/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include #include #include #include #include #include #include #include #include int isl_map_is_transitively_closed(__isl_keep isl_map *map) { isl_map *map2; int closed; map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map)); closed = isl_map_is_subset(map2, map); isl_map_free(map2); return closed; } int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap) { isl_union_map *umap2; int closed; umap2 = isl_union_map_apply_range(isl_union_map_copy(umap), isl_union_map_copy(umap)); closed = isl_union_map_is_subset(umap2, umap); isl_union_map_free(umap2); return closed; } /* Given a map that represents a path with the length of the path * encoded as the difference between the last output coordindate * and the last input coordinate, set this length to either * exactly "length" (if "exactly" is set) or at least "length" * (if "exactly" is not set). */ static __isl_give isl_map *set_path_length(__isl_take isl_map *map, int exactly, int length) { isl_space *dim; struct isl_basic_map *bmap; unsigned d; unsigned nparam; int k; isl_int *c; if (!map) return NULL; dim = isl_map_get_space(map); d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); if (exactly) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; c = bmap->eq[k]; } else { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; c = bmap->ineq[k]; } isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(c[0], -length); isl_int_set_si(c[1 + nparam + d - 1], -1); isl_int_set_si(c[1 + nparam + d + d - 1], 1); bmap = isl_basic_map_finalize(bmap); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; error: isl_basic_map_free(bmap); isl_map_free(map); return NULL; } /* Check whether the overapproximation of the power of "map" is exactly * the power of "map". Let R be "map" and A_k the overapproximation. * The approximation is exact if * * A_1 = R * A_k = A_{k-1} \circ R k >= 2 * * Since A_k is known to be an overapproximation, we only need to check * * A_1 \subset R * A_k \subset A_{k-1} \circ R k >= 2 * * In practice, "app" has an extra input and output coordinate * to encode the length of the path. So, we first need to add * this coordinate to "map" and set the length of the path to * one. */ static int check_power_exactness(__isl_take isl_map *map, __isl_take isl_map *app) { int exact; isl_map *app_1; isl_map *app_2; map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_add_dims(map, isl_dim_out, 1); map = set_path_length(map, 1, 1); app_1 = set_path_length(isl_map_copy(app), 1, 1); exact = isl_map_is_subset(app_1, map); isl_map_free(app_1); if (!exact || exact < 0) { isl_map_free(app); isl_map_free(map); return exact; } app_1 = set_path_length(isl_map_copy(app), 0, 1); app_2 = set_path_length(app, 0, 2); app_1 = isl_map_apply_range(map, app_1); exact = isl_map_is_subset(app_2, app_1); isl_map_free(app_1); isl_map_free(app_2); return exact; } /* Check whether the overapproximation of the power of "map" is exactly * the power of "map", possibly after projecting out the power (if "project" * is set). * * If "project" is set and if "steps" can only result in acyclic paths, * then we check * * A = R \cup (A \circ R) * * where A is the overapproximation with the power projected out, i.e., * an overapproximation of the transitive closure. * More specifically, since A is known to be an overapproximation, we check * * A \subset R \cup (A \circ R) * * Otherwise, we check if the power is exact. * * Note that "app" has an extra input and output coordinate to encode * the length of the part. If we are only interested in the transitive * closure, then we can simply project out these coordinates first. */ static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app, int project) { isl_map *test; int exact; unsigned d; if (!project) return check_power_exactness(map, app); d = isl_map_dim(map, isl_dim_in); app = set_path_length(app, 0, 1); app = isl_map_project_out(app, isl_dim_in, d, 1); app = isl_map_project_out(app, isl_dim_out, d, 1); app = isl_map_reset_space(app, isl_map_get_space(map)); test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app)); test = isl_map_union(test, isl_map_copy(map)); exact = isl_map_is_subset(app, test); isl_map_free(app); isl_map_free(test); isl_map_free(map); return exact; } /* * The transitive closure implementation is based on the paper * "Computing the Transitive Closure of a Union of Affine Integer * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and * Albert Cohen. */ /* Given a set of n offsets v_i (the rows of "steps"), construct a relation * of the given dimension specification (Z^{n+1} -> Z^{n+1}) * that maps an element x to any element that can be reached * by taking a non-negative number of steps along any of * the extended offsets v'_i = [v_i 1]. * That is, construct * * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i } * * For any element in this relation, the number of steps taken * is equal to the difference in the final coordinates. */ static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim, __isl_keep isl_mat *steps) { int i, j, k; struct isl_basic_map *path = NULL; unsigned d; unsigned n; unsigned nparam; if (!dim || !steps) goto error; d = isl_space_dim(dim, isl_dim_in); n = steps->n_row; nparam = isl_space_dim(dim, isl_dim_param); path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n); for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_div(path); if (k < 0) goto error; isl_assert(steps->ctx, i == k, goto error); isl_int_set_si(path->div[k][0], 0); } for (i = 0; i < d; ++i) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->eq[k][1 + nparam + i], 1); isl_int_set_si(path->eq[k][1 + nparam + d + i], -1); if (i == d - 1) for (j = 0; j < n; ++j) isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1); else for (j = 0; j < n; ++j) isl_int_set(path->eq[k][1 + nparam + 2 * d + j], steps->row[j][i]); } for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1); } isl_space_free(dim); path = isl_basic_map_simplify(path); path = isl_basic_map_finalize(path); return isl_map_from_basic_map(path); error: isl_space_free(dim); isl_basic_map_free(path); return NULL; } #define IMPURE 0 #define PURE_PARAM 1 #define PURE_VAR 2 #define MIXED 3 /* Check whether the parametric constant term of constraint c is never * positive in "bset". */ static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity) { unsigned d; unsigned n_div; unsigned nparam; int i; int k; int empty; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); bset = isl_basic_set_copy(bset); bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend_constraints(bset, 0, 1); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset)); isl_seq_cpy(bset->ineq[k], c, 1 + nparam); for (i = 0; i < n_div; ++i) { if (div_purity[i] != PURE_PARAM) continue; isl_int_set(bset->ineq[k][1 + nparam + d + i], c[1 + nparam + d + i]); } isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); empty = isl_basic_set_is_empty(bset); isl_basic_set_free(bset); return empty; error: isl_basic_set_free(bset); return -1; } /* Return PURE_PARAM if only the coefficients of the parameters are non-zero. * Return PURE_VAR if only the coefficients of the set variables are non-zero. * Return MIXED if only the coefficients of the parameters and the set * variables are non-zero and if moreover the parametric constant * can never attain positive values. * Return IMPURE otherwise. */ static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity, int eq) { unsigned d; unsigned n_div; unsigned nparam; int empty; int i; int p = 0, v = 0; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(c[1 + nparam + d + i])) continue; switch (div_purity[i]) { case PURE_PARAM: p = 1; break; case PURE_VAR: v = 1; break; default: return IMPURE; } } if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1) return PURE_VAR; if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1) return PURE_PARAM; empty = parametric_constant_never_positive(bset, c, div_purity); if (eq && empty >= 0 && !empty) { isl_seq_neg(c, c, 1 + nparam + d + n_div); empty = parametric_constant_never_positive(bset, c, div_purity); } return empty < 0 ? -1 : empty ? MIXED : IMPURE; } /* Return an array of integers indicating the type of each div in bset. * If the div is (recursively) defined in terms of only the parameters, * then the type is PURE_PARAM. * If the div is (recursively) defined in terms of only the set variables, * then the type is PURE_VAR. * Otherwise, the type is IMPURE. */ static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset) { int i, j; int *div_purity; unsigned d; unsigned n_div; unsigned nparam; if (!bset) return NULL; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); div_purity = isl_alloc_array(bset->ctx, int, n_div); if (n_div && !div_purity) return NULL; for (i = 0; i < bset->n_div; ++i) { int p = 0, v = 0; if (isl_int_is_zero(bset->div[i][0])) { div_purity[i] = IMPURE; continue; } if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1) p = 1; if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1) v = 1; for (j = 0; j < i; ++j) { if (isl_int_is_zero(bset->div[i][2 + nparam + d + j])) continue; switch (div_purity[j]) { case PURE_PARAM: p = 1; break; case PURE_VAR: v = 1; break; default: p = v = 1; break; } } div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM; } return div_purity; } /* Given a path with the as yet unconstrained length at position "pos", * check if setting the length to zero results in only the identity * mapping. */ static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos) { isl_basic_map *test = NULL; isl_basic_map *id = NULL; int k; int is_id; test = isl_basic_map_copy(path); test = isl_basic_map_extend_constraints(test, 1, 0); k = isl_basic_map_alloc_equality(test); if (k < 0) goto error; isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test)); isl_int_set_si(test->eq[k][pos], 1); test = isl_basic_map_gauss(test, NULL); id = isl_basic_map_identity(isl_basic_map_get_space(path)); is_id = isl_basic_map_is_equal(test, id); isl_basic_map_free(test); isl_basic_map_free(id); return is_id; error: isl_basic_map_free(test); return -1; } /* If any of the constraints is found to be impure then this function * sets *impurity to 1. * * If impurity is NULL then we are dealing with a non-parametric set * and so the constraints are obviously PURE_VAR. */ static __isl_give isl_basic_map *add_delta_constraints( __isl_take isl_basic_map *path, __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam, unsigned d, int *div_purity, int eq, int *impurity) { int i, k; int n = eq ? delta->n_eq : delta->n_ineq; isl_int **delta_c = eq ? delta->eq : delta->ineq; unsigned n_div; n_div = isl_basic_set_dim(delta, isl_dim_div); for (i = 0; i < n; ++i) { isl_int *path_c; int p = PURE_VAR; if (impurity) p = purity(delta, delta_c[i], div_purity, eq); if (p < 0) goto error; if (p != PURE_VAR && p != PURE_PARAM && !*impurity) *impurity = 1; if (p == IMPURE) continue; if (eq && p != MIXED) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; path_c = path->eq[k]; } else { k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; path_c = path->ineq[k]; } isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path)); if (p == PURE_VAR) { isl_seq_cpy(path_c + off, delta_c[i] + 1 + nparam, d); isl_int_set(path_c[off + d], delta_c[i][0]); } else if (p == PURE_PARAM) { isl_seq_cpy(path_c, delta_c[i], 1 + nparam); } else { isl_seq_cpy(path_c + off, delta_c[i] + 1 + nparam, d); isl_seq_cpy(path_c, delta_c[i], 1 + nparam); } isl_seq_cpy(path_c + off - n_div, delta_c[i] + 1 + nparam + d, n_div); } return path; error: isl_basic_map_free(path); return NULL; } /* Given a set of offsets "delta", construct a relation of the * given dimension specification (Z^{n+1} -> Z^{n+1}) that * is an overapproximation of the relations that * maps an element x to any element that can be reached * by taking a non-negative number of steps along any of * the elements in "delta". * That is, construct an approximation of * * { [x] -> [y] : exists f \in \delta, k \in Z : * y = x + k [f, 1] and k >= 0 } * * For any element in this relation, the number of steps taken * is equal to the difference in the final coordinates. * * In particular, let delta be defined as * * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and * C x + C'p + c >= 0 and * D x + D'p + d >= 0 } * * where the constraints C x + C'p + c >= 0 are such that the parametric * constant term of each constraint j, "C_j x + C'_j p + c_j", * can never attain positive values, then the relation is constructed as * * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and * A f + k a >= 0 and B p + b >= 0 and * C f + C'p + c >= 0 and k >= 1 } * union { [x] -> [x] } * * If the zero-length paths happen to correspond exactly to the identity * mapping, then we return * * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and * A f + k a >= 0 and B p + b >= 0 and * C f + C'p + c >= 0 and k >= 0 } * * instead. * * Existentially quantified variables in \delta are handled by * classifying them as independent of the parameters, purely * parameter dependent and others. Constraints containing * any of the other existentially quantified variables are removed. * This is safe, but leads to an additional overapproximation. * * If there are any impure constraints, then we also eliminate * the parameters from \delta, resulting in a set * * \delta' = { [x] : E x + e >= 0 } * * and add the constraints * * E f + k e >= 0 * * to the constructed relation. */ static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim, __isl_take isl_basic_set *delta) { isl_basic_map *path = NULL; unsigned d; unsigned n_div; unsigned nparam; unsigned off; int i, k; int is_id; int *div_purity = NULL; int impurity = 0; if (!delta) goto error; n_div = isl_basic_set_dim(delta, isl_dim_div); d = isl_basic_set_dim(delta, isl_dim_set); nparam = isl_basic_set_dim(delta, isl_dim_param); path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1, d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1); off = 1 + nparam + 2 * (d + 1) + n_div; for (i = 0; i < n_div + d + 1; ++i) { k = isl_basic_map_alloc_div(path); if (k < 0) goto error; isl_int_set_si(path->div[k][0], 0); } for (i = 0; i < d + 1; ++i) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->eq[k][1 + nparam + i], 1); isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1); isl_int_set_si(path->eq[k][off + i], 1); } div_purity = get_div_purity(delta); if (n_div && !div_purity) goto error; path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1, &impurity); path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0, &impurity); if (impurity) { isl_space *dim = isl_basic_set_get_space(delta); delta = isl_basic_set_project_out(delta, isl_dim_param, 0, nparam); delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam); delta = isl_basic_set_reset_space(delta, dim); if (!delta) goto error; path = isl_basic_map_extend_constraints(path, delta->n_eq, delta->n_ineq + 1); path = add_delta_constraints(path, delta, off, nparam, d, NULL, 1, NULL); path = add_delta_constraints(path, delta, off, nparam, d, NULL, 0, NULL); path = isl_basic_map_gauss(path, NULL); } is_id = empty_path_is_identity(path, off + d); if (is_id < 0) goto error; k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); if (!is_id) isl_int_set_si(path->ineq[k][0], -1); isl_int_set_si(path->ineq[k][off + d], 1); free(div_purity); isl_basic_set_free(delta); path = isl_basic_map_finalize(path); if (is_id) { isl_space_free(dim); return isl_map_from_basic_map(path); } return isl_basic_map_union(path, isl_basic_map_identity(dim)); error: free(div_purity); isl_space_free(dim); isl_basic_set_free(delta); isl_basic_map_free(path); return NULL; } /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param", * construct a map that equates the parameter to the difference * in the final coordinates and imposes that this difference is positive. * That is, construct * * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 } */ static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim, unsigned param) { struct isl_basic_map *bmap; unsigned d; unsigned nparam; int k; d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[k][1 + param], -1); isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1); isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1); k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[k][1 + param], 1); isl_int_set_si(bmap->ineq[k][0], -1); bmap = isl_basic_map_finalize(bmap); return isl_map_from_basic_map(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Check whether "path" is acyclic, where the last coordinates of domain * and range of path encode the number of steps taken. * That is, check whether * * { d | d = y - x and (x,y) in path } * * does not contain any element with positive last coordinate (positive length) * and zero remaining coordinates (cycle). */ static int is_acyclic(__isl_take isl_map *path) { int i; int acyclic; unsigned dim; struct isl_set *delta; delta = isl_map_deltas(path); dim = isl_set_dim(delta, isl_dim_set); for (i = 0; i < dim; ++i) { if (i == dim -1) delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1); else delta = isl_set_fix_si(delta, isl_dim_set, i, 0); } acyclic = isl_set_is_empty(delta); isl_set_free(delta); return acyclic; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the space D \times Z to another * element from the same space, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) } * * The elements of the singleton \Delta_i's are collected as the * rows of the steps matrix. For all these \Delta_i's together, * a single path is constructed. * For each of the other \Delta_i's, we compute an overapproximation * of the paths along elements of \Delta_i. * Since each of these paths performs an addition, composition is * symmetric and we can simply compose all resulting paths in any order. */ static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim, __isl_keep isl_map *map, int *project) { struct isl_mat *steps = NULL; struct isl_map *path = NULL; unsigned d; int i, j, n; if (!map) goto error; d = isl_map_dim(map, isl_dim_in); path = isl_map_identity(isl_space_copy(dim)); steps = isl_mat_alloc(map->ctx, map->n, d); if (!steps) goto error; n = 0; for (i = 0; i < map->n; ++i) { struct isl_basic_set *delta; delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i])); for (j = 0; j < d; ++j) { int fixed; fixed = isl_basic_set_plain_dim_is_fixed(delta, j, &steps->row[n][j]); if (fixed < 0) { isl_basic_set_free(delta); goto error; } if (!fixed) break; } if (j < d) { path = isl_map_apply_range(path, path_along_delta(isl_space_copy(dim), delta)); path = isl_map_coalesce(path); } else { isl_basic_set_free(delta); ++n; } } if (n > 0) { steps->n_row = n; path = isl_map_apply_range(path, path_along_steps(isl_space_copy(dim), steps)); } if (project && *project) { *project = is_acyclic(isl_map_copy(path)); if (*project < 0) goto error; } isl_space_free(dim); isl_mat_free(steps); return path; error: isl_space_free(dim); isl_mat_free(steps); isl_map_free(path); return NULL; } static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { isl_set *i; int no_overlap; if (!set1 || !set2) return -1; if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set, set2->dim, isl_dim_set)) return 0; i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2)); no_overlap = isl_set_is_empty(i); isl_set_free(i); return no_overlap < 0 ? -1 : !no_overlap; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the dom R \times Z to an * element from ran R \times Z, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) and * x in dom R and x + d in ran R and * \sum_i k_i >= 1 } */ static __isl_give isl_map *construct_component(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { struct isl_set *domain = NULL; struct isl_set *range = NULL; struct isl_map *app = NULL; struct isl_map *path = NULL; int overlaps; domain = isl_map_domain(isl_map_copy(map)); domain = isl_set_coalesce(domain); range = isl_map_range(isl_map_copy(map)); range = isl_set_coalesce(range); overlaps = isl_set_overlaps(domain, range); if (overlaps < 0 || !overlaps) { isl_set_free(domain); isl_set_free(range); isl_space_free(dim); if (overlaps < 0) map = NULL; map = isl_map_copy(map); map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_add_dims(map, isl_dim_out, 1); map = set_path_length(map, 1, 1); return map; } app = isl_map_from_domain_and_range(domain, range); app = isl_map_add_dims(app, isl_dim_in, 1); app = isl_map_add_dims(app, isl_dim_out, 1); path = construct_extended_path(isl_space_copy(dim), map, exact && *exact ? &project : NULL); app = isl_map_intersect(app, path); if (exact && *exact && (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app), project)) < 0) goto error; isl_space_free(dim); app = set_path_length(app, 0, 1); return app; error: isl_space_free(dim); isl_map_free(app); return NULL; } /* Call construct_component and, if "project" is set, project out * the final coordinates. */ static __isl_give isl_map *construct_projected_component( __isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { isl_map *app; unsigned d; if (!dim) return NULL; d = isl_space_dim(dim, isl_dim_in); app = construct_component(dim, map, exact, project); if (project) { app = isl_map_project_out(app, isl_dim_in, d - 1, 1); app = isl_map_project_out(app, isl_dim_out, d - 1, 1); } return app; } /* Compute an extended version, i.e., with path lengths, of * an overapproximation of the transitive closure of "bmap" * with path lengths greater than or equal to zero and with * domain and range equal to "dom". */ static __isl_give isl_map *q_closure(__isl_take isl_space *dim, __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact) { int project = 1; isl_map *path; isl_map *map; isl_map *app; dom = isl_set_add_dims(dom, isl_dim_set, 1); app = isl_map_from_domain_and_range(dom, isl_set_copy(dom)); map = isl_map_from_basic_map(isl_basic_map_copy(bmap)); path = construct_extended_path(dim, map, &project); app = isl_map_intersect(app, path); if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0) goto error; return app; error: isl_map_free(app); return NULL; } /* Check whether qc has any elements of length at least one * with domain and/or range outside of dom and ran. */ static int has_spurious_elements(__isl_keep isl_map *qc, __isl_keep isl_set *dom, __isl_keep isl_set *ran) { isl_set *s; int subset; unsigned d; if (!qc || !dom || !ran) return -1; d = isl_map_dim(qc, isl_dim_in); qc = isl_map_copy(qc); qc = set_path_length(qc, 0, 1); qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1); qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1); s = isl_map_domain(isl_map_copy(qc)); subset = isl_set_is_subset(s, dom); isl_set_free(s); if (subset < 0) goto error; if (!subset) { isl_map_free(qc); return 1; } s = isl_map_range(qc); subset = isl_set_is_subset(s, ran); isl_set_free(s); return subset < 0 ? -1 : !subset; error: isl_map_free(qc); return -1; } #define LEFT 2 #define RIGHT 1 /* For each basic map in "map", except i, check whether it combines * with the transitive closure that is reflexive on C combines * to the left and to the right. * * In particular, if * * dom map_j \subseteq C * * then right[j] is set to 1. Otherwise, if * * ran map_i \cap dom map_j = \emptyset * * then right[j] is set to 0. Otherwise, composing to the right * is impossible. * * Similar, for composing to the left, we have if * * ran map_j \subseteq C * * then left[j] is set to 1. Otherwise, if * * dom map_i \cap ran map_j = \emptyset * * then left[j] is set to 0. Otherwise, composing to the left * is impossible. * * The return value is or'd with LEFT if composing to the left * is possible and with RIGHT if composing to the right is possible. */ static int composability(__isl_keep isl_set *C, int i, isl_set **dom, isl_set **ran, int *left, int *right, __isl_keep isl_map *map) { int j; int ok; ok = LEFT | RIGHT; for (j = 0; j < map->n && ok; ++j) { int overlaps, subset; if (j == i) continue; if (ok & RIGHT) { if (!dom[j]) dom[j] = isl_set_from_basic_set( isl_basic_map_domain( isl_basic_map_copy(map->p[j]))); if (!dom[j]) return -1; overlaps = isl_set_overlaps(ran[i], dom[j]); if (overlaps < 0) return -1; if (!overlaps) right[j] = 0; else { subset = isl_set_is_subset(dom[j], C); if (subset < 0) return -1; if (subset) right[j] = 1; else ok &= ~RIGHT; } } if (ok & LEFT) { if (!ran[j]) ran[j] = isl_set_from_basic_set( isl_basic_map_range( isl_basic_map_copy(map->p[j]))); if (!ran[j]) return -1; overlaps = isl_set_overlaps(dom[i], ran[j]); if (overlaps < 0) return -1; if (!overlaps) left[j] = 0; else { subset = isl_set_is_subset(ran[j], C); if (subset < 0) return -1; if (subset) left[j] = 1; else ok &= ~LEFT; } } } return ok; } static __isl_give isl_map *anonymize(__isl_take isl_map *map) { map = isl_map_reset(map, isl_dim_in); map = isl_map_reset(map, isl_dim_out); return map; } /* Return a map that is a union of the basic maps in "map", except i, * composed to left and right with qc based on the entries of "left" * and "right". */ static __isl_give isl_map *compose(__isl_keep isl_map *map, int i, __isl_take isl_map *qc, int *left, int *right) { int j; isl_map *comp; comp = isl_map_empty(isl_map_get_space(map)); for (j = 0; j < map->n; ++j) { isl_map *map_j; if (j == i) continue; map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j])); map_j = anonymize(map_j); if (left && left[j]) map_j = isl_map_apply_range(map_j, isl_map_copy(qc)); if (right && right[j]) map_j = isl_map_apply_range(isl_map_copy(qc), map_j); comp = isl_map_union(comp, map_j); } comp = isl_map_compute_divs(comp); comp = isl_map_coalesce(comp); isl_map_free(qc); return comp; } /* Compute the transitive closure of "map" incrementally by * computing * * map_i^+ \cup qc^+ * * or * * map_i^+ \cup ((id \cup map_i^) \circ qc^+) * * or * * map_i^+ \cup (qc^+ \circ (id \cup map_i^)) * * depending on whether left or right are NULL. */ static __isl_give isl_map *compute_incremental( __isl_take isl_space *dim, __isl_keep isl_map *map, int i, __isl_take isl_map *qc, int *left, int *right, int *exact) { isl_map *map_i; isl_map *tc; isl_map *rtc = NULL; if (!map) goto error; isl_assert(map->ctx, left || right, goto error); map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); tc = construct_projected_component(isl_space_copy(dim), map_i, exact, 1); isl_map_free(map_i); if (*exact) qc = isl_map_transitive_closure(qc, exact); if (!*exact) { isl_space_free(dim); isl_map_free(tc); isl_map_free(qc); return isl_map_universe(isl_map_get_space(map)); } if (!left || !right) rtc = isl_map_union(isl_map_copy(tc), isl_map_identity(isl_map_get_space(tc))); if (!right) qc = isl_map_apply_range(rtc, qc); if (!left) qc = isl_map_apply_range(qc, rtc); qc = isl_map_union(tc, qc); isl_space_free(dim); return qc; error: isl_space_free(dim); isl_map_free(qc); return NULL; } /* Given a map "map", try to find a basic map such that * map^+ can be computed as * * map^+ = map_i^+ \cup * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ * * with C the simple hull of the domain and range of the input map. * map_i^ \cup Id_C is computed by allowing the path lengths to be zero * and by intersecting domain and range with C. * Of course, we need to check that this is actually equal to map_i^ \cup Id_C. * Also, we only use the incremental computation if all the transitive * closures are exact and if the number of basic maps in the union, * after computing the integer divisions, is smaller than the number * of basic maps in the input map. */ static int incemental_on_entire_domain(__isl_keep isl_space *dim, __isl_keep isl_map *map, isl_set **dom, isl_set **ran, int *left, int *right, __isl_give isl_map **res) { int i; isl_set *C; unsigned d; *res = NULL; C = isl_set_union(isl_map_domain(isl_map_copy(map)), isl_map_range(isl_map_copy(map))); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) return -1; if (C->n != 1) { isl_set_free(C); return 0; } d = isl_map_dim(map, isl_dim_in); for (i = 0; i < map->n; ++i) { isl_map *qc; int exact_i, spurious; int j; dom[i] = isl_set_from_basic_set(isl_basic_map_domain( isl_basic_map_copy(map->p[i]))); ran[i] = isl_set_from_basic_set(isl_basic_map_range( isl_basic_map_copy(map->p[i]))); qc = q_closure(isl_space_copy(dim), isl_set_copy(C), map->p[i], &exact_i); if (!qc) goto error; if (!exact_i) { isl_map_free(qc); continue; } spurious = has_spurious_elements(qc, dom[i], ran[i]); if (spurious) { isl_map_free(qc); if (spurious < 0) goto error; continue; } qc = isl_map_project_out(qc, isl_dim_in, d, 1); qc = isl_map_project_out(qc, isl_dim_out, d, 1); qc = isl_map_compute_divs(qc); for (j = 0; j < map->n; ++j) left[j] = right[j] = 1; qc = compose(map, i, qc, left, right); if (!qc) goto error; if (qc->n >= map->n) { isl_map_free(qc); continue; } *res = compute_incremental(isl_space_copy(dim), map, i, qc, left, right, &exact_i); if (!*res) goto error; if (exact_i) break; isl_map_free(*res); *res = NULL; } isl_set_free(C); return *res != NULL; error: isl_set_free(C); return -1; } /* Try and compute the transitive closure of "map" as * * map^+ = map_i^+ \cup * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ * * with C either the simple hull of the domain and range of the entire * map or the simple hull of domain and range of map_i. */ static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i; isl_set **dom = NULL; isl_set **ran = NULL; int *left = NULL; int *right = NULL; isl_set *C; unsigned d; isl_map *res = NULL; if (!project) return construct_projected_component(dim, map, exact, project); if (!map) goto error; if (map->n <= 1) return construct_projected_component(dim, map, exact, project); d = isl_map_dim(map, isl_dim_in); dom = isl_calloc_array(map->ctx, isl_set *, map->n); ran = isl_calloc_array(map->ctx, isl_set *, map->n); left = isl_calloc_array(map->ctx, int, map->n); right = isl_calloc_array(map->ctx, int, map->n); if (!ran || !dom || !left || !right) goto error; if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0) goto error; for (i = 0; !res && i < map->n; ++i) { isl_map *qc; int exact_i, spurious, comp; if (!dom[i]) dom[i] = isl_set_from_basic_set( isl_basic_map_domain( isl_basic_map_copy(map->p[i]))); if (!dom[i]) goto error; if (!ran[i]) ran[i] = isl_set_from_basic_set( isl_basic_map_range( isl_basic_map_copy(map->p[i]))); if (!ran[i]) goto error; C = isl_set_union(isl_set_copy(dom[i]), isl_set_copy(ran[i])); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) goto error; if (C->n != 1) { isl_set_free(C); continue; } comp = composability(C, i, dom, ran, left, right, map); if (!comp || comp < 0) { isl_set_free(C); if (comp < 0) goto error; continue; } qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i); if (!qc) goto error; if (!exact_i) { isl_map_free(qc); continue; } spurious = has_spurious_elements(qc, dom[i], ran[i]); if (spurious) { isl_map_free(qc); if (spurious < 0) goto error; continue; } qc = isl_map_project_out(qc, isl_dim_in, d, 1); qc = isl_map_project_out(qc, isl_dim_out, d, 1); qc = isl_map_compute_divs(qc); qc = compose(map, i, qc, (comp & LEFT) ? left : NULL, (comp & RIGHT) ? right : NULL); if (!qc) goto error; if (qc->n >= map->n) { isl_map_free(qc); continue; } res = compute_incremental(isl_space_copy(dim), map, i, qc, (comp & LEFT) ? left : NULL, (comp & RIGHT) ? right : NULL, &exact_i); if (!res) goto error; if (exact_i) break; isl_map_free(res); res = NULL; } for (i = 0; i < map->n; ++i) { isl_set_free(dom[i]); isl_set_free(ran[i]); } free(dom); free(ran); free(left); free(right); if (res) { isl_space_free(dim); return res; } return construct_projected_component(dim, map, exact, project); error: if (dom) for (i = 0; i < map->n; ++i) isl_set_free(dom[i]); free(dom); if (ran) for (i = 0; i < map->n; ++i) isl_set_free(ran[i]); free(ran); free(left); free(right); isl_space_free(dim); return NULL; } /* Given an array of sets "set", add "dom" at position "pos" * and search for elements at earlier positions that overlap with "dom". * If any can be found, then merge all of them, together with "dom", into * a single set and assign the union to the first in the array, * which becomes the new group leader for all groups involved in the merge. * During the search, we only consider group leaders, i.e., those with * group[i] = i, as the other sets have already been combined * with one of the group leaders. */ static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos) { int i; group[pos] = pos; set[pos] = isl_set_copy(dom); for (i = pos - 1; i >= 0; --i) { int o; if (group[i] != i) continue; o = isl_set_overlaps(set[i], dom); if (o < 0) goto error; if (!o) continue; set[i] = isl_set_union(set[i], set[group[pos]]); set[group[pos]] = NULL; if (!set[i]) goto error; group[group[pos]] = i; group[pos] = i; } isl_set_free(dom); return 0; error: isl_set_free(dom); return -1; } /* Replace each entry in the n by n grid of maps by the cross product * with the relation { [i] -> [i + 1] }. */ static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n) { int i, j, k; isl_space *dim; isl_basic_map *bstep; isl_map *step; unsigned nparam; if (!map) return -1; dim = isl_map_get_space(map); nparam = isl_space_dim(dim, isl_dim_param); dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in)); dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out)); dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bstep = isl_basic_map_alloc_space(dim, 0, 1, 0); k = isl_basic_map_alloc_equality(bstep); if (k < 0) { isl_basic_map_free(bstep); return -1; } isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep)); isl_int_set_si(bstep->eq[k][0], 1); isl_int_set_si(bstep->eq[k][1 + nparam], 1); isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1); bstep = isl_basic_map_finalize(bstep); step = isl_map_from_basic_map(bstep); for (i = 0; i < n; ++i) for (j = 0; j < n; ++j) grid[i][j] = isl_map_product(grid[i][j], isl_map_copy(step)); isl_map_free(step); return 0; } /* The core of the Floyd-Warshall algorithm. * Updates the given n x x matrix of relations in place. * * The algorithm iterates over all vertices. In each step, the whole * matrix is updated to include all paths that go to the current vertex, * possibly stay there a while (including passing through earlier vertices) * and then come back. At the start of each iteration, the diagonal * element corresponding to the current vertex is replaced by its * transitive closure to account for all indirect paths that stay * in the current vertex. */ static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact) { int r, p, q; for (r = 0; r < n; ++r) { int r_exact; grid[r][r] = isl_map_transitive_closure(grid[r][r], (exact && *exact) ? &r_exact : NULL); if (exact && *exact && !r_exact) *exact = 0; for (p = 0; p < n; ++p) for (q = 0; q < n; ++q) { isl_map *loop; if (p == r && q == r) continue; loop = isl_map_apply_range( isl_map_copy(grid[p][r]), isl_map_copy(grid[r][q])); grid[p][q] = isl_map_union(grid[p][q], loop); loop = isl_map_apply_range( isl_map_copy(grid[p][r]), isl_map_apply_range( isl_map_copy(grid[r][r]), isl_map_copy(grid[r][q]))); grid[p][q] = isl_map_union(grid[p][q], loop); grid[p][q] = isl_map_coalesce(grid[p][q]); } } } /* Given a partition of the domains and ranges of the basic maps in "map", * apply the Floyd-Warshall algorithm with the elements in the partition * as vertices. * * In particular, there are "n" elements in the partition and "group" is * an array of length 2 * map->n with entries in [0,n-1]. * * We first construct a matrix of relations based on the partition information, * apply Floyd-Warshall on this matrix of relations and then take the * union of all entries in the matrix as the final result. * * If we are actually computing the power instead of the transitive closure, * i.e., when "project" is not set, then the result should have the * path lengths encoded as the difference between an extra pair of * coordinates. We therefore apply the nested transitive closures * to relations that include these lengths. In particular, we replace * the input relation by the cross product with the unit length relation * { [i] -> [i + 1] }. */ static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project, int *group, int n) { int i, j, k; isl_map ***grid = NULL; isl_map *app; if (!map) goto error; if (n == 1) { free(group); return incremental_closure(dim, map, exact, project); } grid = isl_calloc_array(map->ctx, isl_map **, n); if (!grid) goto error; for (i = 0; i < n; ++i) { grid[i] = isl_calloc_array(map->ctx, isl_map *, n); if (!grid[i]) goto error; for (j = 0; j < n; ++j) grid[i][j] = isl_map_empty(isl_map_get_space(map)); } for (k = 0; k < map->n; ++k) { i = group[2 * k]; j = group[2 * k + 1]; grid[i][j] = isl_map_union(grid[i][j], isl_map_from_basic_map( isl_basic_map_copy(map->p[k]))); } if (!project && add_length(map, grid, n) < 0) goto error; floyd_warshall_iterate(grid, n, exact); app = isl_map_empty(isl_map_get_space(grid[0][0])); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) app = isl_map_union(app, grid[i][j]); free(grid[i]); } free(grid); free(group); isl_space_free(dim); return app; error: if (grid) for (i = 0; i < n; ++i) { if (!grid[i]) continue; for (j = 0; j < n; ++j) isl_map_free(grid[i][j]); free(grid[i]); } free(grid); free(group); isl_space_free(dim); return NULL; } /* Partition the domains and ranges of the n basic relations in list * into disjoint cells. * * To find the partition, we simply consider all of the domains * and ranges in turn and combine those that overlap. * "set" contains the partition elements and "group" indicates * to which partition element a given domain or range belongs. * The domain of basic map i corresponds to element 2 * i in these arrays, * while the domain corresponds to element 2 * i + 1. * During the construction group[k] is either equal to k, * in which case set[k] contains the union of all the domains and * ranges in the corresponding group, or is equal to some l < k, * with l another domain or range in the same group. */ static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, isl_set ***set, int *n_group) { int i; int *group = NULL; int g; *set = isl_calloc_array(ctx, isl_set *, 2 * n); group = isl_alloc_array(ctx, int, 2 * n); if (!*set || !group) goto error; for (i = 0; i < n; ++i) { isl_set *dom; dom = isl_set_from_basic_set(isl_basic_map_domain( isl_basic_map_copy(list[i]))); if (merge(*set, group, dom, 2 * i) < 0) goto error; dom = isl_set_from_basic_set(isl_basic_map_range( isl_basic_map_copy(list[i]))); if (merge(*set, group, dom, 2 * i + 1) < 0) goto error; } g = 0; for (i = 0; i < 2 * n; ++i) if (group[i] == i) { if (g != i) { (*set)[g] = (*set)[i]; (*set)[i] = NULL; } group[i] = g++; } else group[i] = group[group[i]]; *n_group = g; return group; error: if (*set) { for (i = 0; i < 2 * n; ++i) isl_set_free((*set)[i]); free(*set); *set = NULL; } free(group); return NULL; } /* Check if the domains and ranges of the basic maps in "map" can * be partitioned, and if so, apply Floyd-Warshall on the elements * of the partition. Note that we also apply this algorithm * if we want to compute the power, i.e., when "project" is not set. * However, the results are unlikely to be exact since the recursive * calls inside the Floyd-Warshall algorithm typically result in * non-linear path lengths quite quickly. */ static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i; isl_set **set = NULL; int *group = NULL; int n; if (!map) goto error; if (map->n <= 1) return incremental_closure(dim, map, exact, project); group = setup_groups(map->ctx, map->p, map->n, &set, &n); if (!group) goto error; for (i = 0; i < 2 * map->n; ++i) isl_set_free(set[i]); free(set); return floyd_warshall_with_groups(dim, map, exact, project, group, n); error: isl_space_free(dim); return NULL; } /* Structure for representing the nodes of the graph of which * strongly connected components are being computed. * * list contains the actual nodes * check_closed is set if we may have used the fact that * a pair of basic maps can be interchanged */ struct isl_tc_follows_data { isl_basic_map **list; int check_closed; }; /* Check whether in the computation of the transitive closure * "list[i]" (R_1) should follow (or be part of the same component as) * "list[j]" (R_2). * * That is check whether * * R_1 \circ R_2 * * is a subset of * * R_2 \circ R_1 * * If so, then there is no reason for R_1 to immediately follow R_2 * in any path. * * *check_closed is set if the subset relation holds while * R_1 \circ R_2 is not empty. */ static isl_bool basic_map_follows(int i, int j, void *user) { struct isl_tc_follows_data *data = user; struct isl_map *map12 = NULL; struct isl_map *map21 = NULL; isl_bool subset; if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in, data->list[j]->dim, isl_dim_out)) return isl_bool_false; map21 = isl_map_from_basic_map( isl_basic_map_apply_range( isl_basic_map_copy(data->list[j]), isl_basic_map_copy(data->list[i]))); subset = isl_map_is_empty(map21); if (subset < 0) goto error; if (subset) { isl_map_free(map21); return isl_bool_false; } if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in, data->list[i]->dim, isl_dim_out) || !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in, data->list[j]->dim, isl_dim_out)) { isl_map_free(map21); return isl_bool_true; } map12 = isl_map_from_basic_map( isl_basic_map_apply_range( isl_basic_map_copy(data->list[i]), isl_basic_map_copy(data->list[j]))); subset = isl_map_is_subset(map21, map12); isl_map_free(map12); isl_map_free(map21); if (subset) data->check_closed = 1; return subset < 0 ? isl_bool_error : !subset; error: isl_map_free(map21); return isl_bool_error; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the dom R \times Z to an * element from ran R \times Z, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * If "project" is set, then these final coordinates are not included, * i.e., a relation of type Z^n -> Z^n is returned. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) and * x in dom R and x + d in ran R } * * or * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i) and * x in dom R and x + d in ran R } * * if "project" is set. * * We first split the map into strongly connected components, perform * the above on each component and then join the results in the correct * order, at each join also taking in the union of both arguments * to allow for paths that do not go through one of the two arguments. */ static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i, n, c; struct isl_map *path = NULL; struct isl_tc_follows_data data; struct isl_tarjan_graph *g = NULL; int *orig_exact; int local_exact; if (!map) goto error; if (map->n <= 1) return floyd_warshall(dim, map, exact, project); data.list = map->p; data.check_closed = 0; g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data); if (!g) goto error; orig_exact = exact; if (data.check_closed && !exact) exact = &local_exact; c = 0; i = 0; n = map->n; if (project) path = isl_map_empty(isl_map_get_space(map)); else path = isl_map_empty(isl_space_copy(dim)); path = anonymize(path); while (n) { struct isl_map *comp; isl_map *path_comp, *path_comb; comp = isl_map_alloc_space(isl_map_get_space(map), n, 0); while (g->order[i] != -1) { comp = isl_map_add_basic_map(comp, isl_basic_map_copy(map->p[g->order[i]])); --n; ++i; } path_comp = floyd_warshall(isl_space_copy(dim), comp, exact, project); path_comp = anonymize(path_comp); path_comb = isl_map_apply_range(isl_map_copy(path), isl_map_copy(path_comp)); path = isl_map_union(path, path_comp); path = isl_map_union(path, path_comb); isl_map_free(comp); ++i; ++c; } if (c > 1 && data.check_closed && !*exact) { int closed; closed = isl_map_is_transitively_closed(path); if (closed < 0) goto error; if (!closed) { isl_tarjan_graph_free(g); isl_map_free(path); return floyd_warshall(dim, map, orig_exact, project); } } isl_tarjan_graph_free(g); isl_space_free(dim); return path; error: isl_tarjan_graph_free(g); isl_space_free(dim); isl_map_free(path); return NULL; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D, * construct a map that is an overapproximation of the map * that takes an element from the space D to another * element from the same space, such that the difference between * them is a strictly positive sum of differences between images * and pre-images in one of the R_i. * The number of differences in the sum is equated to parameter "param". * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 } * or * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = \sum_i k_i \delta_i and \sum_i k_i > 0 } * * if "project" is set. * * If "project" is not set, then * we construct an extended mapping with an extra coordinate * that indicates the number of steps taken. In particular, * the difference in the last coordinate is equal to the number * of steps taken to move from a domain element to the corresponding * image element(s). */ static __isl_give isl_map *construct_power(__isl_keep isl_map *map, int *exact, int project) { struct isl_map *app = NULL; isl_space *dim = NULL; if (!map) return NULL; dim = isl_map_get_space(map); dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); app = construct_power_components(isl_space_copy(dim), map, exact, project); isl_space_free(dim); return app; } /* Compute the positive powers of "map", or an overapproximation. * If the result is exact, then *exact is set to 1. * * If project is set, then we are actually interested in the transitive * closure, so we can use a more relaxed exactness check. * The lengths of the paths are also projected out instead of being * encoded as the difference between an extra pair of final coordinates. */ static __isl_give isl_map *map_power(__isl_take isl_map *map, int *exact, int project) { struct isl_map *app = NULL; if (exact) *exact = 1; if (!map) return NULL; isl_assert(map->ctx, isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out), goto error); app = construct_power(map, exact, project); isl_map_free(map); return app; error: isl_map_free(map); isl_map_free(app); return NULL; } /* Compute the positive powers of "map", or an overapproximation. * The result maps the exponent to a nested copy of the corresponding power. * If the result is exact, then *exact is set to 1. * map_power constructs an extended relation with the path lengths * encoded as the difference between the final coordinates. * In the final step, this difference is equated to an extra parameter * and made positive. The extra coordinates are subsequently projected out * and the parameter is turned into the domain of the result. */ __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact) { isl_space *target_dim; isl_space *dim; isl_map *diff; unsigned d; unsigned param; if (!map) return NULL; d = isl_map_dim(map, isl_dim_in); param = isl_map_dim(map, isl_dim_param); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); if (isl_map_plain_is_empty(map)) { map = isl_map_from_range(isl_map_wrap(map)); map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_set_dim_name(map, isl_dim_in, 0, "k"); return map; } target_dim = isl_map_get_space(map); target_dim = isl_space_from_range(isl_space_wrap(target_dim)); target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1); target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k"); map = map_power(map, exact, 0); map = isl_map_add_dims(map, isl_dim_param, 1); dim = isl_map_get_space(map); diff = equate_parameter_to_length(dim, param); map = isl_map_intersect(map, diff); map = isl_map_project_out(map, isl_dim_in, d, 1); map = isl_map_project_out(map, isl_dim_out, d, 1); map = isl_map_from_range(isl_map_wrap(map)); map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1); map = isl_map_reset_space(map, target_dim); return map; } /* Compute a relation that maps each element in the range of the input * relation to the lengths of all paths composed of edges in the input * relation that end up in the given range element. * The result may be an overapproximation, in which case *exact is set to 0. * The resulting relation is very similar to the power relation. * The difference are that the domain has been projected out, the * range has become the domain and the exponent is the range instead * of a parameter. */ __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map, int *exact) { isl_space *dim; isl_map *diff; unsigned d; unsigned param; if (!map) return NULL; d = isl_map_dim(map, isl_dim_in); param = isl_map_dim(map, isl_dim_param); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); if (isl_map_plain_is_empty(map)) { if (exact) *exact = 1; map = isl_map_project_out(map, isl_dim_out, 0, d); map = isl_map_add_dims(map, isl_dim_out, 1); return map; } map = map_power(map, exact, 0); map = isl_map_add_dims(map, isl_dim_param, 1); dim = isl_map_get_space(map); diff = equate_parameter_to_length(dim, param); map = isl_map_intersect(map, diff); map = isl_map_project_out(map, isl_dim_in, 0, d + 1); map = isl_map_project_out(map, isl_dim_out, d, 1); map = isl_map_reverse(map); map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1); return map; } /* Check whether equality i of bset is a pure stride constraint * on a single dimension, i.e., of the form * * v = k e * * with k a constant and e an existentially quantified variable. */ static int is_eq_stride(__isl_keep isl_basic_set *bset, int i) { unsigned nparam; unsigned d; unsigned n_div; int pos1; int pos2; if (!bset) return -1; if (!isl_int_is_zero(bset->eq[i][0])) return 0; nparam = isl_basic_set_dim(bset, isl_dim_param); d = isl_basic_set_dim(bset, isl_dim_set); n_div = isl_basic_set_dim(bset, isl_dim_div); if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1) return 0; pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d); if (pos1 == -1) return 0; if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1, d - pos1 - 1) != -1) return 0; pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div); if (pos2 == -1) return 0; if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1, n_div - pos2 - 1) != -1) return 0; if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) && !isl_int_is_negone(bset->eq[i][1 + nparam + pos1])) return 0; return 1; } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive closure of this map, i.e., * * { i -> j : exists k > 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * the given domain and range. * * If with_id is set, then try to include as much of the identity mapping * as possible, by computing * * { i -> j : exists k >= 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * instead (i.e., allow k = 0). * * In practice, we compute the difference set * * delta = { j - i | i -> j in map }, * * look for stride constraint on the individual dimensions and compute * (constant) lower and upper bounds for each individual dimension, * adding a constraint for each bound not equal to infinity. */ static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map, __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id) { int i; int k; unsigned d; unsigned nparam; unsigned total; isl_space *dim; isl_set *delta; isl_map *app = NULL; isl_basic_set *aff = NULL; isl_basic_map *bmap = NULL; isl_vec *obj = NULL; isl_int opt; isl_int_init(opt); delta = isl_map_deltas(isl_map_copy(map)); aff = isl_set_affine_hull(isl_set_copy(delta)); if (!aff) goto error; dim = isl_map_get_space(map); d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); total = isl_space_dim(dim, isl_dim_all); bmap = isl_basic_map_alloc_space(dim, aff->n_div + 1, aff->n_div, 2 * d + 1); for (i = 0; i < aff->n_div + 1; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_int_set_si(bmap->div[k][0], 0); } for (i = 0; i < aff->n_eq; ++i) { if (!is_eq_stride(aff, i)) continue; k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + nparam); isl_seq_cpy(bmap->eq[k] + 1 + nparam + d, aff->eq[i] + 1 + nparam, d); isl_seq_neg(bmap->eq[k] + 1 + nparam, aff->eq[i] + 1 + nparam, d); isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d, aff->eq[i] + 1 + nparam + d, aff->n_div); isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0); } obj = isl_vec_alloc(map->ctx, 1 + nparam + d); if (!obj) goto error; isl_seq_clr(obj->el, 1 + nparam + d); for (i = 0; i < d; ++ i) { enum isl_lp_result res; isl_int_set_si(obj->el[1 + nparam + i], 1); res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt, NULL, NULL); if (res == isl_lp_error) goto error; if (res == isl_lp_ok) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1); isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1); isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); } res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt, NULL, NULL); if (res == isl_lp_error) goto error; if (res == isl_lp_ok) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1); isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1); isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); } isl_int_set_si(obj->el[1 + nparam + i], 0); } k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); if (!with_id) isl_int_set_si(bmap->ineq[k][0], -1); isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1); app = isl_map_from_domain_and_range(dom, ran); isl_vec_free(obj); isl_basic_set_free(aff); isl_map_free(map); bmap = isl_basic_map_finalize(bmap); isl_set_free(delta); isl_int_clear(opt); map = isl_map_from_basic_map(bmap); map = isl_map_intersect(map, app); return map; error: isl_vec_free(obj); isl_basic_map_free(bmap); isl_basic_set_free(aff); isl_set_free(dom); isl_set_free(ran); isl_map_free(map); isl_set_free(delta); isl_int_clear(opt); return NULL; } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive closure of this map, i.e., * * { i -> j : exists k > 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * domain and range of the original map. */ static __isl_give isl_map *box_closure(__isl_take isl_map *map) { isl_set *domain; isl_set *range; domain = isl_map_domain(isl_map_copy(map)); domain = isl_set_coalesce(domain); range = isl_map_range(isl_map_copy(map)); range = isl_set_coalesce(range); return box_closure_on_domain(map, domain, range, 0); } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive and partially reflexive closure of this map, i.e., * * { i -> j : exists k >= 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * the given domain. */ static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map, __isl_take isl_set *dom) { return box_closure_on_domain(map, dom, isl_set_copy(dom), 1); } /* Check whether app is the transitive closure of map. * In particular, check that app is acyclic and, if so, * check that * * app \subset (map \cup (map \circ app)) */ static int check_exactness_omega(__isl_keep isl_map *map, __isl_keep isl_map *app) { isl_set *delta; int i; int is_empty, is_exact; unsigned d; isl_map *test; delta = isl_map_deltas(isl_map_copy(app)); d = isl_set_dim(delta, isl_dim_set); for (i = 0; i < d; ++i) delta = isl_set_fix_si(delta, isl_dim_set, i, 0); is_empty = isl_set_is_empty(delta); isl_set_free(delta); if (is_empty < 0) return -1; if (!is_empty) return 0; test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map)); test = isl_map_union(test, isl_map_copy(map)); is_exact = isl_map_is_subset(app, test); isl_map_free(test); return is_exact; } /* Check if basic map M_i can be combined with all the other * basic maps such that * * (\cup_j M_j)^+ * * can be computed as * * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ * * In particular, check if we can compute a compact representation * of * * M_i^* \circ M_j \circ M_i^* * * for each j != i. * Let M_i^? be an extension of M_i^+ that allows paths * of length zero, i.e., the result of box_closure(., 1). * The criterion, as proposed by Kelly et al., is that * id = M_i^? - M_i^+ can be represented as a basic map * and that * * id \circ M_j \circ id = M_j * * for each j != i. * * If this function returns 1, then tc and qc are set to * M_i^+ and M_i^?, respectively. */ static int can_be_split_off(__isl_keep isl_map *map, int i, __isl_give isl_map **tc, __isl_give isl_map **qc) { isl_map *map_i, *id = NULL; int j = -1; isl_set *C; *tc = NULL; *qc = NULL; C = isl_set_union(isl_map_domain(isl_map_copy(map)), isl_map_range(isl_map_copy(map))); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) goto error; map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); *tc = box_closure(isl_map_copy(map_i)); *qc = box_closure_with_identity(map_i, C); id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc)); if (!id || !*qc) goto error; if (id->n != 1 || (*qc)->n != 1) goto done; for (j = 0; j < map->n; ++j) { isl_map *map_j, *test; int is_ok; if (i == j) continue; map_j = isl_map_from_basic_map( isl_basic_map_copy(map->p[j])); test = isl_map_apply_range(isl_map_copy(id), isl_map_copy(map_j)); test = isl_map_apply_range(test, isl_map_copy(id)); is_ok = isl_map_is_equal(test, map_j); isl_map_free(map_j); isl_map_free(test); if (is_ok < 0) goto error; if (!is_ok) break; } done: isl_map_free(id); if (j == map->n) return 1; isl_map_free(*qc); isl_map_free(*tc); *qc = NULL; *tc = NULL; return 0; error: isl_map_free(id); isl_map_free(*qc); isl_map_free(*tc); *qc = NULL; *tc = NULL; return -1; } static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map, int *exact) { isl_map *app; app = box_closure(isl_map_copy(map)); if (exact) *exact = check_exactness_omega(map, app); isl_map_free(map); return app; } /* Compute an overapproximation of the transitive closure of "map" * using a variation of the algorithm from * "Transitive Closure of Infinite Graphs and its Applications" * by Kelly et al. * * We first check whether we can can split of any basic map M_i and * compute * * (\cup_j M_j)^+ * * as * * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ * * using a recursive call on the remaining map. * * If not, we simply call box_closure on the whole map. */ static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map, int *exact) { int i, j; int exact_i; isl_map *app; if (!map) return NULL; if (map->n == 1) return box_closure_with_check(map, exact); for (i = 0; i < map->n; ++i) { int ok; isl_map *qc, *tc; ok = can_be_split_off(map, i, &tc, &qc); if (ok < 0) goto error; if (!ok) continue; app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0); for (j = 0; j < map->n; ++j) { if (j == i) continue; app = isl_map_add_basic_map(app, isl_basic_map_copy(map->p[j])); } app = isl_map_apply_range(isl_map_copy(qc), app); app = isl_map_apply_range(app, qc); app = isl_map_union(tc, transitive_closure_omega(app, NULL)); exact_i = check_exactness_omega(map, app); if (exact_i == 1) { if (exact) *exact = exact_i; isl_map_free(map); return app; } isl_map_free(app); if (exact_i < 0) goto error; } return box_closure_with_check(map, exact); error: isl_map_free(map); return NULL; } /* Compute the transitive closure of "map", or an overapproximation. * If the result is exact, then *exact is set to 1. * Simply use map_power to compute the powers of map, but tell * it to project out the lengths of the paths instead of equating * the length to a parameter. */ __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map, int *exact) { isl_space *target_dim; int closed; if (!map) goto error; if (map->ctx->opt->closure == ISL_CLOSURE_BOX) return transitive_closure_omega(map, exact); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); closed = isl_map_is_transitively_closed(map); if (closed < 0) goto error; if (closed) { if (exact) *exact = 1; return map; } target_dim = isl_map_get_space(map); map = map_power(map, exact, 1); map = isl_map_reset_space(map, target_dim); return map; error: isl_map_free(map); return NULL; } static isl_stat inc_count(__isl_take isl_map *map, void *user) { int *n = user; *n += map->n; isl_map_free(map); return isl_stat_ok; } static isl_stat collect_basic_map(__isl_take isl_map *map, void *user) { int i; isl_basic_map ***next = user; for (i = 0; i < map->n; ++i) { **next = isl_basic_map_copy(map->p[i]); if (!**next) goto error; (*next)++; } isl_map_free(map); return isl_stat_ok; error: isl_map_free(map); return isl_stat_error; } /* Perform Floyd-Warshall on the given list of basic relations. * The basic relations may live in different dimensions, * but basic relations that get assigned to the diagonal of the * grid have domains and ranges of the same dimension and so * the standard algorithm can be used because the nested transitive * closures are only applied to diagonal elements and because all * compositions are peformed on relations with compatible domains and ranges. */ static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, int *exact) { int i, j, k; int n_group; int *group = NULL; isl_set **set = NULL; isl_map ***grid = NULL; isl_union_map *app; group = setup_groups(ctx, list, n, &set, &n_group); if (!group) goto error; grid = isl_calloc_array(ctx, isl_map **, n_group); if (!grid) goto error; for (i = 0; i < n_group; ++i) { grid[i] = isl_calloc_array(ctx, isl_map *, n_group); if (!grid[i]) goto error; for (j = 0; j < n_group; ++j) { isl_space *dim1, *dim2, *dim; dim1 = isl_space_reverse(isl_set_get_space(set[i])); dim2 = isl_set_get_space(set[j]); dim = isl_space_join(dim1, dim2); grid[i][j] = isl_map_empty(dim); } } for (k = 0; k < n; ++k) { i = group[2 * k]; j = group[2 * k + 1]; grid[i][j] = isl_map_union(grid[i][j], isl_map_from_basic_map( isl_basic_map_copy(list[k]))); } floyd_warshall_iterate(grid, n_group, exact); app = isl_union_map_empty(isl_map_get_space(grid[0][0])); for (i = 0; i < n_group; ++i) { for (j = 0; j < n_group; ++j) app = isl_union_map_add_map(app, grid[i][j]); free(grid[i]); } free(grid); for (i = 0; i < 2 * n; ++i) isl_set_free(set[i]); free(set); free(group); return app; error: if (grid) for (i = 0; i < n_group; ++i) { if (!grid[i]) continue; for (j = 0; j < n_group; ++j) isl_map_free(grid[i][j]); free(grid[i]); } free(grid); if (set) { for (i = 0; i < 2 * n; ++i) isl_set_free(set[i]); free(set); } free(group); return NULL; } /* Perform Floyd-Warshall on the given union relation. * The implementation is very similar to that for non-unions. * The main difference is that it is applied unconditionally. * We first extract a list of basic maps from the union map * and then perform the algorithm on this list. */ static __isl_give isl_union_map *union_floyd_warshall( __isl_take isl_union_map *umap, int *exact) { int i, n; isl_ctx *ctx; isl_basic_map **list = NULL; isl_basic_map **next; isl_union_map *res; n = 0; if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) goto error; ctx = isl_union_map_get_ctx(umap); list = isl_calloc_array(ctx, isl_basic_map *, n); if (!list) goto error; next = list; if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) goto error; res = union_floyd_warshall_on_list(ctx, list, n, exact); if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); return res; error: if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); return NULL; } /* Decompose the give union relation into strongly connected components. * The implementation is essentially the same as that of * construct_power_components with the major difference that all * operations are performed on union maps. */ static __isl_give isl_union_map *union_components( __isl_take isl_union_map *umap, int *exact) { int i; int n; isl_ctx *ctx; isl_basic_map **list = NULL; isl_basic_map **next; isl_union_map *path = NULL; struct isl_tc_follows_data data; struct isl_tarjan_graph *g = NULL; int c, l; int recheck = 0; n = 0; if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) goto error; if (n == 0) return umap; if (n <= 1) return union_floyd_warshall(umap, exact); ctx = isl_union_map_get_ctx(umap); list = isl_calloc_array(ctx, isl_basic_map *, n); if (!list) goto error; next = list; if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) goto error; data.list = list; data.check_closed = 0; g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data); if (!g) goto error; c = 0; i = 0; l = n; path = isl_union_map_empty(isl_union_map_get_space(umap)); while (l) { isl_union_map *comp; isl_union_map *path_comp, *path_comb; comp = isl_union_map_empty(isl_union_map_get_space(umap)); while (g->order[i] != -1) { comp = isl_union_map_add_map(comp, isl_map_from_basic_map( isl_basic_map_copy(list[g->order[i]]))); --l; ++i; } path_comp = union_floyd_warshall(comp, exact); path_comb = isl_union_map_apply_range(isl_union_map_copy(path), isl_union_map_copy(path_comp)); path = isl_union_map_union(path, path_comp); path = isl_union_map_union(path, path_comb); ++i; ++c; } if (c > 1 && data.check_closed && !*exact) { int closed; closed = isl_union_map_is_transitively_closed(path); if (closed < 0) goto error; recheck = !closed; } isl_tarjan_graph_free(g); for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); if (recheck) { isl_union_map_free(path); return union_floyd_warshall(umap, exact); } isl_union_map_free(umap); return path; error: isl_tarjan_graph_free(g); if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); isl_union_map_free(path); return NULL; } /* Compute the transitive closure of "umap", or an overapproximation. * If the result is exact, then *exact is set to 1. */ __isl_give isl_union_map *isl_union_map_transitive_closure( __isl_take isl_union_map *umap, int *exact) { int closed; if (!umap) return NULL; if (exact) *exact = 1; umap = isl_union_map_compute_divs(umap); umap = isl_union_map_coalesce(umap); closed = isl_union_map_is_transitively_closed(umap); if (closed < 0) goto error; if (closed) return umap; umap = union_components(umap, exact); return umap; error: isl_union_map_free(umap); return NULL; } struct isl_union_power { isl_union_map *pow; int *exact; }; static isl_stat power(__isl_take isl_map *map, void *user) { struct isl_union_power *up = user; map = isl_map_power(map, up->exact); up->pow = isl_union_map_from_map(map); return isl_stat_error; } /* Construct a map [x] -> [x+1], with parameters prescribed by "dim". */ static __isl_give isl_union_map *increment(__isl_take isl_space *dim) { int k; isl_basic_map *bmap; dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bmap = isl_basic_map_alloc_space(dim, 0, 1, 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[k][0], 1); isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1); isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1); return isl_union_map_from_map(isl_map_from_basic_map(bmap)); error: isl_basic_map_free(bmap); return NULL; } /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim". */ static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim) { isl_basic_map *bmap; dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bmap = isl_basic_map_universe(dim); bmap = isl_basic_map_deltas_map(bmap); return isl_union_map_from_map(isl_map_from_basic_map(bmap)); } /* Compute the positive powers of "map", or an overapproximation. * The result maps the exponent to a nested copy of the corresponding power. * If the result is exact, then *exact is set to 1. */ __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap, int *exact) { int n; isl_union_map *inc; isl_union_map *dm; if (!umap) return NULL; n = isl_union_map_n_map(umap); if (n == 0) return umap; if (n == 1) { struct isl_union_power up = { NULL, exact }; isl_union_map_foreach_map(umap, &power, &up); isl_union_map_free(umap); return up.pow; } inc = increment(isl_union_map_get_space(umap)); umap = isl_union_map_product(inc, umap); umap = isl_union_map_transitive_closure(umap, exact); umap = isl_union_map_zip(umap); dm = deltas_map(isl_union_map_get_space(umap)); umap = isl_union_map_apply_domain(umap, dm); return umap; } #undef TYPE #define TYPE isl_map #include "isl_power_templ.c" #undef TYPE #define TYPE isl_union_map #include "isl_power_templ.c"