/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2013 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include "isl_map_private.h" #include "isl_tab.h" #include #include #include #include /* * The implementation of tableaus in this file was inspired by Section 8 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem * prover for program checking". */ struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx, unsigned n_row, unsigned n_var, unsigned M) { int i; struct isl_tab *tab; unsigned off = 2 + M; tab = isl_calloc_type(ctx, struct isl_tab); if (!tab) return NULL; tab->mat = isl_mat_alloc(ctx, n_row, off + n_var); if (!tab->mat) goto error; tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var); if (n_var && !tab->var) goto error; tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row); if (n_row && !tab->con) goto error; tab->col_var = isl_alloc_array(ctx, int, n_var); if (n_var && !tab->col_var) goto error; tab->row_var = isl_alloc_array(ctx, int, n_row); if (n_row && !tab->row_var) goto error; for (i = 0; i < n_var; ++i) { tab->var[i].index = i; tab->var[i].is_row = 0; tab->var[i].is_nonneg = 0; tab->var[i].is_zero = 0; tab->var[i].is_redundant = 0; tab->var[i].frozen = 0; tab->var[i].negated = 0; tab->col_var[i] = i; } tab->n_row = 0; tab->n_con = 0; tab->n_eq = 0; tab->max_con = n_row; tab->n_col = n_var; tab->n_var = n_var; tab->max_var = n_var; tab->n_param = 0; tab->n_div = 0; tab->n_dead = 0; tab->n_redundant = 0; tab->strict_redundant = 0; tab->need_undo = 0; tab->rational = 0; tab->empty = 0; tab->in_undo = 0; tab->M = M; tab->cone = 0; tab->bottom.type = isl_tab_undo_bottom; tab->bottom.next = NULL; tab->top = &tab->bottom; tab->n_zero = 0; tab->n_unbounded = 0; tab->basis = NULL; return tab; error: isl_tab_free(tab); return NULL; } isl_ctx *isl_tab_get_ctx(struct isl_tab *tab) { return tab ? isl_mat_get_ctx(tab->mat) : NULL; } int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new) { unsigned off; if (!tab) return -1; off = 2 + tab->M; if (tab->max_con < tab->n_con + n_new) { struct isl_tab_var *con; con = isl_realloc_array(tab->mat->ctx, tab->con, struct isl_tab_var, tab->max_con + n_new); if (!con) return -1; tab->con = con; tab->max_con += n_new; } if (tab->mat->n_row < tab->n_row + n_new) { int *row_var; tab->mat = isl_mat_extend(tab->mat, tab->n_row + n_new, off + tab->n_col); if (!tab->mat) return -1; row_var = isl_realloc_array(tab->mat->ctx, tab->row_var, int, tab->mat->n_row); if (!row_var) return -1; tab->row_var = row_var; if (tab->row_sign) { enum isl_tab_row_sign *s; s = isl_realloc_array(tab->mat->ctx, tab->row_sign, enum isl_tab_row_sign, tab->mat->n_row); if (!s) return -1; tab->row_sign = s; } } return 0; } /* Make room for at least n_new extra variables. * Return -1 if anything went wrong. */ int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new) { struct isl_tab_var *var; unsigned off = 2 + tab->M; if (tab->max_var < tab->n_var + n_new) { var = isl_realloc_array(tab->mat->ctx, tab->var, struct isl_tab_var, tab->n_var + n_new); if (!var) return -1; tab->var = var; tab->max_var = tab->n_var + n_new; } if (tab->mat->n_col < off + tab->n_col + n_new) { int *p; tab->mat = isl_mat_extend(tab->mat, tab->mat->n_row, off + tab->n_col + n_new); if (!tab->mat) return -1; p = isl_realloc_array(tab->mat->ctx, tab->col_var, int, tab->n_col + n_new); if (!p) return -1; tab->col_var = p; } return 0; } static void free_undo_record(struct isl_tab_undo *undo) { switch (undo->type) { case isl_tab_undo_saved_basis: free(undo->u.col_var); break; default:; } free(undo); } static void free_undo(struct isl_tab *tab) { struct isl_tab_undo *undo, *next; for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { next = undo->next; free_undo_record(undo); } tab->top = undo; } void isl_tab_free(struct isl_tab *tab) { if (!tab) return; free_undo(tab); isl_mat_free(tab->mat); isl_vec_free(tab->dual); isl_basic_map_free(tab->bmap); free(tab->var); free(tab->con); free(tab->row_var); free(tab->col_var); free(tab->row_sign); isl_mat_free(tab->samples); free(tab->sample_index); isl_mat_free(tab->basis); free(tab); } struct isl_tab *isl_tab_dup(struct isl_tab *tab) { int i; struct isl_tab *dup; unsigned off; if (!tab) return NULL; off = 2 + tab->M; dup = isl_calloc_type(tab->mat->ctx, struct isl_tab); if (!dup) return NULL; dup->mat = isl_mat_dup(tab->mat); if (!dup->mat) goto error; dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var); if (tab->max_var && !dup->var) goto error; for (i = 0; i < tab->n_var; ++i) dup->var[i] = tab->var[i]; dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con); if (tab->max_con && !dup->con) goto error; for (i = 0; i < tab->n_con; ++i) dup->con[i] = tab->con[i]; dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off); if ((tab->mat->n_col - off) && !dup->col_var) goto error; for (i = 0; i < tab->n_col; ++i) dup->col_var[i] = tab->col_var[i]; dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row); if (tab->mat->n_row && !dup->row_var) goto error; for (i = 0; i < tab->n_row; ++i) dup->row_var[i] = tab->row_var[i]; if (tab->row_sign) { dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign, tab->mat->n_row); if (tab->mat->n_row && !dup->row_sign) goto error; for (i = 0; i < tab->n_row; ++i) dup->row_sign[i] = tab->row_sign[i]; } if (tab->samples) { dup->samples = isl_mat_dup(tab->samples); if (!dup->samples) goto error; dup->sample_index = isl_alloc_array(tab->mat->ctx, int, tab->samples->n_row); if (tab->samples->n_row && !dup->sample_index) goto error; dup->n_sample = tab->n_sample; dup->n_outside = tab->n_outside; } dup->n_row = tab->n_row; dup->n_con = tab->n_con; dup->n_eq = tab->n_eq; dup->max_con = tab->max_con; dup->n_col = tab->n_col; dup->n_var = tab->n_var; dup->max_var = tab->max_var; dup->n_param = tab->n_param; dup->n_div = tab->n_div; dup->n_dead = tab->n_dead; dup->n_redundant = tab->n_redundant; dup->rational = tab->rational; dup->empty = tab->empty; dup->strict_redundant = 0; dup->need_undo = 0; dup->in_undo = 0; dup->M = tab->M; tab->cone = tab->cone; dup->bottom.type = isl_tab_undo_bottom; dup->bottom.next = NULL; dup->top = &dup->bottom; dup->n_zero = tab->n_zero; dup->n_unbounded = tab->n_unbounded; dup->basis = isl_mat_dup(tab->basis); return dup; error: isl_tab_free(dup); return NULL; } /* Construct the coefficient matrix of the product tableau * of two tableaus. * mat{1,2} is the coefficient matrix of tableau {1,2} * row{1,2} is the number of rows in tableau {1,2} * col{1,2} is the number of columns in tableau {1,2} * off is the offset to the coefficient column (skipping the * denominator, the constant term and the big parameter if any) * r{1,2} is the number of redundant rows in tableau {1,2} * d{1,2} is the number of dead columns in tableau {1,2} * * The order of the rows and columns in the result is as explained * in isl_tab_product. */ static struct isl_mat *tab_mat_product(struct isl_mat *mat1, struct isl_mat *mat2, unsigned row1, unsigned row2, unsigned col1, unsigned col2, unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { int i; struct isl_mat *prod; unsigned n; prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row, off + col1 + col2); if (!prod) return NULL; n = 0; for (i = 0; i < r1; ++i) { isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1); isl_seq_clr(prod->row[n + i] + off + d1, d2); isl_seq_cpy(prod->row[n + i] + off + d1 + d2, mat1->row[i] + off + d1, col1 - d1); isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2); } n += r1; for (i = 0; i < r2; ++i) { isl_seq_cpy(prod->row[n + i], mat2->row[i], off); isl_seq_clr(prod->row[n + i] + off, d1); isl_seq_cpy(prod->row[n + i] + off + d1, mat2->row[i] + off, d2); isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1); isl_seq_cpy(prod->row[n + i] + off + col1 + d1, mat2->row[i] + off + d2, col2 - d2); } n += r2; for (i = 0; i < row1 - r1; ++i) { isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1); isl_seq_clr(prod->row[n + i] + off + d1, d2); isl_seq_cpy(prod->row[n + i] + off + d1 + d2, mat1->row[r1 + i] + off + d1, col1 - d1); isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2); } n += row1 - r1; for (i = 0; i < row2 - r2; ++i) { isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off); isl_seq_clr(prod->row[n + i] + off, d1); isl_seq_cpy(prod->row[n + i] + off + d1, mat2->row[r2 + i] + off, d2); isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1); isl_seq_cpy(prod->row[n + i] + off + col1 + d1, mat2->row[r2 + i] + off + d2, col2 - d2); } return prod; } /* Update the row or column index of a variable that corresponds * to a variable in the first input tableau. */ static void update_index1(struct isl_tab_var *var, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { if (var->index == -1) return; if (var->is_row && var->index >= r1) var->index += r2; if (!var->is_row && var->index >= d1) var->index += d2; } /* Update the row or column index of a variable that corresponds * to a variable in the second input tableau. */ static void update_index2(struct isl_tab_var *var, unsigned row1, unsigned col1, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { if (var->index == -1) return; if (var->is_row) { if (var->index < r2) var->index += r1; else var->index += row1; } else { if (var->index < d2) var->index += d1; else var->index += col1; } } /* Create a tableau that represents the Cartesian product of the sets * represented by tableaus tab1 and tab2. * The order of the rows in the product is * - redundant rows of tab1 * - redundant rows of tab2 * - non-redundant rows of tab1 * - non-redundant rows of tab2 * The order of the columns is * - denominator * - constant term * - coefficient of big parameter, if any * - dead columns of tab1 * - dead columns of tab2 * - live columns of tab1 * - live columns of tab2 * The order of the variables and the constraints is a concatenation * of order in the two input tableaus. */ struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2) { int i; struct isl_tab *prod; unsigned off; unsigned r1, r2, d1, d2; if (!tab1 || !tab2) return NULL; isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL); isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL); isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL); isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL); isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL); isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL); isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL); isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL); isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL); off = 2 + tab1->M; r1 = tab1->n_redundant; r2 = tab2->n_redundant; d1 = tab1->n_dead; d2 = tab2->n_dead; prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab); if (!prod) return NULL; prod->mat = tab_mat_product(tab1->mat, tab2->mat, tab1->n_row, tab2->n_row, tab1->n_col, tab2->n_col, off, r1, r2, d1, d2); if (!prod->mat) goto error; prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, tab1->max_var + tab2->max_var); if ((tab1->max_var + tab2->max_var) && !prod->var) goto error; for (i = 0; i < tab1->n_var; ++i) { prod->var[i] = tab1->var[i]; update_index1(&prod->var[i], r1, r2, d1, d2); } for (i = 0; i < tab2->n_var; ++i) { prod->var[tab1->n_var + i] = tab2->var[i]; update_index2(&prod->var[tab1->n_var + i], tab1->n_row, tab1->n_col, r1, r2, d1, d2); } prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, tab1->max_con + tab2->max_con); if ((tab1->max_con + tab2->max_con) && !prod->con) goto error; for (i = 0; i < tab1->n_con; ++i) { prod->con[i] = tab1->con[i]; update_index1(&prod->con[i], r1, r2, d1, d2); } for (i = 0; i < tab2->n_con; ++i) { prod->con[tab1->n_con + i] = tab2->con[i]; update_index2(&prod->con[tab1->n_con + i], tab1->n_row, tab1->n_col, r1, r2, d1, d2); } prod->col_var = isl_alloc_array(tab1->mat->ctx, int, tab1->n_col + tab2->n_col); if ((tab1->n_col + tab2->n_col) && !prod->col_var) goto error; for (i = 0; i < tab1->n_col; ++i) { int pos = i < d1 ? i : i + d2; prod->col_var[pos] = tab1->col_var[i]; } for (i = 0; i < tab2->n_col; ++i) { int pos = i < d2 ? d1 + i : tab1->n_col + i; int t = tab2->col_var[i]; if (t >= 0) t += tab1->n_var; else t -= tab1->n_con; prod->col_var[pos] = t; } prod->row_var = isl_alloc_array(tab1->mat->ctx, int, tab1->mat->n_row + tab2->mat->n_row); if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var) goto error; for (i = 0; i < tab1->n_row; ++i) { int pos = i < r1 ? i : i + r2; prod->row_var[pos] = tab1->row_var[i]; } for (i = 0; i < tab2->n_row; ++i) { int pos = i < r2 ? r1 + i : tab1->n_row + i; int t = tab2->row_var[i]; if (t >= 0) t += tab1->n_var; else t -= tab1->n_con; prod->row_var[pos] = t; } prod->samples = NULL; prod->sample_index = NULL; prod->n_row = tab1->n_row + tab2->n_row; prod->n_con = tab1->n_con + tab2->n_con; prod->n_eq = 0; prod->max_con = tab1->max_con + tab2->max_con; prod->n_col = tab1->n_col + tab2->n_col; prod->n_var = tab1->n_var + tab2->n_var; prod->max_var = tab1->max_var + tab2->max_var; prod->n_param = 0; prod->n_div = 0; prod->n_dead = tab1->n_dead + tab2->n_dead; prod->n_redundant = tab1->n_redundant + tab2->n_redundant; prod->rational = tab1->rational; prod->empty = tab1->empty || tab2->empty; prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant; prod->need_undo = 0; prod->in_undo = 0; prod->M = tab1->M; prod->cone = tab1->cone; prod->bottom.type = isl_tab_undo_bottom; prod->bottom.next = NULL; prod->top = &prod->bottom; prod->n_zero = 0; prod->n_unbounded = 0; prod->basis = NULL; return prod; error: isl_tab_free(prod); return NULL; } static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i) { if (i >= 0) return &tab->var[i]; else return &tab->con[~i]; } struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i) { return var_from_index(tab, tab->row_var[i]); } static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i) { return var_from_index(tab, tab->col_var[i]); } /* Check if there are any upper bounds on column variable "var", * i.e., non-negative rows where var appears with a negative coefficient. * Return 1 if there are no such bounds. */ static int max_is_manifestly_unbounded(struct isl_tab *tab, struct isl_tab_var *var) { int i; unsigned off = 2 + tab->M; if (var->is_row) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (!isl_int_is_neg(tab->mat->row[i][off + var->index])) continue; if (isl_tab_var_from_row(tab, i)->is_nonneg) return 0; } return 1; } /* Check if there are any lower bounds on column variable "var", * i.e., non-negative rows where var appears with a positive coefficient. * Return 1 if there are no such bounds. */ static int min_is_manifestly_unbounded(struct isl_tab *tab, struct isl_tab_var *var) { int i; unsigned off = 2 + tab->M; if (var->is_row) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (!isl_int_is_pos(tab->mat->row[i][off + var->index])) continue; if (isl_tab_var_from_row(tab, i)->is_nonneg) return 0; } return 1; } static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t) { unsigned off = 2 + tab->M; if (tab->M) { int s; isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]); isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]); s = isl_int_sgn(*t); if (s) return s; } isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]); isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]); return isl_int_sgn(*t); } /* Given the index of a column "c", return the index of a row * that can be used to pivot the column in, with either an increase * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable. * If "var" is not NULL, then the row returned will be different from * the one associated with "var". * * Each row in the tableau is of the form * * x_r = a_r0 + \sum_i a_ri x_i * * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn" * impose any limit on the increase or decrease in the value of x_c * and this bound is equal to a_r0 / |a_rc|. We are therefore looking * for the row with the smallest (most stringent) such bound. * Note that the common denominator of each row drops out of the fraction. * To check if row j has a smaller bound than row r, i.e., * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|, * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0, * where -sign(a_jc) is equal to "sgn". */ static int pivot_row(struct isl_tab *tab, struct isl_tab_var *var, int sgn, int c) { int j, r, tsgn; isl_int t; unsigned off = 2 + tab->M; isl_int_init(t); r = -1; for (j = tab->n_redundant; j < tab->n_row; ++j) { if (var && j == var->index) continue; if (!isl_tab_var_from_row(tab, j)->is_nonneg) continue; if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0) continue; if (r < 0) { r = j; continue; } tsgn = sgn * row_cmp(tab, r, j, c, &t); if (tsgn < 0 || (tsgn == 0 && tab->row_var[j] < tab->row_var[r])) r = j; } isl_int_clear(t); return r; } /* Find a pivot (row and col) that will increase (sgn > 0) or decrease * (sgn < 0) the value of row variable var. * If not NULL, then skip_var is a row variable that should be ignored * while looking for a pivot row. It is usually equal to var. * * As the given row in the tableau is of the form * * x_r = a_r0 + \sum_i a_ri x_i * * we need to find a column such that the sign of a_ri is equal to "sgn" * (such that an increase in x_i will have the desired effect) or a * column with a variable that may attain negative values. * If a_ri is positive, then we need to move x_i in the same direction * to obtain the desired effect. Otherwise, x_i has to move in the * opposite direction. */ static void find_pivot(struct isl_tab *tab, struct isl_tab_var *var, struct isl_tab_var *skip_var, int sgn, int *row, int *col) { int j, r, c; isl_int *tr; *row = *col = -1; isl_assert(tab->mat->ctx, var->is_row, return); tr = tab->mat->row[var->index] + 2 + tab->M; c = -1; for (j = tab->n_dead; j < tab->n_col; ++j) { if (isl_int_is_zero(tr[j])) continue; if (isl_int_sgn(tr[j]) != sgn && var_from_col(tab, j)->is_nonneg) continue; if (c < 0 || tab->col_var[j] < tab->col_var[c]) c = j; } if (c < 0) return; sgn *= isl_int_sgn(tr[c]); r = pivot_row(tab, skip_var, sgn, c); *row = r < 0 ? var->index : r; *col = c; } /* Return 1 if row "row" represents an obviously redundant inequality. * This means * - it represents an inequality or a variable * - that is the sum of a non-negative sample value and a positive * combination of zero or more non-negative constraints. */ int isl_tab_row_is_redundant(struct isl_tab *tab, int row) { int i; unsigned off = 2 + tab->M; if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][1])) return 0; if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1])) return 0; if (tab->M && isl_int_is_neg(tab->mat->row[row][2])) return 0; for (i = tab->n_dead; i < tab->n_col; ++i) { if (isl_int_is_zero(tab->mat->row[row][off + i])) continue; if (tab->col_var[i] >= 0) return 0; if (isl_int_is_neg(tab->mat->row[row][off + i])) return 0; if (!var_from_col(tab, i)->is_nonneg) return 0; } return 1; } static void swap_rows(struct isl_tab *tab, int row1, int row2) { int t; enum isl_tab_row_sign s; t = tab->row_var[row1]; tab->row_var[row1] = tab->row_var[row2]; tab->row_var[row2] = t; isl_tab_var_from_row(tab, row1)->index = row1; isl_tab_var_from_row(tab, row2)->index = row2; tab->mat = isl_mat_swap_rows(tab->mat, row1, row2); if (!tab->row_sign) return; s = tab->row_sign[row1]; tab->row_sign[row1] = tab->row_sign[row2]; tab->row_sign[row2] = s; } static int push_union(struct isl_tab *tab, enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED; static int push_union(struct isl_tab *tab, enum isl_tab_undo_type type, union isl_tab_undo_val u) { struct isl_tab_undo *undo; if (!tab) return -1; if (!tab->need_undo) return 0; undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo); if (!undo) return -1; undo->type = type; undo->u = u; undo->next = tab->top; tab->top = undo; return 0; } int isl_tab_push_var(struct isl_tab *tab, enum isl_tab_undo_type type, struct isl_tab_var *var) { union isl_tab_undo_val u; if (var->is_row) u.var_index = tab->row_var[var->index]; else u.var_index = tab->col_var[var->index]; return push_union(tab, type, u); } int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type) { union isl_tab_undo_val u = { 0 }; return push_union(tab, type, u); } /* Push a record on the undo stack describing the current basic * variables, so that the this state can be restored during rollback. */ int isl_tab_push_basis(struct isl_tab *tab) { int i; union isl_tab_undo_val u; u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col); if (tab->n_col && !u.col_var) return -1; for (i = 0; i < tab->n_col; ++i) u.col_var[i] = tab->col_var[i]; return push_union(tab, isl_tab_undo_saved_basis, u); } int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback) { union isl_tab_undo_val u; u.callback = callback; return push_union(tab, isl_tab_undo_callback, u); } struct isl_tab *isl_tab_init_samples(struct isl_tab *tab) { if (!tab) return NULL; tab->n_sample = 0; tab->n_outside = 0; tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var); if (!tab->samples) goto error; tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1); if (!tab->sample_index) goto error; return tab; error: isl_tab_free(tab); return NULL; } int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample) { if (!tab || !sample) goto error; if (tab->n_sample + 1 > tab->samples->n_row) { int *t = isl_realloc_array(tab->mat->ctx, tab->sample_index, int, tab->n_sample + 1); if (!t) goto error; tab->sample_index = t; } tab->samples = isl_mat_extend(tab->samples, tab->n_sample + 1, tab->samples->n_col); if (!tab->samples) goto error; isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size); isl_vec_free(sample); tab->sample_index[tab->n_sample] = tab->n_sample; tab->n_sample++; return 0; error: isl_vec_free(sample); return -1; } struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s) { if (s != tab->n_outside) { int t = tab->sample_index[tab->n_outside]; tab->sample_index[tab->n_outside] = tab->sample_index[s]; tab->sample_index[s] = t; isl_mat_swap_rows(tab->samples, tab->n_outside, s); } tab->n_outside++; if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) { isl_tab_free(tab); return NULL; } return tab; } /* Record the current number of samples so that we can remove newer * samples during a rollback. */ int isl_tab_save_samples(struct isl_tab *tab) { union isl_tab_undo_val u; if (!tab) return -1; u.n = tab->n_sample; return push_union(tab, isl_tab_undo_saved_samples, u); } /* Mark row with index "row" as being redundant. * If we may need to undo the operation or if the row represents * a variable of the original problem, the row is kept, * but no longer considered when looking for a pivot row. * Otherwise, the row is simply removed. * * The row may be interchanged with some other row. If it * is interchanged with a later row, return 1. Otherwise return 0. * If the rows are checked in order in the calling function, * then a return value of 1 means that the row with the given * row number may now contain a different row that hasn't been checked yet. */ int isl_tab_mark_redundant(struct isl_tab *tab, int row) { struct isl_tab_var *var = isl_tab_var_from_row(tab, row); var->is_redundant = 1; isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1); if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) { if (tab->row_var[row] >= 0 && !var->is_nonneg) { var->is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0) return -1; } if (row != tab->n_redundant) swap_rows(tab, row, tab->n_redundant); tab->n_redundant++; return isl_tab_push_var(tab, isl_tab_undo_redundant, var); } else { if (row != tab->n_row - 1) swap_rows(tab, row, tab->n_row - 1); isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1; tab->n_row--; return 1; } } /* Mark "tab" as a rational tableau. * If it wasn't marked as a rational tableau already and if we may * need to undo changes, then arrange for the marking to be undone * during the undo. */ int isl_tab_mark_rational(struct isl_tab *tab) { if (!tab) return -1; if (!tab->rational && tab->need_undo) if (isl_tab_push(tab, isl_tab_undo_rational) < 0) return -1; tab->rational = 1; return 0; } int isl_tab_mark_empty(struct isl_tab *tab) { if (!tab) return -1; if (!tab->empty && tab->need_undo) if (isl_tab_push(tab, isl_tab_undo_empty) < 0) return -1; tab->empty = 1; return 0; } int isl_tab_freeze_constraint(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (var->frozen) return 0; if (var->index < 0) return 0; var->frozen = 1; if (tab->need_undo) return isl_tab_push_var(tab, isl_tab_undo_freeze, var); return 0; } /* Update the rows signs after a pivot of "row" and "col", with "row_sgn" * the original sign of the pivot element. * We only keep track of row signs during PILP solving and in this case * we only pivot a row with negative sign (meaning the value is always * non-positive) using a positive pivot element. * * For each row j, the new value of the parametric constant is equal to * * a_j0 - a_jc a_r0/a_rc * * where a_j0 is the original parametric constant, a_rc is the pivot element, * a_r0 is the parametric constant of the pivot row and a_jc is the * pivot column entry of the row j. * Since a_r0 is non-positive and a_rc is positive, the sign of row j * remains the same if a_jc has the same sign as the row j or if * a_jc is zero. In all other cases, we reset the sign to "unknown". */ static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn) { int i; struct isl_mat *mat = tab->mat; unsigned off = 2 + tab->M; if (!tab->row_sign) return; if (tab->row_sign[row] == 0) return; isl_assert(mat->ctx, row_sgn > 0, return); isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return); tab->row_sign[row] = isl_tab_row_pos; for (i = 0; i < tab->n_row; ++i) { int s; if (i == row) continue; s = isl_int_sgn(mat->row[i][off + col]); if (!s) continue; if (!tab->row_sign[i]) continue; if (s < 0 && tab->row_sign[i] == isl_tab_row_neg) continue; if (s > 0 && tab->row_sign[i] == isl_tab_row_pos) continue; tab->row_sign[i] = isl_tab_row_unknown; } } /* Given a row number "row" and a column number "col", pivot the tableau * such that the associated variables are interchanged. * The given row in the tableau expresses * * x_r = a_r0 + \sum_i a_ri x_i * * or * * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc * * Substituting this equality into the other rows * * x_j = a_j0 + \sum_i a_ji x_i * * with a_jc \ne 0, we obtain * * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc * * The tableau * * n_rc/d_r n_ri/d_r * n_jc/d_j n_ji/d_j * * where i is any other column and j is any other row, * is therefore transformed into * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * * The transformation is performed along the following steps * * d_r/n_rc n_ri/n_rc * n_jc/d_j n_ji/d_j * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/d_j n_ji/d_j * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * */ int isl_tab_pivot(struct isl_tab *tab, int row, int col) { int i, j; int sgn; int t; isl_ctx *ctx; struct isl_mat *mat = tab->mat; struct isl_tab_var *var; unsigned off = 2 + tab->M; ctx = isl_tab_get_ctx(tab); if (isl_ctx_next_operation(ctx) < 0) return -1; isl_int_swap(mat->row[row][0], mat->row[row][off + col]); sgn = isl_int_sgn(mat->row[row][0]); if (sgn < 0) { isl_int_neg(mat->row[row][0], mat->row[row][0]); isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]); } else for (j = 0; j < off - 1 + tab->n_col; ++j) { if (j == off - 1 + col) continue; isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]); } if (!isl_int_is_one(mat->row[row][0])) isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col); for (i = 0; i < tab->n_row; ++i) { if (i == row) continue; if (isl_int_is_zero(mat->row[i][off + col])) continue; isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]); for (j = 0; j < off - 1 + tab->n_col; ++j) { if (j == off - 1 + col) continue; isl_int_mul(mat->row[i][1 + j], mat->row[i][1 + j], mat->row[row][0]); isl_int_addmul(mat->row[i][1 + j], mat->row[i][off + col], mat->row[row][1 + j]); } isl_int_mul(mat->row[i][off + col], mat->row[i][off + col], mat->row[row][off + col]); if (!isl_int_is_one(mat->row[i][0])) isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col); } t = tab->row_var[row]; tab->row_var[row] = tab->col_var[col]; tab->col_var[col] = t; var = isl_tab_var_from_row(tab, row); var->is_row = 1; var->index = row; var = var_from_col(tab, col); var->is_row = 0; var->index = col; update_row_sign(tab, row, col, sgn); if (tab->in_undo) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (isl_int_is_zero(mat->row[i][off + col])) continue; if (!isl_tab_var_from_row(tab, i)->frozen && isl_tab_row_is_redundant(tab, i)) { int redo = isl_tab_mark_redundant(tab, i); if (redo < 0) return -1; if (redo) --i; } } return 0; } /* If "var" represents a column variable, then pivot is up (sgn > 0) * or down (sgn < 0) to a row. The variable is assumed not to be * unbounded in the specified direction. * If sgn = 0, then the variable is unbounded in both directions, * and we pivot with any row we can find. */ static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED; static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) { int r; unsigned off = 2 + tab->M; if (var->is_row) return 0; if (sign == 0) { for (r = tab->n_redundant; r < tab->n_row; ++r) if (!isl_int_is_zero(tab->mat->row[r][off+var->index])) break; isl_assert(tab->mat->ctx, r < tab->n_row, return -1); } else { r = pivot_row(tab, NULL, sign, var->index); isl_assert(tab->mat->ctx, r >= 0, return -1); } return isl_tab_pivot(tab, r, var->index); } /* Check whether all variables that are marked as non-negative * also have a non-negative sample value. This function is not * called from the current code but is useful during debugging. */ static void check_table(struct isl_tab *tab) __attribute__ ((unused)); static void check_table(struct isl_tab *tab) { int i; if (tab->empty) return; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var; var = isl_tab_var_from_row(tab, i); if (!var->is_nonneg) continue; if (tab->M) { isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][2]), abort()); if (isl_int_is_pos(tab->mat->row[i][2])) continue; } isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]), abort()); } } /* Return the sign of the maximal value of "var". * If the sign is not negative, then on return from this function, * the sample value will also be non-negative. * * If "var" is manifestly unbounded wrt positive values, we are done. * Otherwise, we pivot the variable up to a row if needed * Then we continue pivoting down until either * - no more down pivots can be performed * - the sample value is positive * - the variable is pivoted into a manifestly unbounded column */ static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; if (max_is_manifestly_unbounded(tab, var)) return 1; if (to_row(tab, var, 1) < 0) return -2; while (!isl_int_is_pos(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) return isl_int_sgn(tab->mat->row[var->index][1]); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (!var->is_row) /* manifestly unbounded */ return 1; } return 1; } int isl_tab_sign_of_max(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -2; var = &tab->con[con]; isl_assert(tab->mat->ctx, !var->is_redundant, return -2); isl_assert(tab->mat->ctx, !var->is_zero, return -2); return sign_of_max(tab, var); } static int row_is_neg(struct isl_tab *tab, int row) { if (!tab->M) return isl_int_is_neg(tab->mat->row[row][1]); if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; return isl_int_is_neg(tab->mat->row[row][1]); } static int row_sgn(struct isl_tab *tab, int row) { if (!tab->M) return isl_int_sgn(tab->mat->row[row][1]); if (!isl_int_is_zero(tab->mat->row[row][2])) return isl_int_sgn(tab->mat->row[row][2]); else return isl_int_sgn(tab->mat->row[row][1]); } /* Perform pivots until the row variable "var" has a non-negative * sample value or until no more upward pivots can be performed. * Return the sign of the sample value after the pivots have been * performed. */ static int restore_row(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; while (row_is_neg(tab, var->index)) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) break; if (isl_tab_pivot(tab, row, col) < 0) return -2; if (!var->is_row) /* manifestly unbounded */ return 1; } return row_sgn(tab, var->index); } /* Perform pivots until we are sure that the row variable "var" * can attain non-negative values. After return from this * function, "var" is still a row variable, but its sample * value may not be non-negative, even if the function returns 1. */ static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; while (isl_int_is_neg(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) break; if (row == var->index) /* manifestly unbounded */ return 1; if (isl_tab_pivot(tab, row, col) < 0) return -1; } return !isl_int_is_neg(tab->mat->row[var->index][1]); } /* Return a negative value if "var" can attain negative values. * Return a non-negative value otherwise. * * If "var" is manifestly unbounded wrt negative values, we are done. * Otherwise, if var is in a column, we can pivot it down to a row. * Then we continue pivoting down until either * - the pivot would result in a manifestly unbounded column * => we don't perform the pivot, but simply return -1 * - no more down pivots can be performed * - the sample value is negative * If the sample value becomes negative and the variable is supposed * to be nonnegative, then we undo the last pivot. * However, if the last pivot has made the pivoting variable * obviously redundant, then it may have moved to another row. * In that case we look for upward pivots until we reach a non-negative * value again. */ static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; struct isl_tab_var *pivot_var = NULL; if (min_is_manifestly_unbounded(tab, var)) return -1; if (!var->is_row) { col = var->index; row = pivot_row(tab, NULL, -1, col); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (var->is_redundant) return 0; if (isl_int_is_neg(tab->mat->row[var->index][1])) { if (var->is_nonneg) { if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -2; } else if (restore_row(tab, var) < -1) return -2; } return -1; } } if (var->is_redundant) return 0; while (!isl_int_is_neg(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) return -1; if (row == -1) return isl_int_sgn(tab->mat->row[var->index][1]); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (var->is_redundant) return 0; } if (pivot_var && var->is_nonneg) { /* pivot back to non-negative value */ if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -2; } else if (restore_row(tab, var) < -1) return -2; } return -1; } static int row_at_most_neg_one(struct isl_tab *tab, int row) { if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; } return isl_int_is_neg(tab->mat->row[row][1]) && isl_int_abs_ge(tab->mat->row[row][1], tab->mat->row[row][0]); } /* Return 1 if "var" can attain values <= -1. * Return 0 otherwise. * * If the variable "var" is supposed to be non-negative (is_nonneg is set), * then the sample value of "var" is assumed to be non-negative when the * the function is called. If 1 is returned then the constraint * is not redundant and the sample value is made non-negative again before * the function returns. */ int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; struct isl_tab_var *pivot_var; if (min_is_manifestly_unbounded(tab, var)) return 1; if (!var->is_row) { col = var->index; row = pivot_row(tab, NULL, -1, col); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (var->is_redundant) return 0; if (row_at_most_neg_one(tab, var->index)) { if (var->is_nonneg) { if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -1; } else if (restore_row(tab, var) < -1) return -1; } return 1; } } if (var->is_redundant) return 0; do { find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) { if (var->is_nonneg && restore_row(tab, var) < -1) return -1; return 1; } if (row == -1) return 0; pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (var->is_redundant) return 0; } while (!row_at_most_neg_one(tab, var->index)); if (var->is_nonneg) { /* pivot back to non-negative value */ if (!pivot_var->is_redundant && pivot_var->index == row) if (isl_tab_pivot(tab, row, col) < 0) return -1; if (restore_row(tab, var) < -1) return -1; } return 1; } /* Return 1 if "var" can attain values >= 1. * Return 0 otherwise. */ static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; isl_int *r; if (max_is_manifestly_unbounded(tab, var)) return 1; if (to_row(tab, var, 1) < 0) return -1; r = tab->mat->row[var->index]; while (isl_int_lt(r[1], r[0])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) return isl_int_ge(r[1], r[0]); if (row == var->index) /* manifestly unbounded */ return 1; if (isl_tab_pivot(tab, row, col) < 0) return -1; } return 1; } static void swap_cols(struct isl_tab *tab, int col1, int col2) { int t; unsigned off = 2 + tab->M; t = tab->col_var[col1]; tab->col_var[col1] = tab->col_var[col2]; tab->col_var[col2] = t; var_from_col(tab, col1)->index = col1; var_from_col(tab, col2)->index = col2; tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2); } /* Mark column with index "col" as representing a zero variable. * If we may need to undo the operation the column is kept, * but no longer considered. * Otherwise, the column is simply removed. * * The column may be interchanged with some other column. If it * is interchanged with a later column, return 1. Otherwise return 0. * If the columns are checked in order in the calling function, * then a return value of 1 means that the column with the given * column number may now contain a different column that * hasn't been checked yet. */ int isl_tab_kill_col(struct isl_tab *tab, int col) { var_from_col(tab, col)->is_zero = 1; if (tab->need_undo) { if (isl_tab_push_var(tab, isl_tab_undo_zero, var_from_col(tab, col)) < 0) return -1; if (col != tab->n_dead) swap_cols(tab, col, tab->n_dead); tab->n_dead++; return 0; } else { if (col != tab->n_col - 1) swap_cols(tab, col, tab->n_col - 1); var_from_col(tab, tab->n_col - 1)->index = -1; tab->n_col--; return 1; } } static int row_is_manifestly_non_integral(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; if (tab->M && !isl_int_eq(tab->mat->row[row][2], tab->mat->row[row][0])) return 0; if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) != -1) return 0; return !isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0]); } /* For integer tableaus, check if any of the coordinates are stuck * at a non-integral value. */ static int tab_is_manifestly_empty(struct isl_tab *tab) { int i; if (tab->empty) return 1; if (tab->rational) return 0; for (i = 0; i < tab->n_var; ++i) { if (!tab->var[i].is_row) continue; if (row_is_manifestly_non_integral(tab, tab->var[i].index)) return 1; } return 0; } /* Row variable "var" is non-negative and cannot attain any values * larger than zero. This means that the coefficients of the unrestricted * column variables are zero and that the coefficients of the non-negative * column variables are zero or negative. * Each of the non-negative variables with a negative coefficient can * then also be written as the negative sum of non-negative variables * and must therefore also be zero. * * If "temp_var" is set, then "var" is a temporary variable that * will be removed after this function returns and for which * no information is recorded on the undo stack. * Do not add any undo records involving this variable in this case * since the variable will have been removed before any future undo * operations. Also avoid marking the variable as redundant, * since that either adds an undo record or needlessly removes the row * (the caller will take care of removing the row). */ static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, int temp_var) WARN_UNUSED; static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var, int temp_var) { int j; struct isl_mat *mat = tab->mat; unsigned off = 2 + tab->M; if (!var->is_nonneg) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "expecting non-negative variable", return isl_stat_error); var->is_zero = 1; if (!temp_var && tab->need_undo) if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0) return isl_stat_error; for (j = tab->n_dead; j < tab->n_col; ++j) { int recheck; if (isl_int_is_zero(mat->row[var->index][off + j])) continue; if (isl_int_is_pos(mat->row[var->index][off + j])) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "row cannot have positive coefficients", return isl_stat_error); recheck = isl_tab_kill_col(tab, j); if (recheck < 0) return isl_stat_error; if (recheck) --j; } if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0) return isl_stat_error; if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0) return isl_stat_error; return isl_stat_ok; } /* Add a constraint to the tableau and allocate a row for it. * Return the index into the constraint array "con". * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ int isl_tab_allocate_con(struct isl_tab *tab) { int r; isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1); isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1); r = tab->n_con; tab->con[r].index = tab->n_row; tab->con[r].is_row = 1; tab->con[r].is_nonneg = 0; tab->con[r].is_zero = 0; tab->con[r].is_redundant = 0; tab->con[r].frozen = 0; tab->con[r].negated = 0; tab->row_var[tab->n_row] = ~r; tab->n_row++; tab->n_con++; if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0) return -1; return r; } /* Move the entries in tab->var up one position, starting at "first", * creating room for an extra entry at position "first". * Since some of the entries of tab->row_var and tab->col_var contain * indices into this array, they have to be updated accordingly. */ static int var_insert_entry(struct isl_tab *tab, int first) { int i; if (tab->n_var >= tab->max_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "not enough room for new variable", return -1); if (first > tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "invalid initial position", return -1); for (i = tab->n_var - 1; i >= first; --i) { tab->var[i + 1] = tab->var[i]; if (tab->var[i + 1].is_row) tab->row_var[tab->var[i + 1].index]++; else tab->col_var[tab->var[i + 1].index]++; } tab->n_var++; return 0; } /* Drop the entry at position "first" in tab->var, moving all * subsequent entries down. * Since some of the entries of tab->row_var and tab->col_var contain * indices into this array, they have to be updated accordingly. */ static int var_drop_entry(struct isl_tab *tab, int first) { int i; if (first >= tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "invalid initial position", return -1); tab->n_var--; for (i = first; i < tab->n_var; ++i) { tab->var[i] = tab->var[i + 1]; if (tab->var[i + 1].is_row) tab->row_var[tab->var[i].index]--; else tab->col_var[tab->var[i].index]--; } return 0; } /* Add a variable to the tableau at position "r" and allocate a column for it. * Return the index into the variable array "var", i.e., "r", * or -1 on error. */ int isl_tab_insert_var(struct isl_tab *tab, int r) { int i; unsigned off = 2 + tab->M; isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1); if (var_insert_entry(tab, r) < 0) return -1; tab->var[r].index = tab->n_col; tab->var[r].is_row = 0; tab->var[r].is_nonneg = 0; tab->var[r].is_zero = 0; tab->var[r].is_redundant = 0; tab->var[r].frozen = 0; tab->var[r].negated = 0; tab->col_var[tab->n_col] = r; for (i = 0; i < tab->n_row; ++i) isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0); tab->n_col++; if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0) return -1; return r; } /* Add a variable to the tableau and allocate a column for it. * Return the index into the variable array "var". */ int isl_tab_allocate_var(struct isl_tab *tab) { if (!tab) return -1; return isl_tab_insert_var(tab, tab->n_var); } /* Add a row to the tableau. The row is given as an affine combination * of the original variables and needs to be expressed in terms of the * column variables. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. * * We add each term in turn. * If r = n/d_r is the current sum and we need to add k x, then * if x is a column variable, we increase the numerator of * this column by k d_r * if x = f/d_x is a row variable, then the new representation of r is * * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f * --- + --- = ------------------- = ------------------- * d_r d_r d_r d_x/g m * * with g the gcd of d_r and d_x and m the lcm of d_r and d_x. * * If tab->M is set, then, internally, each variable x is represented * as x' - M. We then also need no subtract k d_r from the coefficient of M. */ int isl_tab_add_row(struct isl_tab *tab, isl_int *line) { int i; int r; isl_int *row; isl_int a, b; unsigned off = 2 + tab->M; r = isl_tab_allocate_con(tab); if (r < 0) return -1; isl_int_init(a); isl_int_init(b); row = tab->mat->row[tab->con[r].index]; isl_int_set_si(row[0], 1); isl_int_set(row[1], line[0]); isl_seq_clr(row + 2, tab->M + tab->n_col); for (i = 0; i < tab->n_var; ++i) { if (tab->var[i].is_zero) continue; if (tab->var[i].is_row) { isl_int_lcm(a, row[0], tab->mat->row[tab->var[i].index][0]); isl_int_swap(a, row[0]); isl_int_divexact(a, row[0], a); isl_int_divexact(b, row[0], tab->mat->row[tab->var[i].index][0]); isl_int_mul(b, b, line[1 + i]); isl_seq_combine(row + 1, a, row + 1, b, tab->mat->row[tab->var[i].index] + 1, 1 + tab->M + tab->n_col); } else isl_int_addmul(row[off + tab->var[i].index], line[1 + i], row[0]); if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div) isl_int_submul(row[2], line[1 + i], row[0]); } isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col); isl_int_clear(a); isl_int_clear(b); if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_unknown; return r; } static int drop_row(struct isl_tab *tab, int row) { isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1); if (row != tab->n_row - 1) swap_rows(tab, row, tab->n_row - 1); tab->n_row--; tab->n_con--; return 0; } /* Drop the variable in column "col" along with the column. * The column is removed first because it may need to be moved * into the last position and this process requires * the contents of the col_var array in a state * before the removal of the variable. */ static int drop_col(struct isl_tab *tab, int col) { int var; var = tab->col_var[col]; if (col != tab->n_col - 1) swap_cols(tab, col, tab->n_col - 1); tab->n_col--; if (var_drop_entry(tab, var) < 0) return -1; return 0; } /* Add inequality "ineq" and check if it conflicts with the * previously added constraints or if it is obviously redundant. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq) { int r; int sgn; isl_int cst; if (!tab) return -1; if (tab->bmap) { struct isl_basic_map *bmap = tab->bmap; isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1); isl_assert(tab->mat->ctx, tab->n_con == bmap->n_eq + bmap->n_ineq, return -1); tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; if (!tab->bmap) return -1; } if (tab->cone) { isl_int_init(cst); isl_int_set_si(cst, 0); isl_int_swap(ineq[0], cst); } r = isl_tab_add_row(tab, ineq); if (tab->cone) { isl_int_swap(ineq[0], cst); isl_int_clear(cst); } if (r < 0) return -1; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) return -1; if (isl_tab_row_is_redundant(tab, tab->con[r].index)) { if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) return -1; return 0; } sgn = restore_row(tab, &tab->con[r]); if (sgn < -1) return -1; if (sgn < 0) return isl_tab_mark_empty(tab); if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index)) if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) return -1; return 0; } /* Pivot a non-negative variable down until it reaches the value zero * and then pivot the variable into a column position. */ static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; static int to_col(struct isl_tab *tab, struct isl_tab_var *var) { int i; int row, col; unsigned off = 2 + tab->M; if (!var->is_row) return 0; while (isl_int_is_pos(tab->mat->row[var->index][1])) { find_pivot(tab, var, NULL, -1, &row, &col); isl_assert(tab->mat->ctx, row != -1, return -1); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (!var->is_row) return 0; } for (i = tab->n_dead; i < tab->n_col; ++i) if (!isl_int_is_zero(tab->mat->row[var->index][off + i])) break; isl_assert(tab->mat->ctx, i < tab->n_col, return -1); if (isl_tab_pivot(tab, var->index, i) < 0) return -1; return 0; } /* We assume Gaussian elimination has been performed on the equalities. * The equalities can therefore never conflict. * Adding the equalities is currently only really useful for a later call * to isl_tab_ineq_type. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq) { int i; int r; if (!tab) return NULL; r = isl_tab_add_row(tab, eq); if (r < 0) goto error; r = tab->con[r].index; i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead, tab->n_col - tab->n_dead); isl_assert(tab->mat->ctx, i >= 0, goto error); i += tab->n_dead; if (isl_tab_pivot(tab, r, i) < 0) goto error; if (isl_tab_kill_col(tab, i) < 0) goto error; tab->n_eq++; return tab; error: isl_tab_free(tab); return NULL; } static int row_is_manifestly_zero(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; if (!isl_int_is_zero(tab->mat->row[row][1])) return 0; if (tab->M && !isl_int_is_zero(tab->mat->row[row][2])) return 0; return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Add an equality that is known to be valid for the given tableau. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq) { struct isl_tab_var *var; int r; if (!tab) return -1; r = isl_tab_add_row(tab, eq); if (r < 0) return -1; var = &tab->con[r]; r = var->index; if (row_is_manifestly_zero(tab, r)) { var->is_zero = 1; if (isl_tab_mark_redundant(tab, r) < 0) return -1; return 0; } if (isl_int_is_neg(tab->mat->row[r][1])) { isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1, 1 + tab->n_col); var->negated = 1; } var->is_nonneg = 1; if (to_col(tab, var) < 0) return -1; var->is_nonneg = 0; if (isl_tab_kill_col(tab, var->index) < 0) return -1; return 0; } /* Add a zero row to "tab" and return the corresponding index * in the constraint array. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ static int add_zero_row(struct isl_tab *tab) { int r; isl_int *row; r = isl_tab_allocate_con(tab); if (r < 0) return -1; row = tab->mat->row[tab->con[r].index]; isl_seq_clr(row + 1, 1 + tab->M + tab->n_col); isl_int_set_si(row[0], 1); return r; } /* Add equality "eq" and check if it conflicts with the * previously added constraints or if it is obviously redundant. * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. * If tab->bmap is set, then two rows are needed instead of one. */ int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq) { struct isl_tab_undo *snap = NULL; struct isl_tab_var *var; int r; int row; int sgn; isl_int cst; if (!tab) return -1; isl_assert(tab->mat->ctx, !tab->M, return -1); if (tab->need_undo) snap = isl_tab_snap(tab); if (tab->cone) { isl_int_init(cst); isl_int_set_si(cst, 0); isl_int_swap(eq[0], cst); } r = isl_tab_add_row(tab, eq); if (tab->cone) { isl_int_swap(eq[0], cst); isl_int_clear(cst); } if (r < 0) return -1; var = &tab->con[r]; row = var->index; if (row_is_manifestly_zero(tab, row)) { if (snap) return isl_tab_rollback(tab, snap); return drop_row(tab, row); } if (tab->bmap) { tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; isl_seq_neg(eq, eq, 1 + tab->n_var); tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); isl_seq_neg(eq, eq, 1 + tab->n_var); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; if (!tab->bmap) return -1; if (add_zero_row(tab) < 0) return -1; } sgn = isl_int_sgn(tab->mat->row[row][1]); if (sgn > 0) { isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1, 1 + tab->n_col); var->negated = 1; sgn = -1; } if (sgn < 0) { sgn = sign_of_max(tab, var); if (sgn < -1) return -1; if (sgn < 0) { if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } } var->is_nonneg = 1; if (to_col(tab, var) < 0) return -1; var->is_nonneg = 0; if (isl_tab_kill_col(tab, var->index) < 0) return -1; return 0; } /* Construct and return an inequality that expresses an upper bound * on the given div. * In particular, if the div is given by * * d = floor(e/m) * * then the inequality expresses * * m d <= e */ static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div) { unsigned total; unsigned div_pos; struct isl_vec *ineq; if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); div_pos = 1 + total - bmap->n_div + div; ineq = isl_vec_alloc(bmap->ctx, 1 + total); if (!ineq) return NULL; isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total); isl_int_neg(ineq->el[div_pos], bmap->div[div][0]); return ineq; } /* For a div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Note that the second constraint is the negation of * * f - m d >= m * * If add_ineq is not NULL, then this function is used * instead of isl_tab_add_ineq to effectively add the inequalities. * * This function assumes that at least two more rows and at least * two more elements in the constraint array are available in the tableau. */ static int add_div_constraints(struct isl_tab *tab, unsigned div, int (*add_ineq)(void *user, isl_int *), void *user) { unsigned total; unsigned div_pos; struct isl_vec *ineq; total = isl_basic_map_total_dim(tab->bmap); div_pos = 1 + total - tab->bmap->n_div + div; ineq = ineq_for_div(tab->bmap, div); if (!ineq) goto error; if (add_ineq) { if (add_ineq(user, ineq->el) < 0) goto error; } else { if (isl_tab_add_ineq(tab, ineq->el) < 0) goto error; } isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total); isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]); isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); if (add_ineq) { if (add_ineq(user, ineq->el) < 0) goto error; } else { if (isl_tab_add_ineq(tab, ineq->el) < 0) goto error; } isl_vec_free(ineq); return 0; error: isl_vec_free(ineq); return -1; } /* Check whether the div described by "div" is obviously non-negative. * If we are using a big parameter, then we will encode the div * as div' = M + div, which is always non-negative. * Otherwise, we check whether div is a non-negative affine combination * of non-negative variables. */ static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div) { int i; if (tab->M) return 1; if (isl_int_is_neg(div->el[1])) return 0; for (i = 0; i < tab->n_var; ++i) { if (isl_int_is_neg(div->el[2 + i])) return 0; if (isl_int_is_zero(div->el[2 + i])) continue; if (!tab->var[i].is_nonneg) return 0; } return 1; } /* Insert an extra div, prescribed by "div", to the tableau and * the associated bmap (which is assumed to be non-NULL). * The extra integer division is inserted at (tableau) position "pos". * Return "pos" or -1 if an error occurred. * * If add_ineq is not NULL, then this function is used instead * of isl_tab_add_ineq to add the div constraints. * This complication is needed because the code in isl_tab_pip * wants to perform some extra processing when an inequality * is added to the tableau. */ int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div, int (*add_ineq)(void *user, isl_int *), void *user) { int r; int nonneg; int n_div, o_div; if (!tab || !div) return -1; if (div->size != 1 + 1 + tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "unexpected size", return -1); isl_assert(tab->mat->ctx, tab->bmap, return -1); n_div = isl_basic_map_dim(tab->bmap, isl_dim_div); o_div = tab->n_var - n_div; if (pos < o_div || pos > tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "invalid position", return -1); nonneg = div_is_nonneg(tab, div); if (isl_tab_extend_cons(tab, 3) < 0) return -1; if (isl_tab_extend_vars(tab, 1) < 0) return -1; r = isl_tab_insert_var(tab, pos); if (r < 0) return -1; if (nonneg) tab->var[r].is_nonneg = 1; tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div); if (!tab->bmap) return -1; if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0) return -1; if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0) return -1; return r; } /* Add an extra div, prescribed by "div", to the tableau and * the associated bmap (which is assumed to be non-NULL). */ int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div) { if (!tab) return -1; return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL); } /* If "track" is set, then we want to keep track of all constraints in tab * in its bmap field. This field is initialized from a copy of "bmap", * so we need to make sure that all constraints in "bmap" also appear * in the constructed tab. */ __isl_give struct isl_tab *isl_tab_from_basic_map( __isl_keep isl_basic_map *bmap, int track) { int i; struct isl_tab *tab; if (!bmap) return NULL; tab = isl_tab_alloc(bmap->ctx, isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1, isl_basic_map_total_dim(bmap), 0); if (!tab) return NULL; tab->preserve = track; tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { if (isl_tab_mark_empty(tab) < 0) goto error; goto done; } for (i = 0; i < bmap->n_eq; ++i) { tab = add_eq(tab, bmap->eq[i]); if (!tab) return tab; } for (i = 0; i < bmap->n_ineq; ++i) { if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0) goto error; if (tab->empty) goto done; } done: if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } __isl_give struct isl_tab *isl_tab_from_basic_set( __isl_keep isl_basic_set *bset, int track) { return isl_tab_from_basic_map(bset, track); } /* Construct a tableau corresponding to the recession cone of "bset". */ struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset, int parametric) { isl_int cst; int i; struct isl_tab *tab; unsigned offset = 0; if (!bset) return NULL; if (parametric) offset = isl_basic_set_dim(bset, isl_dim_param); tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq, isl_basic_set_total_dim(bset) - offset, 0); if (!tab) return NULL; tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); tab->cone = 1; isl_int_init(cst); isl_int_set_si(cst, 0); for (i = 0; i < bset->n_eq; ++i) { isl_int_swap(bset->eq[i][offset], cst); if (offset > 0) { if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0) goto error; } else tab = add_eq(tab, bset->eq[i]); isl_int_swap(bset->eq[i][offset], cst); if (!tab) goto done; } for (i = 0; i < bset->n_ineq; ++i) { int r; isl_int_swap(bset->ineq[i][offset], cst); r = isl_tab_add_row(tab, bset->ineq[i] + offset); isl_int_swap(bset->ineq[i][offset], cst); if (r < 0) goto error; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) goto error; } done: isl_int_clear(cst); return tab; error: isl_int_clear(cst); isl_tab_free(tab); return NULL; } /* Assuming "tab" is the tableau of a cone, check if the cone is * bounded, i.e., if it is empty or only contains the origin. */ int isl_tab_cone_is_bounded(struct isl_tab *tab) { int i; if (!tab) return -1; if (tab->empty) return 1; if (tab->n_dead == tab->n_col) return 1; for (;;) { for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var; int sgn; var = isl_tab_var_from_row(tab, i); if (!var->is_nonneg) continue; sgn = sign_of_max(tab, var); if (sgn < -1) return -1; if (sgn != 0) return 0; if (close_row(tab, var, 0) < 0) return -1; break; } if (tab->n_dead == tab->n_col) return 1; if (i == tab->n_row) return 0; } } int isl_tab_sample_is_integer(struct isl_tab *tab) { int i; if (!tab) return -1; for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) continue; row = tab->var[i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0])) return 0; } return 1; } static struct isl_vec *extract_integer_sample(struct isl_tab *tab) { int i; struct isl_vec *vec; vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!vec) return NULL; isl_int_set_si(vec->block.data[0], 1); for (i = 0; i < tab->n_var; ++i) { if (!tab->var[i].is_row) isl_int_set_si(vec->block.data[1 + i], 0); else { int row = tab->var[i].index; isl_int_divexact(vec->block.data[1 + i], tab->mat->row[row][1], tab->mat->row[row][0]); } } return vec; } struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab) { int i; struct isl_vec *vec; isl_int m; if (!tab) return NULL; vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!vec) return NULL; isl_int_init(m); isl_int_set_si(vec->block.data[0], 1); for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) { isl_int_set_si(vec->block.data[1 + i], 0); continue; } row = tab->var[i].index; isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]); isl_int_divexact(m, tab->mat->row[row][0], m); isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i); isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]); isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]); } vec = isl_vec_normalize(vec); isl_int_clear(m); return vec; } /* Update "bmap" based on the results of the tableau "tab". * In particular, implicit equalities are made explicit, redundant constraints * are removed and if the sample value happens to be integer, it is stored * in "bmap" (unless "bmap" already had an integer sample). * * The tableau is assumed to have been created from "bmap" using * isl_tab_from_basic_map. */ struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap, struct isl_tab *tab) { int i; unsigned n_eq; if (!bmap) return NULL; if (!tab) return bmap; n_eq = tab->n_eq; if (tab->empty) bmap = isl_basic_map_set_to_empty(bmap); else for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_tab_is_equality(tab, n_eq + i)) isl_basic_map_inequality_to_equality(bmap, i); else if (isl_tab_is_redundant(tab, n_eq + i)) isl_basic_map_drop_inequality(bmap, i); } if (bmap->n_eq != n_eq) bmap = isl_basic_map_gauss(bmap, NULL); if (!tab->rational && bmap && !bmap->sample && isl_tab_sample_is_integer(tab)) bmap->sample = extract_integer_sample(tab); return bmap; } struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset, struct isl_tab *tab) { return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset), tab)); } /* Drop the last constraint added to "tab" in position "r". * The constraint is expected to have remained in a row. */ static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r) { if (!tab->con[r].is_row) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "row unexpectedly moved to column", return isl_stat_error); if (r + 1 != tab->n_con) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "additional constraints added", return isl_stat_error); if (drop_row(tab, tab->con[r].index) < 0) return isl_stat_error; return isl_stat_ok; } /* Given a non-negative variable "var", temporarily add a new non-negative * variable that is the opposite of "var", ensuring that "var" can only attain * the value zero. The new variable is removed again before this function * returns. However, the effect of forcing "var" to be zero remains. * If var = n/d is a row variable, then the new variable = -n/d. * If var is a column variables, then the new variable = -var. * If the new variable cannot attain non-negative values, then * the resulting tableau is empty. * Otherwise, we know the value will be zero and we close the row. */ static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var) { unsigned r; isl_int *row; int sgn; unsigned off = 2 + tab->M; if (var->is_zero) return isl_stat_ok; if (var->is_redundant || !var->is_nonneg) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "expecting non-redundant non-negative variable", return isl_stat_error); if (isl_tab_extend_cons(tab, 1) < 0) return isl_stat_error; r = tab->n_con; tab->con[r].index = tab->n_row; tab->con[r].is_row = 1; tab->con[r].is_nonneg = 0; tab->con[r].is_zero = 0; tab->con[r].is_redundant = 0; tab->con[r].frozen = 0; tab->con[r].negated = 0; tab->row_var[tab->n_row] = ~r; row = tab->mat->row[tab->n_row]; if (var->is_row) { isl_int_set(row[0], tab->mat->row[var->index][0]); isl_seq_neg(row + 1, tab->mat->row[var->index] + 1, 1 + tab->n_col); } else { isl_int_set_si(row[0], 1); isl_seq_clr(row + 1, 1 + tab->n_col); isl_int_set_si(row[off + var->index], -1); } tab->n_row++; tab->n_con++; sgn = sign_of_max(tab, &tab->con[r]); if (sgn < -1) return isl_stat_error; if (sgn < 0) { if (drop_last_con_in_row(tab, r) < 0) return isl_stat_error; if (isl_tab_mark_empty(tab) < 0) return isl_stat_error; return isl_stat_ok; } tab->con[r].is_nonneg = 1; /* sgn == 0 */ if (close_row(tab, &tab->con[r], 1) < 0) return isl_stat_error; if (drop_last_con_in_row(tab, r) < 0) return isl_stat_error; return isl_stat_ok; } /* Given a tableau "tab" and an inequality constraint "con" of the tableau, * relax the inequality by one. That is, the inequality r >= 0 is replaced * by r' = r + 1 >= 0. * If r is a row variable, we simply increase the constant term by one * (taking into account the denominator). * If r is a column variable, then we need to modify each row that * refers to r = r' - 1 by substituting this equality, effectively * subtracting the coefficient of the column from the constant. * We should only do this if the minimum is manifestly unbounded, * however. Otherwise, we may end up with negative sample values * for non-negative variables. * So, if r is a column variable with a minimum that is not * manifestly unbounded, then we need to move it to a row. * However, the sample value of this row may be negative, * even after the relaxation, so we need to restore it. * We therefore prefer to pivot a column up to a row, if possible. */ int isl_tab_relax(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (var->is_row && (var->index < 0 || var->index < tab->n_redundant)) isl_die(tab->mat->ctx, isl_error_invalid, "cannot relax redundant constraint", return -1); if (!var->is_row && (var->index < 0 || var->index < tab->n_dead)) isl_die(tab->mat->ctx, isl_error_invalid, "cannot relax dead constraint", return -1); if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; if (!var->is_row && !min_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, -1) < 0) return -1; if (var->is_row) { isl_int_add(tab->mat->row[var->index][1], tab->mat->row[var->index][1], tab->mat->row[var->index][0]); if (restore_row(tab, var) < 0) return -1; } else { int i; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1], tab->mat->row[i][off + var->index]); } } if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0) return -1; return 0; } /* Replace the variable v at position "pos" in the tableau "tab" * by v' = v + shift. * * If the variable is in a column, then we first check if we can * simply plug in v = v' - shift. The effect on a row with * coefficient f/d for variable v is that the constant term c/d * is replaced by (c - f * shift)/d. If shift is positive and * f is negative for each row that needs to remain non-negative, * then this is clearly safe. In other words, if the minimum of v * is manifestly unbounded, then we can keep v in a column position. * Otherwise, we can pivot it down to a row. * Similarly, if shift is negative, we need to check if the maximum * of is manifestly unbounded. * * If the variable is in a row (from the start or after pivoting), * then the constant term c/d is replaced by (c + d * shift)/d. */ int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift) { struct isl_tab_var *var; if (!tab) return -1; if (isl_int_is_zero(shift)) return 0; var = &tab->var[pos]; if (!var->is_row) { if (isl_int_is_neg(shift)) { if (!max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; } else { if (!min_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, -1) < 0) return -1; } } if (var->is_row) { isl_int_addmul(tab->mat->row[var->index][1], shift, tab->mat->row[var->index][0]); } else { int i; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_submul(tab->mat->row[i][1], shift, tab->mat->row[i][off + var->index]); } } return 0; } /* Remove the sign constraint from constraint "con". * * If the constraint variable was originally marked non-negative, * then we make sure we mark it non-negative again during rollback. */ int isl_tab_unrestrict(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (!var->is_nonneg) return 0; var->is_nonneg = 0; if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0) return -1; return 0; } int isl_tab_select_facet(struct isl_tab *tab, int con) { if (!tab) return -1; return cut_to_hyperplane(tab, &tab->con[con]); } static int may_be_equality(struct isl_tab *tab, int row) { return tab->rational ? isl_int_is_zero(tab->mat->row[row][1]) : isl_int_lt(tab->mat->row[row][1], tab->mat->row[row][0]); } /* Check for (near) equalities among the constraints. * A constraint is an equality if it is non-negative and if * its maximal value is either * - zero (in case of rational tableaus), or * - strictly less than 1 (in case of integer tableaus) * * We first mark all non-redundant and non-dead variables that * are not frozen and not obviously not an equality. * Then we iterate over all marked variables if they can attain * any values larger than zero or at least one. * If the maximal value is zero, we mark any column variables * that appear in the row as being zero and mark the row as being redundant. * Otherwise, if the maximal value is strictly less than one (and the * tableau is integer), then we restrict the value to being zero * by adding an opposite non-negative variable. */ int isl_tab_detect_implicit_equalities(struct isl_tab *tab) { int i; unsigned n_marked; if (!tab) return -1; if (tab->empty) return 0; if (tab->n_dead == tab->n_col) return 0; n_marked = 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var = isl_tab_var_from_row(tab, i); var->marked = !var->frozen && var->is_nonneg && may_be_equality(tab, i); if (var->marked) n_marked++; } for (i = tab->n_dead; i < tab->n_col; ++i) { struct isl_tab_var *var = var_from_col(tab, i); var->marked = !var->frozen && var->is_nonneg; if (var->marked) n_marked++; } while (n_marked) { struct isl_tab_var *var; int sgn; for (i = tab->n_redundant; i < tab->n_row; ++i) { var = isl_tab_var_from_row(tab, i); if (var->marked) break; } if (i == tab->n_row) { for (i = tab->n_dead; i < tab->n_col; ++i) { var = var_from_col(tab, i); if (var->marked) break; } if (i == tab->n_col) break; } var->marked = 0; n_marked--; sgn = sign_of_max(tab, var); if (sgn < 0) return -1; if (sgn == 0) { if (close_row(tab, var, 0) < 0) return -1; } else if (!tab->rational && !at_least_one(tab, var)) { if (cut_to_hyperplane(tab, var) < 0) return -1; return isl_tab_detect_implicit_equalities(tab); } for (i = tab->n_redundant; i < tab->n_row; ++i) { var = isl_tab_var_from_row(tab, i); if (!var->marked) continue; if (may_be_equality(tab, i)) continue; var->marked = 0; n_marked--; } } return 0; } /* Update the element of row_var or col_var that corresponds to * constraint tab->con[i] to a move from position "old" to position "i". */ static int update_con_after_move(struct isl_tab *tab, int i, int old) { int *p; int index; index = tab->con[i].index; if (index == -1) return 0; p = tab->con[i].is_row ? tab->row_var : tab->col_var; if (p[index] != ~old) isl_die(tab->mat->ctx, isl_error_internal, "broken internal state", return -1); p[index] = ~i; return 0; } /* Rotate the "n" constraints starting at "first" to the right, * putting the last constraint in the position of the first constraint. */ static int rotate_constraints(struct isl_tab *tab, int first, int n) { int i, last; struct isl_tab_var var; if (n <= 1) return 0; last = first + n - 1; var = tab->con[last]; for (i = last; i > first; --i) { tab->con[i] = tab->con[i - 1]; if (update_con_after_move(tab, i, i - 1) < 0) return -1; } tab->con[first] = var; if (update_con_after_move(tab, first, last) < 0) return -1; return 0; } /* Make the equalities that are implicit in "bmap" but that have been * detected in the corresponding "tab" explicit in "bmap" and update * "tab" to reflect the new order of the constraints. * * In particular, if inequality i is an implicit equality then * isl_basic_map_inequality_to_equality will move the inequality * in front of the other equality and it will move the last inequality * in the position of inequality i. * In the tableau, the inequalities of "bmap" are stored after the equalities * and so the original order * * E E E E E A A A I B B B B L * * is changed into * * I E E E E E A A A L B B B B * * where I is the implicit equality, the E are equalities, * the A inequalities before I, the B inequalities after I and * L the last inequality. * We therefore need to rotate to the right two sets of constraints, * those up to and including I and those after I. * * If "tab" contains any constraints that are not in "bmap" then they * appear after those in "bmap" and they should be left untouched. * * Note that this function leaves "bmap" in a temporary state * as it does not call isl_basic_map_gauss. Calling this function * is the responsibility of the caller. */ __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab, __isl_take isl_basic_map *bmap) { int i; if (!tab || !bmap) return isl_basic_map_free(bmap); if (tab->empty) return bmap; for (i = bmap->n_ineq - 1; i >= 0; --i) { if (!isl_tab_is_equality(tab, bmap->n_eq + i)) continue; isl_basic_map_inequality_to_equality(bmap, i); if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0) return isl_basic_map_free(bmap); if (rotate_constraints(tab, tab->n_eq + i + 1, bmap->n_ineq - i) < 0) return isl_basic_map_free(bmap); tab->n_eq++; } return bmap; } static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var) { if (!tab) return -1; if (tab->rational) { int sgn = sign_of_min(tab, var); if (sgn < -1) return -1; return sgn >= 0; } else { int irred = isl_tab_min_at_most_neg_one(tab, var); if (irred < 0) return -1; return !irred; } } /* Return an isl_tab_var that has been marked or NULL if no such * variable can be found. * The marked field has only been set for variables that * appear in non-redundant rows or non-dead columns. * * Pick the last constraint variable that is marked and * that appears in either a non-redundant row or a non-dead columns. * Since the returned variable is tested for being a redundant constraint, * there is no need to return any tab variable that corresponds to a variable. */ static struct isl_tab_var *select_marked(struct isl_tab *tab) { int i; struct isl_tab_var *var; for (i = tab->n_con - 1; i >= 0; --i) { var = &tab->con[i]; if (var->index < 0) continue; if (var->is_row && var->index < tab->n_redundant) continue; if (!var->is_row && var->index < tab->n_dead) continue; if (var->marked) return var; } return NULL; } /* Check for (near) redundant constraints. * A constraint is redundant if it is non-negative and if * its minimal value (temporarily ignoring the non-negativity) is either * - zero (in case of rational tableaus), or * - strictly larger than -1 (in case of integer tableaus) * * We first mark all non-redundant and non-dead variables that * are not frozen and not obviously negatively unbounded. * Then we iterate over all marked variables if they can attain * any values smaller than zero or at most negative one. * If not, we mark the row as being redundant (assuming it hasn't * been detected as being obviously redundant in the mean time). */ int isl_tab_detect_redundant(struct isl_tab *tab) { int i; unsigned n_marked; if (!tab) return -1; if (tab->empty) return 0; if (tab->n_redundant == tab->n_row) return 0; n_marked = 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var = isl_tab_var_from_row(tab, i); var->marked = !var->frozen && var->is_nonneg; if (var->marked) n_marked++; } for (i = tab->n_dead; i < tab->n_col; ++i) { struct isl_tab_var *var = var_from_col(tab, i); var->marked = !var->frozen && var->is_nonneg && !min_is_manifestly_unbounded(tab, var); if (var->marked) n_marked++; } while (n_marked) { struct isl_tab_var *var; int red; var = select_marked(tab); if (!var) break; var->marked = 0; n_marked--; red = con_is_redundant(tab, var); if (red < 0) return -1; if (red && !var->is_redundant) if (isl_tab_mark_redundant(tab, var->index) < 0) return -1; for (i = tab->n_dead; i < tab->n_col; ++i) { var = var_from_col(tab, i); if (!var->marked) continue; if (!min_is_manifestly_unbounded(tab, var)) continue; var->marked = 0; n_marked--; } } return 0; } int isl_tab_is_equality(struct isl_tab *tab, int con) { int row; unsigned off; if (!tab) return -1; if (tab->con[con].is_zero) return 1; if (tab->con[con].is_redundant) return 0; if (!tab->con[con].is_row) return tab->con[con].index < tab->n_dead; row = tab->con[con].index; off = 2 + tab->M; return isl_int_is_zero(tab->mat->row[row][1]) && (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) && isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Return the minimal value of the affine expression "f" with denominator * "denom" in *opt, *opt_denom, assuming the tableau is not empty and * the expression cannot attain arbitrarily small values. * If opt_denom is NULL, then *opt is rounded up to the nearest integer. * The return value reflects the nature of the result (empty, unbounded, * minimal value returned in *opt). * * This function assumes that at least one more row and at least * one more element in the constraint array are available in the tableau. */ enum isl_lp_result isl_tab_min(struct isl_tab *tab, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, unsigned flags) { int r; enum isl_lp_result res = isl_lp_ok; struct isl_tab_var *var; struct isl_tab_undo *snap; if (!tab) return isl_lp_error; if (tab->empty) return isl_lp_empty; snap = isl_tab_snap(tab); r = isl_tab_add_row(tab, f); if (r < 0) return isl_lp_error; var = &tab->con[r]; for (;;) { int row, col; find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) { res = isl_lp_unbounded; break; } if (row == -1) break; if (isl_tab_pivot(tab, row, col) < 0) return isl_lp_error; } isl_int_mul(tab->mat->row[var->index][0], tab->mat->row[var->index][0], denom); if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) { int i; isl_vec_free(tab->dual); tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con); if (!tab->dual) return isl_lp_error; isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]); for (i = 0; i < tab->n_con; ++i) { int pos; if (tab->con[i].is_row) { isl_int_set_si(tab->dual->el[1 + i], 0); continue; } pos = 2 + tab->M + tab->con[i].index; if (tab->con[i].negated) isl_int_neg(tab->dual->el[1 + i], tab->mat->row[var->index][pos]); else isl_int_set(tab->dual->el[1 + i], tab->mat->row[var->index][pos]); } } if (opt && res == isl_lp_ok) { if (opt_denom) { isl_int_set(*opt, tab->mat->row[var->index][1]); isl_int_set(*opt_denom, tab->mat->row[var->index][0]); } else isl_int_cdiv_q(*opt, tab->mat->row[var->index][1], tab->mat->row[var->index][0]); } if (isl_tab_rollback(tab, snap) < 0) return isl_lp_error; return res; } /* Is the constraint at position "con" marked as being redundant? * If it is marked as representing an equality, then it is not * considered to be redundant. * Note that isl_tab_mark_redundant marks both the isl_tab_var as * redundant and moves the corresponding row into the first * tab->n_redundant positions (or removes the row, assigning it index -1), * so the final test is actually redundant itself. */ int isl_tab_is_redundant(struct isl_tab *tab, int con) { if (!tab) return -1; if (con < 0 || con >= tab->n_con) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "position out of bounds", return -1); if (tab->con[con].is_zero) return 0; if (tab->con[con].is_redundant) return 1; return tab->con[con].is_row && tab->con[con].index < tab->n_redundant; } /* Take a snapshot of the tableau that can be restored by a call to * isl_tab_rollback. */ struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab) { if (!tab) return NULL; tab->need_undo = 1; return tab->top; } /* Does "tab" need to keep track of undo information? * That is, was a snapshot taken that may need to be restored? */ isl_bool isl_tab_need_undo(struct isl_tab *tab) { if (!tab) return isl_bool_error; return tab->need_undo; } /* Remove all tracking of undo information from "tab", invalidating * any snapshots that may have been taken of the tableau. * Since all snapshots have been invalidated, there is also * no need to start keeping track of undo information again. */ void isl_tab_clear_undo(struct isl_tab *tab) { if (!tab) return; free_undo(tab); tab->need_undo = 0; } /* Undo the operation performed by isl_tab_relax. */ static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) { unsigned off = 2 + tab->M; if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; if (var->is_row) { isl_int_sub(tab->mat->row[var->index][1], tab->mat->row[var->index][1], tab->mat->row[var->index][0]); if (var->is_nonneg) { int sgn = restore_row(tab, var); isl_assert(tab->mat->ctx, sgn >= 0, return -1); } } else { int i; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1], tab->mat->row[i][off + var->index]); } } return 0; } /* Undo the operation performed by isl_tab_unrestrict. * * In particular, mark the variable as being non-negative and make * sure the sample value respects this constraint. */ static int ununrestrict(struct isl_tab *tab, struct isl_tab_var *var) { var->is_nonneg = 1; if (var->is_row && restore_row(tab, var) < -1) return -1; return 0; } /* Unmark the last redundant row in "tab" as being redundant. * This undoes part of the modifications performed by isl_tab_mark_redundant. * In particular, remove the redundant mark and make * sure the sample value respects the constraint again. * A variable that is marked non-negative by isl_tab_mark_redundant * is covered by a separate undo record. */ static isl_stat restore_last_redundant(struct isl_tab *tab) { struct isl_tab_var *var; if (tab->n_redundant < 1) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "no redundant rows", return isl_stat_error); var = isl_tab_var_from_row(tab, tab->n_redundant - 1); var->is_redundant = 0; tab->n_redundant--; restore_row(tab, var); return isl_stat_ok; } static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED; static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) { struct isl_tab_var *var = var_from_index(tab, undo->u.var_index); switch (undo->type) { case isl_tab_undo_nonneg: var->is_nonneg = 0; break; case isl_tab_undo_redundant: if (!var->is_row || var->index != tab->n_redundant - 1) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "not undoing last redundant row", return -1); return restore_last_redundant(tab); case isl_tab_undo_freeze: var->frozen = 0; break; case isl_tab_undo_zero: var->is_zero = 0; if (!var->is_row) tab->n_dead--; break; case isl_tab_undo_allocate: if (undo->u.var_index >= 0) { isl_assert(tab->mat->ctx, !var->is_row, return -1); return drop_col(tab, var->index); } if (!var->is_row) { if (!max_is_manifestly_unbounded(tab, var)) { if (to_row(tab, var, 1) < 0) return -1; } else if (!min_is_manifestly_unbounded(tab, var)) { if (to_row(tab, var, -1) < 0) return -1; } else if (to_row(tab, var, 0) < 0) return -1; } return drop_row(tab, var->index); case isl_tab_undo_relax: return unrelax(tab, var); case isl_tab_undo_unrestrict: return ununrestrict(tab, var); default: isl_die(tab->mat->ctx, isl_error_internal, "perform_undo_var called on invalid undo record", return -1); } return 0; } /* Restore all rows that have been marked redundant by isl_tab_mark_redundant * and that have been preserved in the tableau. * Note that isl_tab_mark_redundant may also have marked some variables * as being non-negative before marking them redundant. These need * to be removed as well as otherwise some constraints could end up * getting marked redundant with respect to the variable. */ isl_stat isl_tab_restore_redundant(struct isl_tab *tab) { if (!tab) return isl_stat_error; if (tab->need_undo) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "manually restoring redundant constraints " "interferes with undo history", return isl_stat_error); while (tab->n_redundant > 0) { if (tab->row_var[tab->n_redundant - 1] >= 0) { struct isl_tab_var *var; var = isl_tab_var_from_row(tab, tab->n_redundant - 1); var->is_nonneg = 0; } restore_last_redundant(tab); } return isl_stat_ok; } /* Undo the addition of an integer division to the basic map representation * of "tab" in position "pos". */ static isl_stat drop_bmap_div(struct isl_tab *tab, int pos) { int off; off = tab->n_var - isl_basic_map_dim(tab->bmap, isl_dim_div); if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0) return isl_stat_error; if (tab->samples) { tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1); if (!tab->samples) return isl_stat_error; } return isl_stat_ok; } /* Restore the tableau to the state where the basic variables * are those in "col_var". * We first construct a list of variables that are currently in * the basis, but shouldn't. Then we iterate over all variables * that should be in the basis and for each one that is currently * not in the basis, we exchange it with one of the elements of the * list constructed before. * We can always find an appropriate variable to pivot with because * the current basis is mapped to the old basis by a non-singular * matrix and so we can never end up with a zero row. */ static int restore_basis(struct isl_tab *tab, int *col_var) { int i, j; int n_extra = 0; int *extra = NULL; /* current columns that contain bad stuff */ unsigned off = 2 + tab->M; extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col); if (tab->n_col && !extra) goto error; for (i = 0; i < tab->n_col; ++i) { for (j = 0; j < tab->n_col; ++j) if (tab->col_var[i] == col_var[j]) break; if (j < tab->n_col) continue; extra[n_extra++] = i; } for (i = 0; i < tab->n_col && n_extra > 0; ++i) { struct isl_tab_var *var; int row; for (j = 0; j < tab->n_col; ++j) if (col_var[i] == tab->col_var[j]) break; if (j < tab->n_col) continue; var = var_from_index(tab, col_var[i]); row = var->index; for (j = 0; j < n_extra; ++j) if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]])) break; isl_assert(tab->mat->ctx, j < n_extra, goto error); if (isl_tab_pivot(tab, row, extra[j]) < 0) goto error; extra[j] = extra[--n_extra]; } free(extra); return 0; error: free(extra); return -1; } /* Remove all samples with index n or greater, i.e., those samples * that were added since we saved this number of samples in * isl_tab_save_samples. */ static void drop_samples_since(struct isl_tab *tab, int n) { int i; for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) { if (tab->sample_index[i] < n) continue; if (i != tab->n_sample - 1) { int t = tab->sample_index[tab->n_sample-1]; tab->sample_index[tab->n_sample-1] = tab->sample_index[i]; tab->sample_index[i] = t; isl_mat_swap_rows(tab->samples, tab->n_sample-1, i); } tab->n_sample--; } } static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED; static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) { switch (undo->type) { case isl_tab_undo_rational: tab->rational = 0; break; case isl_tab_undo_empty: tab->empty = 0; break; case isl_tab_undo_nonneg: case isl_tab_undo_redundant: case isl_tab_undo_freeze: case isl_tab_undo_zero: case isl_tab_undo_allocate: case isl_tab_undo_relax: case isl_tab_undo_unrestrict: return perform_undo_var(tab, undo); case isl_tab_undo_bmap_eq: return isl_basic_map_free_equality(tab->bmap, 1); case isl_tab_undo_bmap_ineq: return isl_basic_map_free_inequality(tab->bmap, 1); case isl_tab_undo_bmap_div: return drop_bmap_div(tab, undo->u.var_index); case isl_tab_undo_saved_basis: if (restore_basis(tab, undo->u.col_var) < 0) return -1; break; case isl_tab_undo_drop_sample: tab->n_outside--; break; case isl_tab_undo_saved_samples: drop_samples_since(tab, undo->u.n); break; case isl_tab_undo_callback: return undo->u.callback->run(undo->u.callback); default: isl_assert(tab->mat->ctx, 0, return -1); } return 0; } /* Return the tableau to the state it was in when the snapshot "snap" * was taken. */ int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap) { struct isl_tab_undo *undo, *next; if (!tab) return -1; tab->in_undo = 1; for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { next = undo->next; if (undo == snap) break; if (perform_undo(tab, undo) < 0) { tab->top = undo; free_undo(tab); tab->in_undo = 0; return -1; } free_undo_record(undo); } tab->in_undo = 0; tab->top = undo; if (!undo) return -1; return 0; } /* The given row "row" represents an inequality violated by all * points in the tableau. Check for some special cases of such * separating constraints. * In particular, if the row has been reduced to the constant -1, * then we know the inequality is adjacent (but opposite) to * an equality in the tableau. * If the row has been reduced to r = c*(-1 -r'), with r' an inequality * of the tableau and c a positive constant, then the inequality * is adjacent (but opposite) to the inequality r'. */ static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row) { int pos; unsigned off = 2 + tab->M; if (tab->rational) return isl_ineq_separate; if (!isl_int_is_one(tab->mat->row[row][0])) return isl_ineq_separate; pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead); if (pos == -1) { if (isl_int_is_negone(tab->mat->row[row][1])) return isl_ineq_adj_eq; else return isl_ineq_separate; } if (!isl_int_eq(tab->mat->row[row][1], tab->mat->row[row][off + tab->n_dead + pos])) return isl_ineq_separate; pos = isl_seq_first_non_zero( tab->mat->row[row] + off + tab->n_dead + pos + 1, tab->n_col - tab->n_dead - pos - 1); return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate; } /* Check the effect of inequality "ineq" on the tableau "tab". * The result may be * isl_ineq_redundant: satisfied by all points in the tableau * isl_ineq_separate: satisfied by no point in the tableau * isl_ineq_cut: satisfied by some by not all points * isl_ineq_adj_eq: adjacent to an equality * isl_ineq_adj_ineq: adjacent to an inequality. */ enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq) { enum isl_ineq_type type = isl_ineq_error; struct isl_tab_undo *snap = NULL; int con; int row; if (!tab) return isl_ineq_error; if (isl_tab_extend_cons(tab, 1) < 0) return isl_ineq_error; snap = isl_tab_snap(tab); con = isl_tab_add_row(tab, ineq); if (con < 0) goto error; row = tab->con[con].index; if (isl_tab_row_is_redundant(tab, row)) type = isl_ineq_redundant; else if (isl_int_is_neg(tab->mat->row[row][1]) && (tab->rational || isl_int_abs_ge(tab->mat->row[row][1], tab->mat->row[row][0]))) { int nonneg = at_least_zero(tab, &tab->con[con]); if (nonneg < 0) goto error; if (nonneg) type = isl_ineq_cut; else type = separation_type(tab, row); } else { int red = con_is_redundant(tab, &tab->con[con]); if (red < 0) goto error; if (!red) type = isl_ineq_cut; else type = isl_ineq_redundant; } if (isl_tab_rollback(tab, snap)) return isl_ineq_error; return type; error: return isl_ineq_error; } int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap) { bmap = isl_basic_map_cow(bmap); if (!tab || !bmap) goto error; if (tab->empty) { bmap = isl_basic_map_set_to_empty(bmap); if (!bmap) goto error; tab->bmap = bmap; return 0; } isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error); isl_assert(tab->mat->ctx, tab->n_con == bmap->n_eq + bmap->n_ineq, goto error); tab->bmap = bmap; return 0; error: isl_basic_map_free(bmap); return -1; } int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset) { return isl_tab_track_bmap(tab, bset_to_bmap(bset)); } __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab) { if (!tab) return NULL; return bset_from_bmap(tab->bmap); } static void isl_tab_print_internal(__isl_keep struct isl_tab *tab, FILE *out, int indent) { unsigned r, c; int i; if (!tab) { fprintf(out, "%*snull tab\n", indent, ""); return; } fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "", tab->n_redundant, tab->n_dead); if (tab->rational) fprintf(out, ", rational"); if (tab->empty) fprintf(out, ", empty"); fprintf(out, "\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_var; ++i) { if (i) fprintf(out, (i == tab->n_param || i == tab->n_var - tab->n_div) ? "; " : ", "); fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c', tab->var[i].index, tab->var[i].is_zero ? " [=0]" : tab->var[i].is_redundant ? " [R]" : ""); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_con; ++i) { if (i) fprintf(out, ", "); fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c', tab->con[i].index, tab->con[i].is_zero ? " [=0]" : tab->con[i].is_redundant ? " [R]" : ""); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_row; ++i) { const char *sign = ""; if (i) fprintf(out, ", "); if (tab->row_sign) { if (tab->row_sign[i] == isl_tab_row_unknown) sign = "?"; else if (tab->row_sign[i] == isl_tab_row_neg) sign = "-"; else if (tab->row_sign[i] == isl_tab_row_pos) sign = "+"; else sign = "+-"; } fprintf(out, "r%d: %d%s%s", i, tab->row_var[i], isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_col; ++i) { if (i) fprintf(out, ", "); fprintf(out, "c%d: %d%s", i, tab->col_var[i], var_from_col(tab, i)->is_nonneg ? " [>=0]" : ""); } fprintf(out, "]\n"); r = tab->mat->n_row; tab->mat->n_row = tab->n_row; c = tab->mat->n_col; tab->mat->n_col = 2 + tab->M + tab->n_col; isl_mat_print_internal(tab->mat, out, indent); tab->mat->n_row = r; tab->mat->n_col = c; if (tab->bmap) isl_basic_map_print_internal(tab->bmap, out, indent); } void isl_tab_dump(__isl_keep struct isl_tab *tab) { isl_tab_print_internal(tab, stderr, 0); }