shift) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot shift band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_shift(tree, shift); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_union_pw_aff_free(shift); isl_schedule_node_free(node); return NULL; } /* Tile "node" with tile sizes "sizes". * * The current node is replaced by two nested nodes corresponding * to the tile dimensions and the point dimensions. * * Return a pointer to the outer (tile) node. * * If any of the descendants of "node" depend on the set of outer band nodes, * then we refuse to tile the node. * * If the scale tile loops option is set, then the tile loops * are scaled by the tile sizes. If the shift point loops option is set, * then the point loops are shifted to start at zero. * In particular, these options affect the tile and point loop schedules * as follows * * scale shift original tile point * * 0 0 i floor(i/s) i * 1 0 i s * floor(i/s) i * 0 1 i floor(i/s) i - s * floor(i/s) * 1 1 i s * floor(i/s) i - s * floor(i/s) */ __isl_give isl_schedule_node *isl_schedule_node_band_tile( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes) { isl_schedule_tree *tree; int anchored; if (!node || !sizes) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot tile band node with anchored subtree", goto error); if (check_space_multi_val(node, sizes) < 0) goto error; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_tile(tree, sizes); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(sizes); isl_schedule_node_free(node); return NULL; } /* Move the band node "node" down to all the leaves in the subtree * rooted at "node". * Return a pointer to the node in the resulting tree that is in the same * position as the node pointed to by "node" in the original tree. * * If the node only has a leaf child, then nothing needs to be done. * Otherwise, the child of the node is removed and the result is * appended to all the leaves in the subtree rooted at the original child. * Since the node is moved to the leaves, it needs to be expanded * according to the expansion, if any, defined by that subtree. * In the end, the original node is replaced by the result of * attaching copies of the expanded node to the leaves. * * If any of the nodes in the subtree rooted at "node" depend on * the set of outer band nodes then we refuse to sink the band node. */ __isl_give isl_schedule_node *isl_schedule_node_band_sink( __isl_take isl_schedule_node *node) { enum isl_schedule_node_type type; isl_schedule_tree *tree, *child; isl_union_pw_multi_aff *contraction; int anchored; if (!node) return NULL; type = isl_schedule_node_get_type(node); if (type != isl_schedule_node_band) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a band node", isl_schedule_node_free(node)); anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot sink band node in anchored subtree", isl_schedule_node_free(node)); if (isl_schedule_tree_n_children(node->tree) == 0) return node; contraction = isl_schedule_node_get_subtree_contraction(node); tree = isl_schedule_node_get_tree(node); child = isl_schedule_tree_get_child(tree, 0); tree = isl_schedule_tree_reset_children(tree); tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, contraction); tree = isl_schedule_tree_append_to_leaves(child, tree); return isl_schedule_node_graft_tree(node, tree); } /* Split "node" into two nested band nodes, one with the first "pos" * dimensions and one with the remaining dimensions. * The schedules of the two band nodes live in anonymous spaces. * The loop AST generation type options and the isolate option * are split over the the two band nodes. */ __isl_give isl_schedule_node *isl_schedule_node_band_split( __isl_take isl_schedule_node *node, int pos) { int depth; isl_schedule_tree *tree; depth = isl_schedule_node_get_schedule_depth(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_split(tree, pos, depth); return isl_schedule_node_graft_tree(node, tree); } /* Return the context of the context node "node". */ __isl_give isl_set *isl_schedule_node_context_get_context( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_context_get_context(node->tree); } /* Return the domain of the domain node "node". */ __isl_give isl_union_set *isl_schedule_node_domain_get_domain( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_domain_get_domain(node->tree); } /* Return the expansion map of expansion node "node". */ __isl_give isl_union_map *isl_schedule_node_expansion_get_expansion( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_expansion_get_expansion(node->tree); } /* Return the contraction of expansion node "node". */ __isl_give isl_union_pw_multi_aff *isl_schedule_node_expansion_get_contraction( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_expansion_get_contraction(node->tree); } /* Replace the contraction and the expansion of the expansion node "node" * by "contraction" and "expansion". */ __isl_give isl_schedule_node * isl_schedule_node_expansion_set_contraction_and_expansion( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_schedule_tree *tree; if (!node || !contraction || !expansion) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree, contraction, expansion); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_pw_multi_aff_free(contraction); isl_union_map_free(expansion); return NULL; } /* Return the extension of the extension node "node". */ __isl_give isl_union_map *isl_schedule_node_extension_get_extension( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_extension_get_extension(node->tree); } /* Replace the extension of extension node "node" by "extension". */ __isl_give isl_schedule_node *isl_schedule_node_extension_set_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { isl_schedule_tree *tree; if (!node || !extension) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_extension_set_extension(tree, extension); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_map_free(extension); return NULL; } /* Return the filter of the filter node "node". */ __isl_give isl_union_set *isl_schedule_node_filter_get_filter( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_filter_get_filter(node->tree); } /* Replace the filter of filter node "node" by "filter". */ __isl_give isl_schedule_node *isl_schedule_node_filter_set_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_schedule_tree *tree; if (!node || !filter) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_filter_set_filter(tree, filter); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_set_free(filter); return NULL; } /* Intersect the filter of filter node "node" with "filter". * * If the filter of the node is already a subset of "filter", * then leave the node unchanged. */ __isl_give isl_schedule_node *isl_schedule_node_filter_intersect_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_union_set *node_filter = NULL; isl_bool subset; if (!node || !filter) goto error; node_filter = isl_schedule_node_filter_get_filter(node); subset = isl_union_set_is_subset(node_filter, filter); if (subset < 0) goto error; if (subset) { isl_union_set_free(node_filter); isl_union_set_free(filter); return node; } node_filter = isl_union_set_intersect(node_filter, filter); node = isl_schedule_node_filter_set_filter(node, node_filter); return node; error: isl_schedule_node_free(node); isl_union_set_free(node_filter); isl_union_set_free(filter); return NULL; } /* Return the guard of the guard node "node". */ __isl_give isl_set *isl_schedule_node_guard_get_guard( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_guard_get_guard(node->tree); } /* Return the mark identifier of the mark node "node". */ __isl_give isl_id *isl_schedule_node_mark_get_id( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_mark_get_id(node->tree); } /* Replace the child at position "pos" of the sequence node "node" * by the children of sequence root node of "tree". */ __isl_give isl_schedule_node *isl_schedule_node_sequence_splice( __isl_take isl_schedule_node *node, int pos, __isl_take isl_schedule_tree *tree) { isl_schedule_tree *node_tree; if (!node || !tree) goto error; if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", goto error); if (isl_schedule_tree_get_type(tree) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", goto error); node_tree = isl_schedule_node_get_tree(node); node_tree = isl_schedule_tree_sequence_splice(node_tree, pos, tree); node = isl_schedule_node_graft_tree(node, node_tree); return node; error: isl_schedule_node_free(node); isl_schedule_tree_free(tree); return NULL; } /* Given a sequence node "node", with a child at position "pos" that * is also a sequence node, attach the children of that node directly * as children of "node" at that position, replacing the original child. * * The filters of these children are intersected with the filter * of the child at position "pos". */ __isl_give isl_schedule_node *isl_schedule_node_sequence_splice_child( __isl_take isl_schedule_node *node, int pos) { int i, n; isl_union_set *filter; isl_schedule_node *child; isl_schedule_tree *tree; if (!node) return NULL; if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", isl_schedule_node_free(node)); node = isl_schedule_node_child(node, pos); node = isl_schedule_node_child(node, 0); if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", isl_schedule_node_free(node)); child = isl_schedule_node_copy(node); node = isl_schedule_node_parent(node); filter = isl_schedule_node_filter_get_filter(node); n = isl_schedule_node_n_children(child); for (i = 0; i < n; ++i) { child = isl_schedule_node_child(child, i); child = isl_schedule_node_filter_intersect_filter(child, isl_union_set_copy(filter)); child = isl_schedule_node_parent(child); } isl_union_set_free(filter); tree = isl_schedule_node_get_tree(child); isl_schedule_node_free(child); node = isl_schedule_node_parent(node); node = isl_schedule_node_sequence_splice(node, pos, tree); return node; } /* Update the ancestors of "node" to point to the tree that "node" * now points to. * That is, replace the child in the original parent that corresponds * to the current tree position by node->tree and continue updating * the ancestors in the same way until the root is reached. * * If "fn" is not NULL, then it is called on each ancestor as we move up * the tree so that it can modify the ancestor before it is added * to the list of ancestors of the modified node. * The additional "pos" argument records the position * of the "tree" argument in the original schedule tree. * * If "node" originally points to a leaf of the schedule tree, then make sure * that in the end it points to a leaf in the updated schedule tree. */ static __isl_give isl_schedule_node *update_ancestors( __isl_take isl_schedule_node *node, __isl_give isl_schedule_tree *(*fn)(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, void *user), void *user) { int i, n; int is_leaf; isl_ctx *ctx; isl_schedule_tree *tree; isl_schedule_node *pos = NULL; if (fn) pos = isl_schedule_node_copy(node); node = isl_schedule_node_cow(node); if (!node) return isl_schedule_node_free(pos); ctx = isl_schedule_node_get_ctx(node); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); tree = isl_schedule_tree_copy(node->tree); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *parent; parent = isl_schedule_tree_list_get_schedule_tree( node->ancestors, i); parent = isl_schedule_tree_replace_child(parent, node->child_pos[i], tree); if (fn) { pos = isl_schedule_node_parent(pos); parent = fn(parent, pos, user); } node->ancestors = isl_schedule_tree_list_set_schedule_tree( node->ancestors, i, isl_schedule_tree_copy(parent)); tree = parent; } if (fn) isl_schedule_node_free(pos); is_leaf = isl_schedule_tree_is_leaf(node->tree); node->schedule = isl_schedule_set_root(node->schedule, tree); if (is_leaf) { isl_schedule_tree_free(node->tree); node->tree = isl_schedule_node_get_leaf(node); } if (!node->schedule || !node->ancestors) return isl_schedule_node_free(node); return node; } /* Replace the subtree that "pos" points to by "tree", updating * the ancestors to maintain a consistent state. */ __isl_give isl_schedule_node *isl_schedule_node_graft_tree( __isl_take isl_schedule_node *pos, __isl_take isl_schedule_tree *tree) { if (!tree || !pos) goto error; if (pos->tree == tree) { isl_schedule_tree_free(tree); return pos; } pos = isl_schedule_node_cow(pos); if (!pos) goto error; isl_schedule_tree_free(pos->tree); pos->tree = tree; return update_ancestors(pos, NULL, NULL); error: isl_schedule_node_free(pos); isl_schedule_tree_free(tree); return NULL; } /* Make sure we can insert a node between "node" and its parent. * Return -1 on error, reporting the reason why we cannot insert a node. */ static int check_insert(__isl_keep isl_schedule_node *node) { int has_parent; enum isl_schedule_node_type type; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return -1; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert node outside of root", return -1); type = isl_schedule_node_get_parent_type(node); if (type == isl_schedule_node_error) return -1; if (type == isl_schedule_node_set || type == isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert node between set or sequence node " "and its filter children", return -1); return 0; } /* Insert a band node with partial schedule "mupa" between "node" and * its parent. * Return a pointer to the new band node. * * If any of the nodes in the subtree rooted at "node" depend on * the set of outer band nodes then we refuse to insert the band node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_partial_schedule( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *mupa) { int anchored; isl_schedule_band *band; isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert band node in anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); band = isl_schedule_band_from_multi_union_pw_aff(mupa); tree = isl_schedule_tree_insert_band(tree, band); node = isl_schedule_node_graft_tree(node, tree); return node; error: isl_schedule_node_free(node); isl_multi_union_pw_aff_free(mupa); return NULL; } /* Insert a context node with context "context" between "node" and its parent. * Return a pointer to the new context node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_context( __isl_take isl_schedule_node *node, __isl_take isl_set *context) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_context(tree, context); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert an expansion node with the given "contraction" and "expansion" * between "node" and its parent. * Return a pointer to the new expansion node. * * Typically the domain and range spaces of the expansion are different. * This means that only one of them can refer to the current domain space * in a consistent tree. It is up to the caller to ensure that the tree * returns to a consistent state. */ __isl_give isl_schedule_node *isl_schedule_node_insert_expansion( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert an extension node with extension "extension" between "node" and * its parent. * Return a pointer to the new extension node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_extension(tree, extension); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a filter node with filter "filter" between "node" and its parent. * Return a pointer to the new filter node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_filter(tree, filter); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a guard node with guard "guard" between "node" and its parent. * Return a pointer to the new guard node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_guard( __isl_take isl_schedule_node *node, __isl_take isl_set *guard) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_guard(tree, guard); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a mark node with mark identifier "mark" between "node" and * its parent. * Return a pointer to the new mark node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_mark( __isl_take isl_schedule_node *node, __isl_take isl_id *mark) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_mark(tree, mark); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Attach the current subtree of "node" to a sequence of filter tree nodes * with filters described by "filters", attach this sequence * of filter tree nodes as children to a new tree of type "type" and * replace the original subtree of "node" by this new tree. * Each copy of the original subtree is simplified with respect * to the corresponding filter. */ static __isl_give isl_schedule_node *isl_schedule_node_insert_children( __isl_take isl_schedule_node *node, enum isl_schedule_node_type type, __isl_take isl_union_set_list *filters) { int i, n; isl_ctx *ctx; isl_schedule_tree *tree; isl_schedule_tree_list *list; if (check_insert(node) < 0) node = isl_schedule_node_free(node); if (!node || !filters) goto error; ctx = isl_schedule_node_get_ctx(node); n = isl_union_set_list_n_union_set(filters); list = isl_schedule_tree_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_schedule_node *node_i; isl_schedule_tree *tree; isl_union_set *filter; filter = isl_union_set_list_get_union_set(filters, i); node_i = isl_schedule_node_copy(node); node_i = isl_schedule_node_gist(node_i, isl_union_set_copy(filter)); tree = isl_schedule_node_get_tree(node_i); isl_schedule_node_free(node_i); tree = isl_schedule_tree_insert_filter(tree, filter); list = isl_schedule_tree_list_add(list, tree); } tree = isl_schedule_tree_from_children(type, list); node = isl_schedule_node_graft_tree(node, tree); isl_union_set_list_free(filters); return node; error: isl_union_set_list_free(filters); isl_schedule_node_free(node); return NULL; } /* Insert a sequence node with child filters "filters" between "node" and * its parent. That is, the tree that "node" points to is attached * to each of the child nodes of the filter nodes. * Return a pointer to the new sequence node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_sequence( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters) { return isl_schedule_node_insert_children(node, isl_schedule_node_sequence, filters); } /* Insert a set node with child filters "filters" between "node" and * its parent. That is, the tree that "node" points to is attached * to each of the child nodes of the filter nodes. * Return a pointer to the new set node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_set( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters) { return isl_schedule_node_insert_children(node, isl_schedule_node_set, filters); } /* Remove "node" from its schedule tree and return a pointer * to the leaf at the same position in the updated schedule tree. * * It is not allowed to remove the root of a schedule tree or * a child of a set or sequence node. */ __isl_give isl_schedule_node *isl_schedule_node_cut( __isl_take isl_schedule_node *node) { isl_schedule_tree *leaf; enum isl_schedule_node_type parent_type; if (!node) return NULL; if (!isl_schedule_node_has_parent(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot cut root", return isl_schedule_node_free(node)); parent_type = isl_schedule_node_get_parent_type(node); if (parent_type == isl_schedule_node_set || parent_type == isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot cut child of set or sequence", return isl_schedule_node_free(node)); leaf = isl_schedule_node_get_leaf(node); return isl_schedule_node_graft_tree(node, leaf); } /* Remove a single node from the schedule tree, attaching the child * of "node" directly to its parent. * Return a pointer to this former child or to the leaf the position * of the original node if there was no child. * It is not allowed to remove the root of a schedule tree, * a set or sequence node, a child of a set or sequence node or * a band node with an anchored subtree. */ __isl_give isl_schedule_node *isl_schedule_node_delete( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *tree; enum isl_schedule_node_type type; if (!node) return NULL; if (isl_schedule_node_get_tree_depth(node) == 0) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete root node", return isl_schedule_node_free(node)); n = isl_schedule_node_n_children(node); if (n != 1) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "can only delete node with a single child", return isl_schedule_node_free(node)); type = isl_schedule_node_get_parent_type(node); if (type == isl_schedule_node_sequence || type == isl_schedule_node_set) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete child of set or sequence", return isl_schedule_node_free(node)); if (isl_schedule_node_get_type(node) == isl_schedule_node_band) { int anchored; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete band node with anchored subtree", return isl_schedule_node_free(node)); } tree = isl_schedule_node_get_tree(node); if (!tree || isl_schedule_tree_has_children(tree)) { tree = isl_schedule_tree_child(tree, 0); } else { isl_schedule_tree_free(tree); tree = isl_schedule_node_get_leaf(node); } node = isl_schedule_node_graft_tree(node, tree); return node; } /* Internal data structure for the group_ancestor callback. * * If "finished" is set, then we no longer need to modify * any further ancestors. * * "contraction" and "expansion" represent the expansion * that reflects the grouping. * * "domain" contains the domain elements that reach the position * where the grouping is performed. That is, it is the range * of the resulting expansion. * "domain_universe" is the universe of "domain". * "group" is the set of group elements, i.e., the domain * of the resulting expansion. * "group_universe" is the universe of "group". * * "sched" is the schedule for the group elements, in pratice * an identity mapping on "group_universe". * "dim" is the dimension of "sched". */ struct isl_schedule_group_data { int finished; isl_union_map *expansion; isl_union_pw_multi_aff *contraction; isl_union_set *domain; isl_union_set *domain_universe; isl_union_set *group; isl_union_set *group_universe; int dim; isl_multi_aff *sched; }; /* Is domain covered by data->domain within data->domain_universe? */ static int locally_covered_by_domain(__isl_keep isl_union_set *domain, struct isl_schedule_group_data *data) { int is_subset; isl_union_set *test; test = isl_union_set_copy(domain); test = isl_union_set_intersect(test, isl_union_set_copy(data->domain_universe)); is_subset = isl_union_set_is_subset(test, data->domain); isl_union_set_free(test); return is_subset; } /* Update the band tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * Add the part of the identity schedule on the group instances data->sched * that corresponds to this band node to the band schedule. * If the domain elements that reach the node and that are part * of data->domain_universe are all elements of data->domain (and therefore * replaced by the group instances) then this data->domain_universe * is removed from the domain of the band schedule. */ static __isl_give isl_schedule_tree *group_band( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; isl_multi_aff *ma; isl_multi_union_pw_aff *mupa, *partial; int is_covered; int depth, n, has_id; domain = isl_schedule_node_get_domain(pos); is_covered = locally_covered_by_domain(domain, data); if (is_covered >= 0 && is_covered) { domain = isl_union_set_universe(domain); domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain_universe)); tree = isl_schedule_tree_band_intersect_domain(tree, domain); } else isl_union_set_free(domain); if (is_covered < 0) return isl_schedule_tree_free(tree); depth = isl_schedule_node_get_schedule_depth(pos); n = isl_schedule_tree_band_n_member(tree); ma = isl_multi_aff_copy(data->sched); ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, depth); ma = isl_multi_aff_drop_dims(ma, isl_dim_out, n, data->dim - depth - n); mupa = isl_multi_union_pw_aff_from_multi_aff(ma); partial = isl_schedule_tree_band_get_partial_schedule(tree); has_id = isl_multi_union_pw_aff_has_tuple_id(partial, isl_dim_set); if (has_id < 0) { partial = isl_multi_union_pw_aff_free(partial); } else if (has_id) { isl_id *id; id = isl_multi_union_pw_aff_get_tuple_id(partial, isl_dim_set); mupa = isl_multi_union_pw_aff_set_tuple_id(mupa, isl_dim_set, id); } partial = isl_multi_union_pw_aff_union_add(partial, mupa); tree = isl_schedule_tree_band_set_partial_schedule(tree, partial); return tree; } /* Drop the parameters in "uset" that are not also in "space". * "n" is the number of parameters in "space". */ static __isl_give isl_union_set *union_set_drop_extra_params( __isl_take isl_union_set *uset, __isl_keep isl_space *space, int n) { int n2; uset = isl_union_set_align_params(uset, isl_space_copy(space)); n2 = isl_union_set_dim(uset, isl_dim_param); uset = isl_union_set_project_out(uset, isl_dim_param, n, n2 - n); return uset; } /* Update the context tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * We do not actually need to update "tree" since a context node only * refers to the schedule space. However, we may need to update "data" * to not refer to any parameters introduced by the context node. */ static __isl_give isl_schedule_tree *group_context( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_space *space; isl_union_set *domain; int n1, n2; int involves; if (isl_schedule_node_get_tree_depth(pos) == 1) return tree; domain = isl_schedule_node_get_universe_domain(pos); space = isl_union_set_get_space(domain); isl_union_set_free(domain); n1 = isl_space_dim(space, isl_dim_param); data->expansion = isl_union_map_align_params(data->expansion, space); n2 = isl_union_map_dim(data->expansion, isl_dim_param); if (!data->expansion) return isl_schedule_tree_free(tree); if (n1 == n2) return tree; involves = isl_union_map_involves_dims(data->expansion, isl_dim_param, n1, n2 - n1); if (involves < 0) return isl_schedule_tree_free(tree); if (involves) isl_die(isl_schedule_node_get_ctx(pos), isl_error_invalid, "grouping cannot only refer to global parameters", return isl_schedule_tree_free(tree)); data->expansion = isl_union_map_project_out(data->expansion, isl_dim_param, n1, n2 - n1); space = isl_union_map_get_space(data->expansion); data->contraction = isl_union_pw_multi_aff_align_params( data->contraction, isl_space_copy(space)); n2 = isl_union_pw_multi_aff_dim(data->contraction, isl_dim_param); data->contraction = isl_union_pw_multi_aff_drop_dims(data->contraction, isl_dim_param, n1, n2 - n1); data->domain = union_set_drop_extra_params(data->domain, space, n1); data->domain_universe = union_set_drop_extra_params(data->domain_universe, space, n1); data->group = union_set_drop_extra_params(data->group, space, n1); data->group_universe = union_set_drop_extra_params(data->group_universe, space, n1); data->sched = isl_multi_aff_align_params(data->sched, isl_space_copy(space)); n2 = isl_multi_aff_dim(data->sched, isl_dim_param); data->sched = isl_multi_aff_drop_dims(data->sched, isl_dim_param, n1, n2 - n1); isl_space_free(space); return tree; } /* Update the domain tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * We first double-check that all grouped domain elements are actually * part of the root domain and then replace those elements by the group * instances. */ static __isl_give isl_schedule_tree *group_domain( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; int is_subset; domain = isl_schedule_tree_domain_get_domain(tree); is_subset = isl_union_set_is_subset(data->domain, domain); isl_union_set_free(domain); if (is_subset < 0) return isl_schedule_tree_free(tree); if (!is_subset) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "grouped domain should be part of outer domain", return isl_schedule_tree_free(tree)); domain = isl_schedule_tree_domain_get_domain(tree); domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain)); domain = isl_union_set_union(domain, isl_union_set_copy(data->group)); tree = isl_schedule_tree_domain_set_domain(tree, domain); return tree; } /* Update the expansion tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * Let G_1 -> D_1 be the expansion of "tree" and G_2 -> D_2 the newly * introduced expansion in a descendant of "tree". * We first double-check that D_2 is a subset of D_1. * Then we remove D_2 from the range of G_1 -> D_1 and add the mapping * G_1 -> D_1 . D_2 -> G_2. * Simmilarly, we restrict the domain of the contraction to the universe * of the range of the updated expansion and add G_2 -> D_2 . D_1 -> G_1, * attempting to remove the domain constraints of this additional part. */ static __isl_give isl_schedule_tree *group_expansion( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; isl_union_map *expansion, *umap; isl_union_pw_multi_aff *contraction, *upma; int is_subset; expansion = isl_schedule_tree_expansion_get_expansion(tree); domain = isl_union_map_range(expansion); is_subset = isl_union_set_is_subset(data->domain, domain); isl_union_set_free(domain); if (is_subset < 0) return isl_schedule_tree_free(tree); if (!is_subset) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "grouped domain should be part " "of outer expansion domain", return isl_schedule_tree_free(tree)); expansion = isl_schedule_tree_expansion_get_expansion(tree); umap = isl_union_map_from_union_pw_multi_aff( isl_union_pw_multi_aff_copy(data->contraction)); umap = isl_union_map_apply_range(expansion, umap); expansion = isl_schedule_tree_expansion_get_expansion(tree); expansion = isl_union_map_subtract_range(expansion, isl_union_set_copy(data->domain)); expansion = isl_union_map_union(expansion, umap); umap = isl_union_map_universe(isl_union_map_copy(expansion)); domain = isl_union_map_range(umap); contraction = isl_schedule_tree_expansion_get_contraction(tree); umap = isl_union_map_from_union_pw_multi_aff(contraction); umap = isl_union_map_apply_range(isl_union_map_copy(data->expansion), umap); upma = isl_union_pw_multi_aff_from_union_map(umap); contraction = isl_schedule_tree_expansion_get_contraction(tree); contraction = isl_union_pw_multi_aff_intersect_domain(contraction, domain); domain = isl_union_pw_multi_aff_domain( isl_union_pw_multi_aff_copy(upma)); upma = isl_union_pw_multi_aff_gist(upma, domain); contraction = isl_union_pw_multi_aff_union_add(contraction, upma); tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree, contraction, expansion); return tree; } /* Update the tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * If we have come across a domain or expansion node before (data->finished * is set), then we no longer need perform any modifications. * * If "tree" is a filter, then we add data->group_universe to the filter. * We also remove data->domain_universe from the filter if all the domain * elements in this universe that reach the filter node are part of * the elements that are being grouped by data->expansion. * If "tree" is a band, domain or expansion, then it is handled * in a separate function. */ static __isl_give isl_schedule_tree *group_ancestor( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, void *user) { struct isl_schedule_group_data *data = user; isl_union_set *domain; int is_covered; if (!tree || !pos) return isl_schedule_tree_free(tree); if (data->finished) return tree; switch (isl_schedule_tree_get_type(tree)) { case isl_schedule_node_error: return isl_schedule_tree_free(tree); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_unsupported, "grouping not allowed in extended tree", return isl_schedule_tree_free(tree)); case isl_schedule_node_band: tree = group_band(tree, pos, data); break; case isl_schedule_node_context: tree = group_context(tree, pos, data); break; case isl_schedule_node_domain: tree = group_domain(tree, pos, data); data->finished = 1; break; case isl_schedule_node_filter: domain = isl_schedule_node_get_domain(pos); is_covered = locally_covered_by_domain(domain, data); isl_union_set_free(domain); if (is_covered < 0) return isl_schedule_tree_free(tree); domain = isl_schedule_tree_filter_get_filter(tree); if (is_covered) domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain_universe)); domain = isl_union_set_union(domain, isl_union_set_copy(data->group_universe)); tree = isl_schedule_tree_filter_set_filter(tree, domain); break; case isl_schedule_node_expansion: tree = group_expansion(tree, pos, data); data->finished = 1; break; case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return tree; } /* Group the domain elements that reach "node" into instances * of a single statement with identifier "group_id". * In particular, group the domain elements according to their * prefix schedule. * * That is, introduce an expansion node with as contraction * the prefix schedule (with the target space replaced by "group_id") * and as expansion the inverse of this contraction (with its range * intersected with the domain elements that reach "node"). * The outer nodes are then modified to refer to the group instances * instead of the original domain elements. * * No instance of "group_id" is allowed to reach "node" prior * to the grouping. * No ancestor of "node" is allowed to be an extension node. * * Return a pointer to original node in tree, i.e., the child * of the newly introduced expansion node. */ __isl_give isl_schedule_node *isl_schedule_node_group( __isl_take isl_schedule_node *node, __isl_take isl_id *group_id) { struct isl_schedule_group_data data = { 0 }; isl_space *space; isl_union_set *domain; isl_union_pw_multi_aff *contraction; isl_union_map *expansion; int disjoint; if (!node || !group_id) goto error; if (check_insert(node) < 0) goto error; domain = isl_schedule_node_get_domain(node); data.domain = isl_union_set_copy(domain); data.domain_universe = isl_union_set_copy(domain); data.domain_universe = isl_union_set_universe(data.domain_universe); data.dim = isl_schedule_node_get_schedule_depth(node); if (data.dim == 0) { isl_ctx *ctx; isl_set *set; isl_union_set *group; isl_union_map *univ; ctx = isl_schedule_node_get_ctx(node); space = isl_space_set_alloc(ctx, 0, 0); space = isl_space_set_tuple_id(space, isl_dim_set, group_id); set = isl_set_universe(isl_space_copy(space)); group = isl_union_set_from_set(set); expansion = isl_union_map_from_domain_and_range(domain, group); univ = isl_union_map_universe(isl_union_map_copy(expansion)); contraction = isl_union_pw_multi_aff_from_union_map(univ); expansion = isl_union_map_reverse(expansion); } else { isl_multi_union_pw_aff *prefix; isl_union_set *univ; prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node); prefix = isl_multi_union_pw_aff_set_tuple_id(prefix, isl_dim_set, group_id); space = isl_multi_union_pw_aff_get_space(prefix); contraction = isl_union_pw_multi_aff_from_multi_union_pw_aff( prefix); univ = isl_union_set_universe(isl_union_set_copy(domain)); contraction = isl_union_pw_multi_aff_intersect_domain(contraction, univ); expansion = isl_union_map_from_union_pw_multi_aff( isl_union_pw_multi_aff_copy(contraction)); expansion = isl_union_map_reverse(expansion); expansion = isl_union_map_intersect_range(expansion, domain); } space = isl_space_map_from_set(space); data.sched = isl_multi_aff_identity(space); data.group = isl_union_map_domain(isl_union_map_copy(expansion)); data.group = isl_union_set_coalesce(data.group); data.group_universe = isl_union_set_copy(data.group); data.group_universe = isl_union_set_universe(data.group_universe); data.expansion = isl_union_map_copy(expansion); data.contraction = isl_union_pw_multi_aff_copy(contraction); node = isl_schedule_node_insert_expansion(node, contraction, expansion); disjoint = isl_union_set_is_disjoint(data.domain_universe, data.group_universe); node = update_ancestors(node, &group_ancestor, &data); isl_union_set_free(data.domain); isl_union_set_free(data.domain_universe); isl_union_set_free(data.group); isl_union_set_free(data.group_universe); isl_multi_aff_free(data.sched); isl_union_map_free(data.expansion); isl_union_pw_multi_aff_free(data.contraction); node = isl_schedule_node_child(node, 0); if (!node || disjoint < 0) return isl_schedule_node_free(node); if (!disjoint) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "group instances already reach node", isl_schedule_node_free(node)); return node; error: isl_schedule_node_free(node); isl_id_free(group_id); return NULL; } /* Compute the gist of the given band node with respect to "context". */ __isl_give isl_schedule_node *isl_schedule_node_band_gist( __isl_take isl_schedule_node *node, __isl_take isl_union_set *context) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_gist(tree, context); return isl_schedule_node_graft_tree(node, tree); } /* Internal data structure for isl_schedule_node_gist. * "n_expansion" is the number of outer expansion nodes * with respect to the current position * "filters" contains an element for each outer filter, expansion or * extension node with respect to the current position, each representing * the intersection of the previous element and the filter on the filter node * or the expansion/extension of the previous element. * The first element in the original context passed to isl_schedule_node_gist. */ struct isl_node_gist_data { int n_expansion; isl_union_set_list *filters; }; /* Enter the expansion node "node" during a isl_schedule_node_gist traversal. * * In particular, add an extra element to data->filters containing * the expansion of the previous element and replace the expansion * and contraction on "node" by the gist with respect to these filters. * Also keep track of the fact that we have entered another expansion. */ static __isl_give isl_schedule_node *gist_enter_expansion( __isl_take isl_schedule_node *node, struct isl_node_gist_data *data) { int n; isl_union_set *inner; isl_union_map *expansion; isl_union_pw_multi_aff *contraction; data->n_expansion++; n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); expansion = isl_schedule_node_expansion_get_expansion(node); inner = isl_union_set_apply(inner, expansion); contraction = isl_schedule_node_expansion_get_contraction(node); contraction = isl_union_pw_multi_aff_gist(contraction, isl_union_set_copy(inner)); data->filters = isl_union_set_list_add(data->filters, inner); inner = isl_union_set_list_get_union_set(data->filters, n - 1); expansion = isl_schedule_node_expansion_get_expansion(node); expansion = isl_union_map_gist_domain(expansion, inner); node = isl_schedule_node_expansion_set_contraction_and_expansion(node, contraction, expansion); return node; } /* Leave the expansion node "node" during a isl_schedule_node_gist traversal. * * In particular, remove the element in data->filters that was added by * gist_enter_expansion and decrement the number of outer expansions. * * The expansion has already been simplified in gist_enter_expansion. * If this simplification results in an identity expansion, then * it is removed here. */ static __isl_give isl_schedule_node *gist_leave_expansion( __isl_take isl_schedule_node *node, struct isl_node_gist_data *data) { int n; isl_bool identity; isl_union_map *expansion; expansion = isl_schedule_node_expansion_get_expansion(node); identity = isl_union_map_is_identity(expansion); isl_union_map_free(expansion); if (identity < 0) node = isl_schedule_node_free(node); else if (identity) node = isl_schedule_node_delete(node); n = isl_union_set_list_n_union_set(data->filters); data->filters = isl_union_set_list_drop(data->filters, n - 1, 1); data->n_expansion--; return node; } /* Enter the extension node "node" during a isl_schedule_node_gist traversal. * * In particular, add an extra element to data->filters containing * the union of the previous element with the additional domain elements * introduced by the extension. */ static __isl_give isl_schedule_node *gist_enter_extension( __isl_take isl_schedule_node *node, struct isl_node_gist_data *data) { int n; isl_union_set *inner, *extra; isl_union_map *extension; n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); extension = isl_schedule_node_extension_get_extension(node); extra = isl_union_map_range(extension); inner = isl_union_set_union(inner, extra); data->filters = isl_union_set_list_add(data->filters, inner); return node; } /* Can we finish gisting at this node? * That is, is the filter on the current filter node a subset of * the original context passed to isl_schedule_node_gist? * If we have gone through any expansions, then we cannot perform * this test since the current domain elements are incomparable * to the domain elements in the original context. */ static int gist_done(__isl_keep isl_schedule_node *node, struct isl_node_gist_data *data) { isl_union_set *filter, *outer; int subset; if (data->n_expansion != 0) return 0; filter = isl_schedule_node_filter_get_filter(node); outer = isl_union_set_list_get_union_set(data->filters, 0); subset = isl_union_set_is_subset(filter, outer); isl_union_set_free(outer); isl_union_set_free(filter); return subset; } /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_gist. * * The "filters" list is extended by one element each time * we come across a filter node by the result of intersecting * the last element in the list with the filter on the filter node. * * If the filter on the current filter node is a subset of * the original context passed to isl_schedule_node_gist, * then there is no need to go into its subtree since it cannot * be further simplified by the context. The "filters" list is * still extended for consistency, but the actual value of the * added element is immaterial since it will not be used. * * Otherwise, the filter on the current filter node is replaced by * the gist of the original filter with respect to the intersection * of the original context with the intermediate filters. * * If the new element in the "filters" list is empty, then no elements * can reach the descendants of the current filter node. The subtree * underneath the filter node is therefore removed. * * Each expansion node we come across is handled by * gist_enter_expansion. * * Each extension node we come across is handled by * gist_enter_extension. */ static __isl_give isl_schedule_node *gist_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_node_gist_data *data = user; do { isl_union_set *filter, *inner; int done, empty; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_expansion: node = gist_enter_expansion(node, data); continue; case isl_schedule_node_extension: node = gist_enter_extension(node, data); continue; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: continue; case isl_schedule_node_filter: break; } done = gist_done(node, data); filter = isl_schedule_node_filter_get_filter(node); if (done < 0 || done) { data->filters = isl_union_set_list_add(data->filters, filter); if (done < 0) return isl_schedule_node_free(node); return node; } n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); filter = isl_union_set_gist(filter, isl_union_set_copy(inner)); node = isl_schedule_node_filter_set_filter(node, isl_union_set_copy(filter)); filter = isl_union_set_intersect(filter, inner); empty = isl_union_set_is_empty(filter); data->filters = isl_union_set_list_add(data->filters, filter); if (empty < 0) return isl_schedule_node_free(node); if (!empty) continue; node = isl_schedule_node_child(node, 0); node = isl_schedule_node_cut(node); node = isl_schedule_node_parent(node); return node; } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for isl_schedule_node_gist. * * In particular, if the current node is a filter node, then we remove * the element on the "filters" list that was added when we entered * the node. There is no need to compute any gist here, since we * already did that when we entered the node. * * Expansion nodes are handled by gist_leave_expansion. * * If the current node is an extension, then remove the element * in data->filters that was added by gist_enter_extension. * * If the current node is a band node, then we compute the gist of * the band node with respect to the intersection of the original context * and the intermediate filters. * * If the current node is a sequence or set node, then some of * the filter children may have become empty and so they are removed. * If only one child is left, then the set or sequence node along with * the single remaining child filter is removed. The filter can be * removed because the filters on a sequence or set node are supposed * to partition the incoming domain instances. * In principle, it should then be impossible for there to be zero * remaining children, but should this happen, we replace the entire * subtree with an empty filter. */ static __isl_give isl_schedule_node *gist_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_node_gist_data *data = user; isl_schedule_tree *tree; int i, n; isl_union_set *filter; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_expansion: node = gist_leave_expansion(node, data); break; case isl_schedule_node_extension: case isl_schedule_node_filter: n = isl_union_set_list_n_union_set(data->filters); data->filters = isl_union_set_list_drop(data->filters, n - 1, 1); break; case isl_schedule_node_band: n = isl_union_set_list_n_union_set(data->filters); filter = isl_union_set_list_get_union_set(data->filters, n - 1); node = isl_schedule_node_band_gist(node, filter); break; case isl_schedule_node_set: case isl_schedule_node_sequence: tree = isl_schedule_node_get_tree(node); n = isl_schedule_tree_n_children(tree); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *child; isl_union_set *filter; int empty; child = isl_schedule_tree_get_child(tree, i); filter = isl_schedule_tree_filter_get_filter(child); empty = isl_union_set_is_empty(filter); isl_union_set_free(filter); isl_schedule_tree_free(child); if (empty < 0) tree = isl_schedule_tree_free(tree); else if (empty) tree = isl_schedule_tree_drop_child(tree, i); } n = isl_schedule_tree_n_children(tree); node = isl_schedule_node_graft_tree(node, tree); if (n == 1) { node = isl_schedule_node_delete(node); node = isl_schedule_node_delete(node); } else if (n == 0) { isl_space *space; filter = isl_union_set_list_get_union_set(data->filters, 0); space = isl_union_set_get_space(filter); isl_union_set_free(filter); filter = isl_union_set_empty(space); node = isl_schedule_node_cut(node); node = isl_schedule_node_insert_filter(node, filter); } break; case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: break; } return node; } /* Compute the gist of the subtree at "node" with respect to * the reaching domain elements in "context". * In particular, compute the gist of all band and filter nodes * in the subtree with respect to "context". Children of set or sequence * nodes that end up with an empty filter are removed completely. * * We keep track of the intersection of "context" with all outer filters * of the current node within the subtree in the final element of "filters". * Initially, this list contains the single element "context" and it is * extended or shortened each time we enter or leave a filter node. */ __isl_give isl_schedule_node *isl_schedule_node_gist( __isl_take isl_schedule_node *node, __isl_take isl_union_set *context) { struct isl_node_gist_data data; data.n_expansion = 0; data.filters = isl_union_set_list_from_union_set(context); node = traverse(node, &gist_enter, &gist_leave, &data); isl_union_set_list_free(data.filters); return node; } /* Intersect the domain of domain node "node" with "domain". * * If the domain of "node" is already a subset of "domain", * then nothing needs to be changed. * * Otherwise, we replace the domain of the domain node by the intersection * and simplify the subtree rooted at "node" with respect to this intersection. */ __isl_give isl_schedule_node *isl_schedule_node_domain_intersect_domain( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain) { isl_schedule_tree *tree; isl_union_set *uset; int is_subset; if (!node || !domain) goto error; uset = isl_schedule_tree_domain_get_domain(node->tree); is_subset = isl_union_set_is_subset(uset, domain); isl_union_set_free(uset); if (is_subset < 0) goto error; if (is_subset) { isl_union_set_free(domain); return node; } tree = isl_schedule_tree_copy(node->tree); uset = isl_schedule_tree_domain_get_domain(tree); uset = isl_union_set_intersect(uset, domain); tree = isl_schedule_tree_domain_set_domain(tree, isl_union_set_copy(uset)); node = isl_schedule_node_graft_tree(node, tree); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_gist(node, uset); node = isl_schedule_node_parent(node); return node; error: isl_schedule_node_free(node); isl_union_set_free(domain); return NULL; } /* Replace the domain of domain node "node" with the gist * of the original domain with respect to the parameter domain "context". */ __isl_give isl_schedule_node *isl_schedule_node_domain_gist_params( __isl_take isl_schedule_node *node, __isl_take isl_set *context) { isl_union_set *domain; isl_schedule_tree *tree; if (!node || !context) goto error; tree = isl_schedule_tree_copy(node->tree); domain = isl_schedule_tree_domain_get_domain(node->tree); domain = isl_union_set_gist_params(domain, context); tree = isl_schedule_tree_domain_set_domain(tree, domain); node = isl_schedule_node_graft_tree(node, tree); return node; error: isl_schedule_node_free(node); isl_set_free(context); return NULL; } /* Internal data structure for isl_schedule_node_get_subtree_expansion. * "expansions" contains a list of accumulated expansions * for each outer expansion, set or sequence node. The first element * in the list is an identity mapping on the reaching domain elements. * "res" collects the results. */ struct isl_subtree_expansion_data { isl_union_map_list *expansions; isl_union_map *res; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_get_subtree_expansion. * * Whenever we come across an expansion node, the last element * of data->expansions is combined with the expansion * on the expansion node. * * Whenever we come across a filter node that is the child * of a set or sequence node, data->expansions is extended * with a new element that restricts the previous element * to the elements selected by the filter. * The previous element can then be reused while backtracking. */ static __isl_give isl_schedule_node *subtree_expansion_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_expansion_data *data = user; do { enum isl_schedule_node_type type; isl_union_set *filter; isl_union_map *inner, *expansion; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; filter = isl_schedule_node_filter_get_filter(node); n = isl_union_map_list_n_union_map(data->expansions); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); inner = isl_union_map_intersect_range(inner, filter); data->expansions = isl_union_map_list_add(data->expansions, inner); break; case isl_schedule_node_expansion: n = isl_union_map_list_n_union_map(data->expansions); expansion = isl_schedule_node_expansion_get_expansion(node); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); inner = isl_union_map_apply_range(inner, expansion); data->expansions = isl_union_map_list_set_union_map(data->expansions, n - 1, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for * isl_schedule_node_get_subtree_expansion. * * If we come across a filter node that is the child * of a set or sequence node, then we remove the element * of data->expansions that was added in subtree_expansion_enter. * * If we reach a leaf node, then the accumulated expansion is * added to data->res. */ static __isl_give isl_schedule_node *subtree_expansion_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_expansion_data *data = user; int n; isl_union_map *inner; enum isl_schedule_node_type type; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; n = isl_union_map_list_n_union_map(data->expansions); data->expansions = isl_union_map_list_drop(data->expansions, n - 1, 1); break; case isl_schedule_node_leaf: n = isl_union_map_list_n_union_map(data->expansions); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); data->res = isl_union_map_union(data->res, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return node; } /* Return a mapping from the domain elements that reach "node" * to the corresponding domain elements in the leaves of the subtree * rooted at "node" obtained by composing the intermediate expansions. * * We start out with an identity mapping between the domain elements * that reach "node" and compose it with all the expansions * on a path from "node" to a leaf while traversing the subtree. * Within the children of an a sequence or set node, the * accumulated expansion is restricted to the elements selected * by the filter child. */ __isl_give isl_union_map *isl_schedule_node_get_subtree_expansion( __isl_keep isl_schedule_node *node) { struct isl_subtree_expansion_data data; isl_space *space; isl_union_set *domain; isl_union_map *expansion; if (!node) return NULL; domain = isl_schedule_node_get_universe_domain(node); space = isl_union_set_get_space(domain); expansion = isl_union_set_identity(domain); data.res = isl_union_map_empty(space); data.expansions = isl_union_map_list_from_union_map(expansion); node = isl_schedule_node_copy(node); node = traverse(node, &subtree_expansion_enter, &subtree_expansion_leave, &data); if (!node) data.res = isl_union_map_free(data.res); isl_schedule_node_free(node); isl_union_map_list_free(data.expansions); return data.res; } /* Internal data structure for isl_schedule_node_get_subtree_contraction. * "contractions" contains a list of accumulated contractions * for each outer expansion, set or sequence node. The first element * in the list is an identity mapping on the reaching domain elements. * "res" collects the results. */ struct isl_subtree_contraction_data { isl_union_pw_multi_aff_list *contractions; isl_union_pw_multi_aff *res; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_get_subtree_contraction. * * Whenever we come across an expansion node, the last element * of data->contractions is combined with the contraction * on the expansion node. * * Whenever we come across a filter node that is the child * of a set or sequence node, data->contractions is extended * with a new element that restricts the previous element * to the elements selected by the filter. * The previous element can then be reused while backtracking. */ static __isl_give isl_schedule_node *subtree_contraction_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_contraction_data *data = user; do { enum isl_schedule_node_type type; isl_union_set *filter; isl_union_pw_multi_aff *inner, *contraction; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; filter = isl_schedule_node_filter_get_filter(node); n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); inner = isl_union_pw_multi_aff_intersect_domain(inner, filter); data->contractions = isl_union_pw_multi_aff_list_add(data->contractions, inner); break; case isl_schedule_node_expansion: n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); contraction = isl_schedule_node_expansion_get_contraction(node); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); inner = isl_union_pw_multi_aff_pullback_union_pw_multi_aff( inner, contraction); data->contractions = isl_union_pw_multi_aff_list_set_union_pw_multi_aff( data->contractions, n - 1, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for * isl_schedule_node_get_subtree_contraction. * * If we come across a filter node that is the child * of a set or sequence node, then we remove the element * of data->contractions that was added in subtree_contraction_enter. * * If we reach a leaf node, then the accumulated contraction is * added to data->res. */ static __isl_give isl_schedule_node *subtree_contraction_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_contraction_data *data = user; int n; isl_union_pw_multi_aff *inner; enum isl_schedule_node_type type; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); data->contractions = isl_union_pw_multi_aff_list_drop(data->contractions, n - 1, 1); break; case isl_schedule_node_leaf: n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); data->res = isl_union_pw_multi_aff_union_add(data->res, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return node; } /* Return a mapping from the domain elements in the leaves of the subtree * rooted at "node" to the corresponding domain elements that reach "node" * obtained by composing the intermediate contractions. * * We start out with an identity mapping between the domain elements * that reach "node" and compose it with all the contractions * on a path from "node" to a leaf while traversing the subtree. * Within the children of an a sequence or set node, the * accumulated contraction is restricted to the elements selected * by the filter child. */ __isl_give isl_union_pw_multi_aff *isl_schedule_node_get_subtree_contraction( __isl_keep isl_schedule_node *node) { struct isl_subtree_contraction_data data; isl_space *space; isl_union_set *domain; isl_union_pw_multi_aff *contraction; if (!node) return NULL; domain = isl_schedule_node_get_universe_domain(node); space = isl_union_set_get_space(domain); contraction = isl_union_set_identity_union_pw_multi_aff(domain); data.res = isl_union_pw_multi_aff_empty(space); data.contractions = isl_union_pw_multi_aff_list_from_union_pw_multi_aff(contraction); node = isl_schedule_node_copy(node); node = traverse(node, &subtree_contraction_enter, &subtree_contraction_leave, &data); if (!node) data.res = isl_union_pw_multi_aff_free(data.res); isl_schedule_node_free(node); isl_union_pw_multi_aff_list_free(data.contractions); return data.res; } /* Do the nearest "n" ancestors of "node" have the types given in "types" * (starting at the parent of "node")? */ static int has_ancestors(__isl_keep isl_schedule_node *node, int n, enum isl_schedule_node_type *types) { int i, n_ancestor; if (!node) return -1; n_ancestor = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (n_ancestor < n) return 0; for (i = 0; i < n; ++i) { isl_schedule_tree *tree; int correct_type; tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n_ancestor - 1 - i); if (!tree) return -1; correct_type = isl_schedule_tree_get_type(tree) == types[i]; isl_schedule_tree_free(tree); if (!correct_type) return 0; } return 1; } /* Given a node "node" that appears in an extension (i.e., it is the child * of a filter in a sequence inside an extension node), are the spaces * of the extension specified by "extension" disjoint from those * of both the original extension and the domain elements that reach * that original extension? */ static int is_disjoint_extension(__isl_keep isl_schedule_node *node, __isl_keep isl_union_map *extension) { isl_union_map *old; isl_union_set *domain; int empty; node = isl_schedule_node_copy(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); old = isl_schedule_node_extension_get_extension(node); domain = isl_schedule_node_get_universe_domain(node); isl_schedule_node_free(node); old = isl_union_map_universe(old); domain = isl_union_set_union(domain, isl_union_map_range(old)); extension = isl_union_map_copy(extension); extension = isl_union_map_intersect_range(extension, domain); empty = isl_union_map_is_empty(extension); isl_union_map_free(extension); return empty; } /* Given a node "node" that is governed by an extension node, extend * that extension node with "extension". * * In particular, "node" is the child of a filter in a sequence that * is in turn a child of an extension node. Extend that extension node * with "extension". * * Return a pointer to the parent of the original node (i.e., a filter). */ static __isl_give isl_schedule_node *extend_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { int pos; int disjoint; isl_union_map *node_extension; node = isl_schedule_node_parent(node); pos = isl_schedule_node_get_child_position(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); node_extension = isl_schedule_node_extension_get_extension(node); disjoint = isl_union_map_is_disjoint(extension, node_extension); extension = isl_union_map_union(extension, node_extension); node = isl_schedule_node_extension_set_extension(node, extension); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_child(node, pos); if (disjoint < 0) return isl_schedule_node_free(node); if (!node) return NULL; if (!disjoint) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "extension domain should be disjoint from earlier " "extensions", return isl_schedule_node_free(node)); return node; } /* Return the universe of "uset" if this universe is disjoint from "ref". * Otherwise, return "uset". * * Also check if "uset" itself is disjoint from "ref", reporting * an error if it is not. */ static __isl_give isl_union_set *replace_by_universe_if_disjoint( __isl_take isl_union_set *uset, __isl_keep isl_union_set *ref) { int disjoint; isl_union_set *universe; disjoint = isl_union_set_is_disjoint(uset, ref); if (disjoint < 0) return isl_union_set_free(uset); if (!disjoint) isl_die(isl_union_set_get_ctx(uset), isl_error_invalid, "extension domain should be disjoint from " "current domain", return isl_union_set_free(uset)); universe = isl_union_set_universe(isl_union_set_copy(uset)); disjoint = isl_union_set_is_disjoint(universe, ref); if (disjoint >= 0 && disjoint) { isl_union_set_free(uset); return universe; } isl_union_set_free(universe); if (disjoint < 0) return isl_union_set_free(uset); return uset; } /* Insert an extension node on top of "node" with extension "extension". * In addition, insert a filter that separates node from the extension * between the extension node and "node". * Return a pointer to the inserted filter node. * * If "node" already appears in an extension (i.e., if it is the child * of a filter in a sequence inside an extension node), then extend that * extension with "extension" instead. * In this case, a pointer to the original filter node is returned. * Note that if some of the elements in the new extension live in the * same space as those of the original extension or the domain elements * reaching the original extension, then we insert a new extension anyway. * Otherwise, we would have to adjust the filters in the sequence child * of the extension to ensure that the elements in the new extension * are filtered out. */ static __isl_give isl_schedule_node *insert_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { enum isl_schedule_node_type ancestors[] = { isl_schedule_node_filter, isl_schedule_node_sequence, isl_schedule_node_extension }; isl_union_set *domain; isl_union_set *filter; int in_ext; in_ext = has_ancestors(node, 3, ancestors); if (in_ext < 0) goto error; if (in_ext) { int disjoint; disjoint = is_disjoint_extension(node, extension); if (disjoint < 0) goto error; if (disjoint) return extend_extension(node, extension); } filter = isl_schedule_node_get_domain(node); domain = isl_union_map_range(isl_union_map_copy(extension)); filter = replace_by_universe_if_disjoint(filter, domain); isl_union_set_free(domain); node = isl_schedule_node_insert_filter(node, filter); node = isl_schedule_node_insert_extension(node, extension); node = isl_schedule_node_child(node, 0); return node; error: isl_schedule_node_free(node); isl_union_map_free(extension); return NULL; } /* Replace the subtree that "node" points to by "tree" (which has * a sequence root with two children), except if the parent of "node" * is a sequence as well, in which case "tree" is spliced at the position * of "node" in its parent. * Return a pointer to the child of the "tree_pos" (filter) child of "tree" * in the updated schedule tree. */ static __isl_give isl_schedule_node *graft_or_splice( __isl_take isl_schedule_node *node, __isl_take isl_schedule_tree *tree, int tree_pos) { int pos; if (isl_schedule_node_get_parent_type(node) == isl_schedule_node_sequence) { pos = isl_schedule_node_get_child_position(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_sequence_splice(node, pos, tree); } else { pos = 0; node = isl_schedule_node_graft_tree(node, tree); } node = isl_schedule_node_child(node, pos + tree_pos); node = isl_schedule_node_child(node, 0); return node; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before (if "before" is set) or after (if "before" is not set) * the node that "node" points to. * The root of "graft" is an extension node. * Return a pointer to the node that "node" pointed to. * * We first insert an extension node on top of "node" (or extend * the extension node if there already is one), with a filter on "node" * separating it from the extension. * We then insert a filter in the graft to separate it from the original * domain elements and combine the original and new tree in a sequence. * If we have extended an extension node, then the children of this * sequence are spliced in the sequence of the extended extension * at the position where "node" appears in the original extension. * Otherwise, the sequence pair is attached to the new extension node. */ static __isl_give isl_schedule_node *graft_extension( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft, int before) { isl_union_map *extension; isl_union_set *graft_domain; isl_union_set *node_domain; isl_schedule_tree *tree, *tree_graft; extension = isl_schedule_node_extension_get_extension(graft); graft_domain = isl_union_map_range(isl_union_map_copy(extension)); node_domain = isl_schedule_node_get_universe_domain(node); node = insert_extension(node, extension); graft_domain = replace_by_universe_if_disjoint(graft_domain, node_domain); isl_union_set_free(node_domain); tree = isl_schedule_node_get_tree(node); if (!isl_schedule_node_has_children(graft)) { tree_graft = isl_schedule_tree_from_filter(graft_domain); } else { graft = isl_schedule_node_child(graft, 0); tree_graft = isl_schedule_node_get_tree(graft); tree_graft = isl_schedule_tree_insert_filter(tree_graft, graft_domain); } if (before) tree = isl_schedule_tree_sequence_pair(tree_graft, tree); else tree = isl_schedule_tree_sequence_pair(tree, tree_graft); node = graft_or_splice(node, tree, before); isl_schedule_node_free(graft); return node; } /* Replace the root domain node of "node" by an extension node suitable * for insertion at "pos". * That is, create an extension node that maps the outer band nodes * at "pos" to the domain of the root node of "node" and attach * the child of this root node to the extension node. */ static __isl_give isl_schedule_node *extension_from_domain( __isl_take isl_schedule_node *node, __isl_keep isl_schedule_node *pos) { isl_union_set *universe; isl_union_set *domain; isl_union_map *ext; int depth; int anchored; isl_space *space; isl_schedule_node *res; isl_schedule_tree *tree; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "cannot graft anchored tree with domain root", return isl_schedule_node_free(node)); depth = isl_schedule_node_get_schedule_depth(pos); domain = isl_schedule_node_domain_get_domain(node); space = isl_union_set_get_space(domain); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, depth); universe = isl_union_set_from_set(isl_set_universe(space)); ext = isl_union_map_from_domain_and_range(universe, domain); res = isl_schedule_node_from_extension(ext); node = isl_schedule_node_child(node, 0); if (!node) return isl_schedule_node_free(res); if (!isl_schedule_tree_is_leaf(node->tree)) { tree = isl_schedule_node_get_tree(node); res = isl_schedule_node_child(res, 0); res = isl_schedule_node_graft_tree(res, tree); res = isl_schedule_node_parent(res); } isl_schedule_node_free(node); return res; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before (if "before" is set) or after (if "before" is not set) * the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * The schedule tree of "node" is modified to include an extension node * corresponding to the root node of "graft" as a child of the original * parent of "node". The original node that "node" points to and the * child of the root node of "graft" are attached to this extension node * through a sequence, with appropriate filters and with the child * of "graft" appearing before or after the original "node". * * If "node" already appears inside a sequence that is the child of * an extension node and if the spaces of the new domain elements * do not overlap with those of the original domain elements, * then that extension node is extended with the new extension * rather than introducing a new segment of extension and sequence nodes. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ static __isl_give isl_schedule_node *isl_schedule_node_graft_before_or_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft, int before) { if (!node || !graft) goto error; if (check_insert(node) < 0) goto error; if (isl_schedule_node_get_type(graft) == isl_schedule_node_domain) graft = extension_from_domain(graft, node); if (isl_schedule_node_get_type(graft) != isl_schedule_node_extension) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "expecting domain or extension as root of graft", goto error); return graft_extension(node, graft, before); error: isl_schedule_node_free(node); isl_schedule_node_free(graft); return NULL; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ __isl_give isl_schedule_node *isl_schedule_node_graft_before( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft) { return isl_schedule_node_graft_before_or_after(node, graft, 1); } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed after the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ __isl_give isl_schedule_node *isl_schedule_node_graft_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft) { return isl_schedule_node_graft_before_or_after(node, graft, 0); } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed before or after the second subset, depending on the value * of "before". * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. * If both subsets are non-empty, then a sequence node is introduced * to impose the order. If the grandparent of the original node was * itself a sequence, then the original child is replaced by two children * in this sequence instead. * The children in the sequence are copies of the original subtree, * simplified with respect to their filters. */ static __isl_give isl_schedule_node *isl_schedule_node_order_before_or_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter, int before) { enum isl_schedule_node_type ancestors[] = { isl_schedule_node_filter, isl_schedule_node_sequence }; isl_union_set *node_domain, *node_filter = NULL, *parent_filter; isl_schedule_node *node2; isl_schedule_tree *tree1, *tree2; int empty1, empty2; int in_seq; if (!node || !filter) goto error; if (check_insert(node) < 0) goto error; in_seq = has_ancestors(node, 2, ancestors); if (in_seq < 0) goto error; node_domain = isl_schedule_node_get_domain(node); filter = isl_union_set_gist(filter, isl_union_set_copy(node_domain)); node_filter = isl_union_set_copy(node_domain); node_filter = isl_union_set_subtract(node_filter, isl_union_set_copy(filter)); node_filter = isl_union_set_gist(node_filter, node_domain); empty1 = isl_union_set_is_empty(filter); empty2 = isl_union_set_is_empty(node_filter); if (empty1 < 0 || empty2 < 0) goto error; if (empty1 || empty2) { isl_union_set_free(filter); isl_union_set_free(node_filter); return node; } if (in_seq) { node = isl_schedule_node_parent(node); parent_filter = isl_schedule_node_filter_get_filter(node); node_filter = isl_union_set_intersect(node_filter, isl_union_set_copy(parent_filter)); filter = isl_union_set_intersect(filter, parent_filter); } node2 = isl_schedule_node_copy(node); node = isl_schedule_node_gist(node, isl_union_set_copy(node_filter)); node2 = isl_schedule_node_gist(node2, isl_union_set_copy(filter)); tree1 = isl_schedule_node_get_tree(node); tree2 = isl_schedule_node_get_tree(node2); tree1 = isl_schedule_tree_insert_filter(tree1, node_filter); tree2 = isl_schedule_tree_insert_filter(tree2, filter); isl_schedule_node_free(node2); if (before) { tree1 = isl_schedule_tree_sequence_pair(tree2, tree1); node = graft_or_splice(node, tree1, 1); } else { tree1 = isl_schedule_tree_sequence_pair(tree1, tree2); node = graft_or_splice(node, tree1, 0); } return node; error: isl_schedule_node_free(node); isl_union_set_free(filter); isl_union_set_free(node_filter); return NULL; } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed before the second subset. * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. */ __isl_give isl_schedule_node *isl_schedule_node_order_before( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { return isl_schedule_node_order_before_or_after(node, filter, 1); } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed after the second subset. * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. */ __isl_give isl_schedule_node *isl_schedule_node_order_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { return isl_schedule_node_order_before_or_after(node, filter, 0); } /* Reset the user pointer on all identifiers of parameters and tuples * in the schedule node "node". */ __isl_give isl_schedule_node *isl_schedule_node_reset_user( __isl_take isl_schedule_node *node) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_reset_user(tree); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Align the parameters of the schedule node "node" to those of "space". */ __isl_give isl_schedule_node *isl_schedule_node_align_params( __isl_take isl_schedule_node *node, __isl_take isl_space *space) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_align_params(tree, space); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Compute the pullback of schedule node "node" * by the function represented by "upma". * In other words, plug in "upma" in the iteration domains * of schedule node "node". * We currently do not handle expansion nodes. * * Note that this is only a helper function for * isl_schedule_pullback_union_pw_multi_aff. In order to maintain consistency, * this function should not be called on a single node without also * calling it on all the other nodes. */ __isl_give isl_schedule_node *isl_schedule_node_pullback_union_pw_multi_aff( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *upma) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, upma); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Internal data structure for isl_schedule_node_expand. * "tree" is the tree that needs to be plugged in in all the leaves. * "domain" is the set of domain elements in the original leaves * to which the tree applies. */ struct isl_schedule_expand_data { isl_schedule_tree *tree; isl_union_set *domain; }; /* If "node" is a leaf, then plug in data->tree, simplifying it * within its new context. * * If there are any domain elements at the leaf where the tree * should not be plugged in (i.e., there are elements not in data->domain) * then first extend the tree to only apply to the elements in data->domain * by constructing a set node that selects data->tree for elements * in data->domain and a leaf for the other elements. */ static __isl_give isl_schedule_node *expand(__isl_take isl_schedule_node *node, void *user) { struct isl_schedule_expand_data *data = user; isl_schedule_tree *tree, *leaf; isl_union_set *domain, *left; isl_bool empty; if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf) return node; domain = isl_schedule_node_get_domain(node); tree = isl_schedule_tree_copy(data->tree); left = isl_union_set_copy(domain); left = isl_union_set_subtract(left, isl_union_set_copy(data->domain)); empty = isl_union_set_is_empty(left); if (empty >= 0 && !empty) { leaf = isl_schedule_node_get_leaf(node); leaf = isl_schedule_tree_insert_filter(leaf, left); left = isl_union_set_copy(data->domain); tree = isl_schedule_tree_insert_filter(tree, left); tree = isl_schedule_tree_set_pair(tree, leaf); } else { if (empty < 0) node = isl_schedule_node_free(node); isl_union_set_free(left); } node = isl_schedule_node_graft_tree(node, tree); node = isl_schedule_node_gist(node, domain); return node; } /* Expand the tree rooted at "node" by extending all leaves * with an expansion node with as child "tree". * The expansion is determined by "contraction" and "domain". * That is, the elements of "domain" are contracted according * to "contraction". The expansion relation is then the inverse * of "contraction" with its range intersected with "domain". * * Insert the appropriate expansion node on top of "tree" and * then plug in the result in all leaves of "node". */ __isl_give isl_schedule_node *isl_schedule_node_expand( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_set *domain, __isl_take isl_schedule_tree *tree) { struct isl_schedule_expand_data data; isl_union_map *expansion; isl_union_pw_multi_aff *copy; if (!node || !contraction || !tree) node = isl_schedule_node_free(node); copy = isl_union_pw_multi_aff_copy(contraction); expansion = isl_union_map_from_union_pw_multi_aff(copy); expansion = isl_union_map_reverse(expansion); expansion = isl_union_map_intersect_range(expansion, domain); data.domain = isl_union_map_domain(isl_union_map_copy(expansion)); tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion); data.tree = tree; node = isl_schedule_node_map_descendant_bottom_up(node, &expand, &data); isl_union_set_free(data.domain); isl_schedule_tree_free(data.tree); return node; } /* Return the position of the subtree containing "node" among the children * of "ancestor". "node" is assumed to be a descendant of "ancestor". * In particular, both nodes should point to the same schedule tree. * * Return -1 on error. */ int isl_schedule_node_get_ancestor_child_position( __isl_keep isl_schedule_node *node, __isl_keep isl_schedule_node *ancestor) { int n1, n2; isl_schedule_tree *tree; if (!node || !ancestor) return -1; if (node->schedule != ancestor->schedule) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); n1 = isl_schedule_node_get_tree_depth(ancestor); n2 = isl_schedule_node_get_tree_depth(node); if (n1 >= n2) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n1); isl_schedule_tree_free(tree); if (tree != ancestor->tree) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); return node->child_pos[n1]; } /* Given two nodes that point to the same schedule tree, return their * closest shared ancestor. * * Since the two nodes point to the same schedule, they share at least * one ancestor, the root of the schedule. We move down from the root * to the first ancestor where the respective children have a different * child position. This is the requested ancestor. * If there is no ancestor where the children have a different position, * then one node is an ancestor of the other and then this node is * the requested ancestor. */ __isl_give isl_schedule_node *isl_schedule_node_get_shared_ancestor( __isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2) { int i, n1, n2; if (!node1 || !node2) return NULL; if (node1->schedule != node2->schedule) isl_die(isl_schedule_node_get_ctx(node1), isl_error_invalid, "not part of same schedule", return NULL); n1 = isl_schedule_node_get_tree_depth(node1); n2 = isl_schedule_node_get_tree_depth(node2); if (n2 < n1) return isl_schedule_node_get_shared_ancestor(node2, node1); if (n1 == 0) return isl_schedule_node_copy(node1); if (isl_schedule_node_is_equal(node1, node2)) return isl_schedule_node_copy(node1); for (i = 0; i < n1; ++i) if (node1->child_pos[i] != node2->child_pos[i]) break; node1 = isl_schedule_node_copy(node1); return isl_schedule_node_ancestor(node1, n1 - i); } /* Print "node" to "p". */ __isl_give isl_printer *isl_printer_print_schedule_node( __isl_take isl_printer *p, __isl_keep isl_schedule_node *node) { if (!node) return isl_printer_free(p); return isl_printer_print_schedule_tree_mark(p, node->schedule->root, isl_schedule_tree_list_n_schedule_tree(node->ancestors), node->child_pos); } void isl_schedule_node_dump(__isl_keep isl_schedule_node *node) { isl_ctx *ctx; isl_printer *printer; if (!node) return; ctx = isl_schedule_node_get_ctx(node); printer = isl_printer_to_file(ctx, stderr); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule_node(printer, node); isl_printer_free(printer); } /* Return a string representation of "node". * Print the schedule node in block format as it would otherwise * look identical to the entire schedule. */ __isl_give char *isl_schedule_node_to_str(__isl_keep isl_schedule_node *node) { isl_printer *printer; char *s; if (!node) return NULL; printer = isl_printer_to_str(isl_schedule_node_get_ctx(node)); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule_node(printer, node); s = isl_printer_get_str(printer); isl_printer_free(printer); return s; }