/* hmac256.c - Standalone HMAC implementation * Copyright (C) 2003, 2006, 2008 Free Software Foundation, Inc. * * This file is part of Libgcrypt. * * Libgcrypt is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * Libgcrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ /* This is a standalone HMAC-SHA-256 implementation based on the code from ../cipher/sha256.c. It is a second implementation to allow comparing against the standard implementations and to be used for internal consistency checks. It should not be used for sensitive data because no mechanisms to clear the stack etc are used. This module may be used standalone. Types: u32 - unsigned 32 bit type. Constants: WORDS_BIGENDIAN Defined to 1 on big endian systems. inline If defined, it should yield the keyword used to inline a function. HAVE_U32_TYPEDEF Defined if the u32 type is available. SIZEOF_UNSIGNED_INT Defined to the size in bytes of an unsigned int. SIZEOF_UNSIGNED_LONG Defined to the size in bytes of an unsigned long. STANDALONE Compile a test driver similar to the sha1sum tool. This driver uses a self-test identically to the one used by Libcgrypt for testing this included module. */ #ifdef STANDALONE #include #define HAVE_U32_TYPEDEF 1 typedef uint32_t u32; #define VERSION "standalone" /* For GCC, we can detect endianness. If not GCC, please define manually. */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ #define WORDS_BIGENDIAN 1 #endif #else #include #endif #include #include #include #include #include #if defined(__WIN32) && defined(STANDALONE) # include /* We need setmode(). */ #endif #ifdef STANDALONE #define xtrymalloc(a) malloc((a)) #define gpg_err_set_errno(a) (errno = (a)) #else #include "g10lib.h" #endif #include "hmac256.h" #ifndef HAVE_U32_TYPEDEF # undef u32 /* Undef a possible macro with that name. */ # if SIZEOF_UNSIGNED_INT == 4 typedef unsigned int u32; # elif SIZEOF_UNSIGNED_LONG == 4 typedef unsigned long u32; # else # error no typedef for u32 # endif # define HAVE_U32_TYPEDEF #endif /* The context used by this module. */ struct hmac256_context { u32 h0, h1, h2, h3, h4, h5, h6, h7; u32 nblocks; int count; int finalized:1; int use_hmac:1; unsigned char buf[64]; unsigned char opad[64]; }; /* Rotate a 32 bit word. */ static inline u32 ror(u32 x, int n) { return ( ((x) >> (n)) | ((x) << (32-(n))) ); } #define my_wipememory2(_ptr,_set,_len) do { \ volatile char *_vptr=(volatile char *)(_ptr); \ size_t _vlen=(_len); \ while(_vlen) { *_vptr=(_set); _vptr++; _vlen--; } \ } while(0) #define my_wipememory(_ptr,_len) my_wipememory2(_ptr,0,_len) /* The SHA-256 core: Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ static void transform (hmac256_context_t hd, const void *data_arg) { const unsigned char *data = data_arg; #define Cho(x,y,z) (z ^ (x & (y ^ z))) /* (4.2) same as SHA-1's F1 */ #define Maj(x,y,z) ((x & y) | (z & (x|y))) /* (4.3) same as SHA-1's F3 */ #define Sum0(x) (ror ((x), 2) ^ ror ((x), 13) ^ ror ((x), 22)) /* (4.4) */ #define Sum1(x) (ror ((x), 6) ^ ror ((x), 11) ^ ror ((x), 25)) /* (4.5) */ #define S0(x) (ror ((x), 7) ^ ror ((x), 18) ^ ((x) >> 3)) /* (4.6) */ #define S1(x) (ror ((x), 17) ^ ror ((x), 19) ^ ((x) >> 10)) /* (4.7) */ #define R(a,b,c,d,e,f,g,h,k,w) do \ { \ t1 = (h) + Sum1((e)) + Cho((e),(f),(g)) + (k) + (w); \ t2 = Sum0((a)) + Maj((a),(b),(c)); \ h = g; \ g = f; \ f = e; \ e = d + t1; \ d = c; \ c = b; \ b = a; \ a = t1 + t2; \ } while (0) static const u32 K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; u32 a, b, c, d, e, f, g, h, t1, t2; u32 x[16]; u32 w[64]; int i; a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; f = hd->h5; g = hd->h6; h = hd->h7; #ifdef WORDS_BIGENDIAN memcpy (x, data, 64); #else /*!WORDS_BIGENDIAN*/ { unsigned char *p2; for (i=0, p2=(unsigned char*)x; i < 16; i++, p2 += 4 ) { p2[3] = *data++; p2[2] = *data++; p2[1] = *data++; p2[0] = *data++; } } #endif /*!WORDS_BIGENDIAN*/ for (i=0; i < 16; i++) w[i] = x[i]; for (; i < 64; i++) w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16]; for (i=0; i < 64; i++) R(a,b,c,d,e,f,g,h,K[i],w[i]); hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; hd->h5 += f; hd->h6 += g; hd->h7 += h; } #undef Cho #undef Maj #undef Sum0 #undef Sum1 #undef S0 #undef S1 #undef R /* Finalize the current SHA256 calculation. */ static void finalize (hmac256_context_t hd) { u32 t, msb, lsb; unsigned char *p; if (hd->finalized) return; /* Silently ignore a finalized context. */ _gcry_hmac256_update (hd, NULL, 0); /* Flush. */ t = hd->nblocks; /* Multiply by 64 to make a byte count. */ lsb = t << 6; msb = t >> 26; /* Add the count. */ t = lsb; if ((lsb += hd->count) < t) msb++; /* Multiply by 8 to make a bit count. */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (hd->count < 56) { /* Enough room. */ hd->buf[hd->count++] = 0x80; /* pad */ while (hd->count < 56) hd->buf[hd->count++] = 0; /* pad */ } else { /* Need one extra block. */ hd->buf[hd->count++] = 0x80; /* pad character */ while (hd->count < 64) hd->buf[hd->count++] = 0; _gcry_hmac256_update (hd, NULL, 0); /* Flush. */; memset (hd->buf, 0, 56 ); /* Zero out next next block. */ } /* Append the 64 bit count. */ hd->buf[56] = msb >> 24; hd->buf[57] = msb >> 16; hd->buf[58] = msb >> 8; hd->buf[59] = msb; hd->buf[60] = lsb >> 24; hd->buf[61] = lsb >> 16; hd->buf[62] = lsb >> 8; hd->buf[63] = lsb; transform (hd, hd->buf); /* Store the digest into hd->buf. */ p = hd->buf; #define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \ *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0) X(0); X(1); X(2); X(3); X(4); X(5); X(6); X(7); #undef X hd->finalized = 1; } /* Create a new context. On error NULL is returned and errno is set appropriately. If KEY is given the function computes HMAC using this key; with KEY given as NULL, a plain SHA-256 digest is computed. */ hmac256_context_t _gcry_hmac256_new (const void *key, size_t keylen) { hmac256_context_t hd; hd = xtrymalloc (sizeof *hd); if (!hd) return NULL; hd->h0 = 0x6a09e667; hd->h1 = 0xbb67ae85; hd->h2 = 0x3c6ef372; hd->h3 = 0xa54ff53a; hd->h4 = 0x510e527f; hd->h5 = 0x9b05688c; hd->h6 = 0x1f83d9ab; hd->h7 = 0x5be0cd19; hd->nblocks = 0; hd->count = 0; hd->finalized = 0; hd->use_hmac = 0; if (key) { int i; unsigned char ipad[64]; memset (ipad, 0, 64); memset (hd->opad, 0, 64); if (keylen <= 64) { memcpy (ipad, key, keylen); memcpy (hd->opad, key, keylen); } else { hmac256_context_t tmphd; tmphd = _gcry_hmac256_new (NULL, 0); if (!tmphd) { free (hd); return NULL; } _gcry_hmac256_update (tmphd, key, keylen); finalize (tmphd); memcpy (ipad, tmphd->buf, 32); memcpy (hd->opad, tmphd->buf, 32); _gcry_hmac256_release (tmphd); } for (i=0; i < 64; i++) { ipad[i] ^= 0x36; hd->opad[i] ^= 0x5c; } hd->use_hmac = 1; _gcry_hmac256_update (hd, ipad, 64); my_wipememory (ipad, 64); } return hd; } /* Release a context created by _gcry_hmac256_new. CTX may be NULL in which case the function does nothing. */ void _gcry_hmac256_release (hmac256_context_t ctx) { if (ctx) { /* Note: We need to take care not to modify errno. */ if (ctx->use_hmac) my_wipememory (ctx->opad, 64); free (ctx); } } /* Update the message digest with the contents of BUFFER containing LENGTH bytes. */ void _gcry_hmac256_update (hmac256_context_t hd, const void *buffer, size_t length) { const unsigned char *inbuf = buffer; if (hd->finalized) return; /* Silently ignore a finalized context. */ if (hd->count == 64) { /* Flush the buffer. */ transform (hd, hd->buf); hd->count = 0; hd->nblocks++; } if (!inbuf) return; /* Only flushing was requested. */ if (hd->count) { for (; length && hd->count < 64; length--) hd->buf[hd->count++] = *inbuf++; _gcry_hmac256_update (hd, NULL, 0); /* Flush. */ if (!length) return; } while (length >= 64) { transform (hd, inbuf); hd->count = 0; hd->nblocks++; length -= 64; inbuf += 64; } for (; length && hd->count < 64; length--) hd->buf[hd->count++] = *inbuf++; } /* Finalize an operation and return the digest. If R_DLEN is not NULL the length of the digest will be stored at that address. The returned value is valid as long as the context exists. On error NULL is returned. */ const void * _gcry_hmac256_finalize (hmac256_context_t hd, size_t *r_dlen) { finalize (hd); if (hd->use_hmac) { hmac256_context_t tmphd; tmphd = _gcry_hmac256_new (NULL, 0); if (!tmphd) return NULL; _gcry_hmac256_update (tmphd, hd->opad, 64); _gcry_hmac256_update (tmphd, hd->buf, 32); finalize (tmphd); memcpy (hd->buf, tmphd->buf, 32); _gcry_hmac256_release (tmphd); } if (r_dlen) *r_dlen = 32; return (void*)hd->buf; } /* Convenience function to compute the HMAC-SHA256 of one file. The user needs to provide a buffer RESULT of at least 32 bytes, he needs to put the size of the buffer into RESULTSIZE and the FILENAME. KEY and KEYLEN are as described for _gcry_hmac256_new. On success the function returns the valid length of the result buffer (which will be 32) or -1 on error. On error ERRNO is set appropriate. */ int _gcry_hmac256_file (void *result, size_t resultsize, const char *filename, const void *key, size_t keylen) { FILE *fp; hmac256_context_t hd; size_t buffer_size, nread, digestlen; char *buffer; const unsigned char *digest; fp = fopen (filename, "rb"); if (!fp) return -1; hd = _gcry_hmac256_new (key, keylen); if (!hd) { fclose (fp); return -1; } buffer_size = 32768; buffer = xtrymalloc (buffer_size); if (!buffer) { fclose (fp); _gcry_hmac256_release (hd); return -1; } while ( (nread = fread (buffer, 1, buffer_size, fp))) _gcry_hmac256_update (hd, buffer, nread); free (buffer); if (ferror (fp)) { fclose (fp); _gcry_hmac256_release (hd); return -1; } fclose (fp); digest = _gcry_hmac256_finalize (hd, &digestlen); if (!digest) { _gcry_hmac256_release (hd); return -1; } if (digestlen > resultsize) { _gcry_hmac256_release (hd); gpg_err_set_errno (EINVAL); return -1; } memcpy (result, digest, digestlen); _gcry_hmac256_release (hd); return digestlen; } #ifdef STANDALONE static int selftest (void) { static struct { const char * const desc; const char * const data; const char * const key; const unsigned char expect[32]; } tv[] = { { "data-28 key-4", "what do ya want for nothing?", "Jefe", { 0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43 } }, { "data-9 key-20", "Hi There", "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b\x0b", { 0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7 } }, { "data-50 key-20", "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd" "\xdd\xdd", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa", { 0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe } }, { "data-50 key-26", "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd" "\xcd\xcd", "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10" "\x11\x12\x13\x14\x15\x16\x17\x18\x19", { 0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b } }, { "data-54 key-131", "Test Using Larger Than Block-Size Key - Hash Key First", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", { 0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54 } }, { "data-152 key-131", "This is a test using a larger than block-size key and a larger " "than block-size data. The key needs to be hashed before being " "used by the HMAC algorithm.", "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa" "\xaa\xaa\xaa", { 0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2 } }, { NULL } }; int tvidx; for (tvidx=0; tv[tvidx].desc; tvidx++) { hmac256_context_t hmachd; const unsigned char *digest; size_t dlen; hmachd = _gcry_hmac256_new (tv[tvidx].key, strlen (tv[tvidx].key)); if (!hmachd) return -1; _gcry_hmac256_update (hmachd, tv[tvidx].data, strlen (tv[tvidx].data)); digest = _gcry_hmac256_finalize (hmachd, &dlen); if (!digest) { _gcry_hmac256_release (hmachd); return -1; } if (dlen != sizeof (tv[tvidx].expect) || memcmp (digest, tv[tvidx].expect, sizeof (tv[tvidx].expect))) { _gcry_hmac256_release (hmachd); return -1; } _gcry_hmac256_release (hmachd); } return 0; /* Succeeded. */ } int main (int argc, char **argv) { const char *pgm; int last_argc = -1; const char *key; size_t keylen; FILE *fp; hmac256_context_t hd; const unsigned char *digest; char buffer[4096]; size_t n, dlen, idx; int use_stdin = 0; int use_binary = 0; int use_stdkey = 0; assert (sizeof (u32) == 4); #ifdef __WIN32 setmode (fileno (stdin), O_BINARY); #endif if (argc) { pgm = strrchr (*argv, '/'); if (pgm) pgm++; else pgm = *argv; argc--; argv++; } else pgm = "?"; while (argc && last_argc != argc ) { last_argc = argc; if (!strcmp (*argv, "--")) { argc--; argv++; break; } else if (!strcmp (*argv, "--version")) { fputs ("hmac256 (Libgcrypt) " VERSION "\n" "Copyright (C) 2008 Free Software Foundation, Inc.\n" "License LGPLv2.1+: GNU LGPL version 2.1 or later " "\n" "This is free software: you are free to change and " "redistribute it.\n" "There is NO WARRANTY, to the extent permitted by law.\n", stdout); exit (0); } else if (!strcmp (*argv, "--binary")) { argc--; argv++; use_binary = 1; } else if (!strcmp (*argv, "--stdkey")) { argc--; argv++; use_stdkey = 1; } } if (argc < 1) { fprintf (stderr, "usage: %s [--binary] [--stdkey] key [filename]\n", pgm); exit (1); } #ifdef __WIN32 if (use_binary) setmode (fileno (stdout), O_BINARY); #endif key = use_stdkey? "What am I, a doctor or a moonshuttle conductor?" : *argv; argc--, argv++; keylen = strlen (key); use_stdin = !argc; if (selftest ()) { fprintf (stderr, "%s: fatal error: self-test failed\n", pgm); exit (2); } for (; argc || use_stdin; argv++, argc--) { const char *fname = use_stdin? "-" : *argv; fp = use_stdin? stdin : fopen (fname, "rb"); if (!fp) { fprintf (stderr, "%s: can't open `%s': %s\n", pgm, fname, strerror (errno)); exit (1); } hd = _gcry_hmac256_new (key, keylen); if (!hd) { fprintf (stderr, "%s: can't allocate context: %s\n", pgm, strerror (errno)); exit (1); } while ( (n = fread (buffer, 1, sizeof buffer, fp))) _gcry_hmac256_update (hd, buffer, n); if (ferror (fp)) { fprintf (stderr, "%s: error reading `%s': %s\n", pgm, fname, strerror (errno)); exit (1); } if (!use_stdin) fclose (fp); digest = _gcry_hmac256_finalize (hd, &dlen); if (!digest) { fprintf (stderr, "%s: error computing HMAC: %s\n", pgm, strerror (errno)); exit (1); } if (use_binary) { if (fwrite (digest, dlen, 1, stdout) != 1) { fprintf (stderr, "%s: error writing output: %s\n", pgm, strerror (errno)); exit (1); } if (use_stdin) break; } else { for (idx=0; idx < dlen; idx++) printf ("%02x", digest[idx]); _gcry_hmac256_release (hd); if (use_stdin) { putchar ('\n'); break; } printf (" %s\n", fname); } } return 0; } #endif /*STANDALONE*/ /* Local Variables: compile-command: "cc -Wall -g -I.. -DSTANDALONE -o hmac256 hmac256.c" End: */