/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2011 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #define xSF(TYPE,SUFFIX) TYPE ## SUFFIX #define SF(TYPE,SUFFIX) xSF(TYPE,SUFFIX) /* Given a basic map with at least two parallel constraints (as found * by the function parallel_constraints), first look for more constraints * parallel to the two constraint and replace the found list of parallel * constraints by a single constraint with as "input" part the minimum * of the input parts of the list of constraints. Then, recursively call * basic_map_partial_lexopt (possibly finding more parallel constraints) * and plug in the definition of the minimum in the result. * * As in parallel_constraints, only inequality constraints that only * involve input variables that do not occur in any other inequality * constraints are considered. * * More specifically, given a set of constraints * * a x + b_i(p) >= 0 * * Replace this set by a single constraint * * a x + u >= 0 * * with u a new parameter with constraints * * u <= b_i(p) * * Any solution to the new system is also a solution for the original system * since * * a x >= -u >= -b_i(p) * * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can * therefore be plugged into the solution. */ static TYPE *SF(basic_map_partial_lexopt_symm,SUFFIX)( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, int first, int second) { int i, n, k; int *list = NULL; unsigned n_in, n_out, n_div; isl_ctx *ctx; isl_vec *var = NULL; isl_mat *cst = NULL; isl_space *map_space, *set_space; map_space = isl_basic_map_get_space(bmap); set_space = empty ? isl_basic_set_get_space(dom) : NULL; n_in = isl_basic_map_dim(bmap, isl_dim_param) + isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in; ctx = isl_basic_map_get_ctx(bmap); list = isl_alloc_array(ctx, int, bmap->n_ineq); var = isl_vec_alloc(ctx, n_out); if ((bmap->n_ineq && !list) || (n_out && !var)) goto error; list[0] = first; list[1] = second; isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out); for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) { if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out) && all_single_occurrence(bmap, i, n_in)) list[n++] = i; } cst = isl_mat_alloc(ctx, n, 1 + n_in); if (!cst) goto error; for (i = 0; i < n; ++i) isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in); bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; for (i = n - 1; i >= 0; --i) if (isl_basic_map_drop_inequality(bmap, list[i]) < 0) goto error; bmap = isl_basic_map_add_dims(bmap, isl_dim_in, 1); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + n_in); isl_int_set_si(bmap->ineq[k][1 + n_in], 1); isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out); bmap = isl_basic_map_finalize(bmap); n_div = isl_basic_set_dim(dom, isl_dim_div); dom = isl_basic_set_add_dims(dom, isl_dim_set, 1); dom = isl_basic_set_extend_constraints(dom, 0, n); for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_inequality(dom); if (k < 0) goto error; isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in); isl_int_set_si(dom->ineq[k][1 + n_in], -1); isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div); } isl_vec_free(var); free(list); return SF(basic_map_partial_lexopt_symm_core,SUFFIX)(bmap, dom, empty, max, cst, map_space, set_space); error: isl_space_free(map_space); isl_space_free(set_space); isl_mat_free(cst); isl_vec_free(var); free(list); isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } /* Recursive part of isl_tab_basic_map_partial_lexopt*, after detecting * equalities and removing redundant constraints. * * We first check if there are any parallel constraints (left). * If not, we are in the base case. * If there are parallel constraints, we replace them by a single * constraint in basic_map_partial_lexopt_symm_pma and then call * this function recursively to look for more parallel constraints. */ static __isl_give TYPE *SF(basic_map_partial_lexopt,SUFFIX)( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { int par = 0; int first, second; if (!bmap) goto error; if (bmap->ctx->opt->pip_symmetry) par = parallel_constraints(bmap, &first, &second); if (par < 0) goto error; if (!par) return SF(basic_map_partial_lexopt_base,SUFFIX)(bmap, dom, empty, max); return SF(basic_map_partial_lexopt_symm,SUFFIX)(bmap, dom, empty, max, first, second); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } /* Compute the lexicographic minimum (or maximum if "flags" includes * ISL_OPT_MAX) of "bmap" over the domain "dom" and return the result as * either a map or a piecewise multi-affine expression depending on TYPE. * If "empty" is not NULL, then *empty is assigned a set that * contains those parts of the domain where there is no solution. * If "flags" includes ISL_OPT_FULL, then "dom" is NULL and the optimum * should be computed over the domain of "bmap". "empty" is also NULL * in this case. * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), * then we compute the rational optimum. Otherwise, we compute * the integral optimum. * * We perform some preprocessing. As the PILP solver does not * handle implicit equalities very well, we first make sure all * the equalities are explicitly available. * * We also add context constraints to the basic map and remove * redundant constraints. This is only needed because of the * way we handle simple symmetries. In particular, we currently look * for symmetries on the constraints, before we set up the main tableau. * It is then no good to look for symmetries on possibly redundant constraints. * If the domain was extracted from the basic map, then there is * no need to add back those constraints again. */ __isl_give TYPE *SF(isl_tab_basic_map_partial_lexopt,SUFFIX)( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, unsigned flags) { int max, full; isl_bool compatible; if (empty) *empty = NULL; full = ISL_FL_ISSET(flags, ISL_OPT_FULL); if (full) dom = extract_domain(bmap, flags); compatible = isl_basic_map_compatible_domain(bmap, dom); if (compatible < 0) goto error; if (!compatible) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "domain does not match input", goto error); max = ISL_FL_ISSET(flags, ISL_OPT_MAX); if (isl_basic_set_dim(dom, isl_dim_all) == 0) return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty, max); if (!full) bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom)); bmap = isl_basic_map_detect_equalities(bmap); bmap = isl_basic_map_remove_redundancies(bmap); return SF(basic_map_partial_lexopt,SUFFIX)(bmap, dom, empty, max); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; }