/* mpfr_atanh -- Inverse Hyperbolic Tangente Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of atanh is done by atanh= 1/2*ln(x+1)-1/2*ln(1-x) */ int mpfr_atanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode) { int inexact; mpfr_t x, t, te; mpfr_prec_t Nx, Ny, Nt; mpfr_exp_t err; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* Special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt))) { /* atanh(NaN) = NaN, and atanh(+/-Inf) = NaN since tanh gives a result between -1 and 1 */ if (MPFR_IS_NAN (xt) || MPFR_IS_INF (xt)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* necessarily xt is 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (xt)); MPFR_SET_ZERO (y); /* atanh(0) = 0 */ MPFR_SET_SAME_SIGN (y,xt); MPFR_RET (0); } } /* atanh (x) = NaN as soon as |x| > 1, and arctanh(+/-1) = +/-Inf */ if (MPFR_UNLIKELY (MPFR_GET_EXP (xt) > 0)) { if (MPFR_GET_EXP (xt) == 1 && mpfr_powerof2_raw (xt)) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, xt); mpfr_set_divby0 (); MPFR_RET (0); } MPFR_SET_NAN (y); MPFR_RET_NAN; } /* atanh(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 1, rnd_mode, {}); MPFR_SAVE_EXPO_MARK (expo); /* Compute initial precision */ Nx = MPFR_PREC (xt); MPFR_TMP_INIT_ABS (x, xt); Ny = MPFR_PREC (y); Nt = MAX (Nx, Ny); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4; /* initialise of intermediary variable */ mpfr_init2 (t, Nt); mpfr_init2 (te, Nt); /* First computation of cosh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute atanh */ mpfr_ui_sub (te, 1, x, MPFR_RNDU); /* (1-xt)*/ mpfr_add_ui (t, x, 1, MPFR_RNDD); /* (xt+1)*/ mpfr_div (t, t, te, MPFR_RNDN); /* (1+xt)/(1-xt)*/ mpfr_log (t, t, MPFR_RNDN); /* ln((1+xt)/(1-xt))*/ mpfr_div_2ui (t, t, 1, MPFR_RNDN); /* (1/2)*ln((1+xt)/(1-xt))*/ /* error estimate: see algorithms.tex */ /* FIXME: this does not correspond to the value in algorithms.tex!!! */ /* err=Nt-__gmpfr_ceil_log2(1+5*pow(2,1-MPFR_EXP(t)));*/ err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1); if (MPFR_LIKELY (MPFR_IS_ZERO (t) || MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* reactualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); mpfr_set_prec (te, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt)); mpfr_clear(t); mpfr_clear(te); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }