/* * nghttp2 - HTTP/2 C Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "shrpx_worker.h" #ifdef HAVE_UNISTD_H # include #endif // HAVE_UNISTD_H #include #include "shrpx_tls.h" #include "shrpx_log.h" #include "shrpx_client_handler.h" #include "shrpx_http2_session.h" #include "shrpx_log_config.h" #include "shrpx_memcached_dispatcher.h" #ifdef HAVE_MRUBY # include "shrpx_mruby.h" #endif // HAVE_MRUBY #include "util.h" #include "template.h" namespace shrpx { namespace { void eventcb(struct ev_loop *loop, ev_async *w, int revents) { auto worker = static_cast(w->data); worker->process_events(); } } // namespace namespace { void mcpool_clear_cb(struct ev_loop *loop, ev_timer *w, int revents) { auto worker = static_cast(w->data); if (worker->get_worker_stat()->num_connections != 0) { return; } worker->get_mcpool()->clear(); } } // namespace namespace { void proc_wev_cb(struct ev_loop *loop, ev_timer *w, int revents) { auto worker = static_cast(w->data); worker->process_events(); } } // namespace DownstreamAddrGroup::DownstreamAddrGroup() : retired{false} {} DownstreamAddrGroup::~DownstreamAddrGroup() {} // DownstreamKey is used to index SharedDownstreamAddr in order to // find the same configuration. using DownstreamKey = std::tuple>, bool, SessionAffinity, StringRef, StringRef, SessionAffinityCookieSecure, int64_t, int64_t>; namespace { DownstreamKey create_downstream_key( const std::shared_ptr &shared_addr) { DownstreamKey dkey; auto &addrs = std::get<0>(dkey); addrs.resize(shared_addr->addrs.size()); auto p = std::begin(addrs); for (auto &a : shared_addr->addrs) { std::get<0>(*p) = a.host; std::get<1>(*p) = a.sni; std::get<2>(*p) = a.group; std::get<3>(*p) = a.fall; std::get<4>(*p) = a.rise; std::get<5>(*p) = a.proto; std::get<6>(*p) = a.port; std::get<7>(*p) = a.weight; std::get<8>(*p) = a.group_weight; std::get<9>(*p) = a.host_unix; std::get<10>(*p) = a.tls; std::get<11>(*p) = a.dns; std::get<12>(*p) = a.upgrade_scheme; ++p; } std::sort(std::begin(addrs), std::end(addrs)); std::get<1>(dkey) = shared_addr->redirect_if_not_tls; auto &affinity = shared_addr->affinity; std::get<2>(dkey) = affinity.type; std::get<3>(dkey) = affinity.cookie.name; std::get<4>(dkey) = affinity.cookie.path; std::get<5>(dkey) = affinity.cookie.secure; auto &timeout = shared_addr->timeout; std::get<6>(dkey) = timeout.read; std::get<7>(dkey) = timeout.write; return dkey; } } // namespace Worker::Worker(struct ev_loop *loop, SSL_CTX *sv_ssl_ctx, SSL_CTX *cl_ssl_ctx, SSL_CTX *tls_session_cache_memcached_ssl_ctx, tls::CertLookupTree *cert_tree, const std::shared_ptr &ticket_keys, ConnectionHandler *conn_handler, std::shared_ptr downstreamconf) : randgen_(util::make_mt19937()), worker_stat_{}, dns_tracker_(loop), loop_(loop), sv_ssl_ctx_(sv_ssl_ctx), cl_ssl_ctx_(cl_ssl_ctx), cert_tree_(cert_tree), conn_handler_(conn_handler), ticket_keys_(ticket_keys), connect_blocker_( std::make_unique(randgen_, loop_, nullptr, nullptr)), graceful_shutdown_(false) { ev_async_init(&w_, eventcb); w_.data = this; ev_async_start(loop_, &w_); ev_timer_init(&mcpool_clear_timer_, mcpool_clear_cb, 0., 0.); mcpool_clear_timer_.data = this; ev_timer_init(&proc_wev_timer_, proc_wev_cb, 0., 0.); proc_wev_timer_.data = this; auto &session_cacheconf = get_config()->tls.session_cache; if (!session_cacheconf.memcached.host.empty()) { session_cache_memcached_dispatcher_ = std::make_unique( &session_cacheconf.memcached.addr, loop, tls_session_cache_memcached_ssl_ctx, StringRef{session_cacheconf.memcached.host}, &mcpool_, randgen_); } replace_downstream_config(std::move(downstreamconf)); } namespace { void ensure_enqueue_addr( std::priority_queue, WeightGroupEntryGreater> &wgpq, WeightGroup *wg, DownstreamAddr *addr) { uint32_t cycle; if (!wg->pq.empty()) { auto &top = wg->pq.top(); cycle = top.cycle; } else { cycle = 0; } addr->cycle = cycle; addr->pending_penalty = 0; wg->pq.push(DownstreamAddrEntry{addr, addr->seq, addr->cycle}); addr->queued = true; if (!wg->queued) { if (!wgpq.empty()) { auto &top = wgpq.top(); cycle = top.cycle; } else { cycle = 0; } wg->cycle = cycle; wg->pending_penalty = 0; wgpq.push(WeightGroupEntry{wg, wg->seq, wg->cycle}); wg->queued = true; } } } // namespace void Worker::replace_downstream_config( std::shared_ptr downstreamconf) { for (auto &g : downstream_addr_groups_) { g->retired = true; auto &shared_addr = g->shared_addr; for (auto &addr : shared_addr->addrs) { addr.dconn_pool->remove_all(); } } downstreamconf_ = downstreamconf; // Making a copy is much faster with multiple thread on // backendconfig API call. auto groups = downstreamconf->addr_groups; downstream_addr_groups_ = std::vector>(groups.size()); std::map addr_groups_indexer; #ifdef HAVE_MRUBY // TODO It is a bit less efficient because // mruby::create_mruby_context returns std::unique_ptr and we cannot // use std::make_shared. std::map> shared_mruby_ctxs; #endif // HAVE_MRUBY for (size_t i = 0; i < groups.size(); ++i) { auto &src = groups[i]; auto &dst = downstream_addr_groups_[i]; dst = std::make_shared(); dst->pattern = ImmutableString{std::begin(src.pattern), std::end(src.pattern)}; #ifdef HAVE_MRUBY auto mruby_ctx_it = shared_mruby_ctxs.find(src.mruby_file); if (mruby_ctx_it == std::end(shared_mruby_ctxs)) { dst->mruby_ctx = mruby::create_mruby_context(src.mruby_file); assert(dst->mruby_ctx); shared_mruby_ctxs.emplace(src.mruby_file, dst->mruby_ctx); } else { dst->mruby_ctx = (*mruby_ctx_it).second; } #endif // HAVE_MRUBY auto shared_addr = std::make_shared(); shared_addr->addrs.resize(src.addrs.size()); shared_addr->affinity.type = src.affinity.type; if (src.affinity.type == SessionAffinity::COOKIE) { shared_addr->affinity.cookie.name = make_string_ref(shared_addr->balloc, src.affinity.cookie.name); if (!src.affinity.cookie.path.empty()) { shared_addr->affinity.cookie.path = make_string_ref(shared_addr->balloc, src.affinity.cookie.path); } shared_addr->affinity.cookie.secure = src.affinity.cookie.secure; } shared_addr->affinity_hash = src.affinity_hash; shared_addr->redirect_if_not_tls = src.redirect_if_not_tls; shared_addr->timeout.read = src.timeout.read; shared_addr->timeout.write = src.timeout.write; for (size_t j = 0; j < src.addrs.size(); ++j) { auto &src_addr = src.addrs[j]; auto &dst_addr = shared_addr->addrs[j]; dst_addr.addr = src_addr.addr; dst_addr.host = make_string_ref(shared_addr->balloc, src_addr.host); dst_addr.hostport = make_string_ref(shared_addr->balloc, src_addr.hostport); dst_addr.port = src_addr.port; dst_addr.host_unix = src_addr.host_unix; dst_addr.weight = src_addr.weight; dst_addr.group = make_string_ref(shared_addr->balloc, src_addr.group); dst_addr.group_weight = src_addr.group_weight; dst_addr.proto = src_addr.proto; dst_addr.tls = src_addr.tls; dst_addr.sni = make_string_ref(shared_addr->balloc, src_addr.sni); dst_addr.fall = src_addr.fall; dst_addr.rise = src_addr.rise; dst_addr.dns = src_addr.dns; dst_addr.upgrade_scheme = src_addr.upgrade_scheme; auto shared_addr_ptr = shared_addr.get(); dst_addr.connect_blocker = std::make_unique( randgen_, loop_, nullptr, [shared_addr_ptr, &dst_addr]() { if (!dst_addr.queued) { if (!dst_addr.wg) { return; } ensure_enqueue_addr(shared_addr_ptr->pq, dst_addr.wg, &dst_addr); } }); dst_addr.live_check = std::make_unique( loop_, cl_ssl_ctx_, this, &dst_addr, randgen_); } // share the connection if patterns have the same set of backend // addresses. auto dkey = create_downstream_key(shared_addr); auto it = addr_groups_indexer.find(dkey); if (it == std::end(addr_groups_indexer)) { std::shuffle(std::begin(shared_addr->addrs), std::end(shared_addr->addrs), randgen_); size_t seq = 0; for (auto &addr : shared_addr->addrs) { addr.dconn_pool = std::make_unique(); addr.seq = seq++; } if (shared_addr->affinity.type == SessionAffinity::NONE) { std::map wgs; size_t num_wgs = 0; for (auto &addr : shared_addr->addrs) { if (wgs.find(addr.group) == std::end(wgs)) { ++num_wgs; wgs.emplace(addr.group, nullptr); } } shared_addr->wgs = std::vector(num_wgs); for (auto &addr : shared_addr->addrs) { auto &wg = wgs[addr.group]; if (wg == nullptr) { wg = &shared_addr->wgs[--num_wgs]; wg->seq = num_wgs; } wg->weight = addr.group_weight; wg->pq.push(DownstreamAddrEntry{&addr, addr.seq, addr.cycle}); addr.queued = true; addr.wg = wg; } assert(num_wgs == 0); for (auto &kv : wgs) { shared_addr->pq.push( WeightGroupEntry{kv.second, kv.second->seq, kv.second->cycle}); kv.second->queued = true; } } dst->shared_addr = shared_addr; addr_groups_indexer.emplace(std::move(dkey), i); } else { auto &g = *(std::begin(downstream_addr_groups_) + (*it).second); if (LOG_ENABLED(INFO)) { LOG(INFO) << dst->pattern << " shares the same backend group with " << g->pattern; } dst->shared_addr = g->shared_addr; } } } Worker::~Worker() { ev_async_stop(loop_, &w_); ev_timer_stop(loop_, &mcpool_clear_timer_); ev_timer_stop(loop_, &proc_wev_timer_); } void Worker::schedule_clear_mcpool() { // libev manual says: "If the watcher is already active nothing will // happen." Since we don't change any timeout here, we don't have // to worry about querying ev_is_active. ev_timer_start(loop_, &mcpool_clear_timer_); } void Worker::wait() { #ifndef NOTHREADS fut_.get(); #endif // !NOTHREADS } void Worker::run_async() { #ifndef NOTHREADS fut_ = std::async(std::launch::async, [this] { (void)reopen_log_files(get_config()->logging); ev_run(loop_); delete_log_config(); }); #endif // !NOTHREADS } void Worker::send(const WorkerEvent &event) { { std::lock_guard g(m_); q_.push_back(event); } ev_async_send(loop_, &w_); } void Worker::process_events() { WorkerEvent wev; { std::lock_guard g(m_); // Process event one at a time. This is important for // WorkerEventType::NEW_CONNECTION event since accepting large // number of new connections at once may delay time to 1st byte // for existing connections. if (q_.empty()) { ev_timer_stop(loop_, &proc_wev_timer_); return; } wev = q_.front(); q_.pop_front(); } ev_timer_start(loop_, &proc_wev_timer_); auto config = get_config(); auto worker_connections = config->conn.upstream.worker_connections; switch (wev.type) { case WorkerEventType::NEW_CONNECTION: { if (LOG_ENABLED(INFO)) { WLOG(INFO, this) << "WorkerEvent: client_fd=" << wev.client_fd << ", addrlen=" << wev.client_addrlen; } if (worker_stat_.num_connections >= worker_connections) { if (LOG_ENABLED(INFO)) { WLOG(INFO, this) << "Too many connections >= " << worker_connections; } close(wev.client_fd); break; } auto client_handler = tls::accept_connection(this, wev.client_fd, &wev.client_addr.sa, wev.client_addrlen, wev.faddr); if (!client_handler) { if (LOG_ENABLED(INFO)) { WLOG(ERROR, this) << "ClientHandler creation failed"; } close(wev.client_fd); break; } if (LOG_ENABLED(INFO)) { WLOG(INFO, this) << "CLIENT_HANDLER:" << client_handler << " created "; } break; } case WorkerEventType::REOPEN_LOG: WLOG(NOTICE, this) << "Reopening log files: worker process (thread " << this << ")"; reopen_log_files(config->logging); break; case WorkerEventType::GRACEFUL_SHUTDOWN: WLOG(NOTICE, this) << "Graceful shutdown commencing"; graceful_shutdown_ = true; if (worker_stat_.num_connections == 0) { ev_break(loop_); return; } break; case WorkerEventType::REPLACE_DOWNSTREAM: WLOG(NOTICE, this) << "Replace downstream"; replace_downstream_config(wev.downstreamconf); break; default: if (LOG_ENABLED(INFO)) { WLOG(INFO, this) << "unknown event type " << static_cast(wev.type); } } } tls::CertLookupTree *Worker::get_cert_lookup_tree() const { return cert_tree_; } std::shared_ptr Worker::get_ticket_keys() { #ifdef HAVE_ATOMIC_STD_SHARED_PTR return std::atomic_load_explicit(&ticket_keys_, std::memory_order_acquire); #else // !HAVE_ATOMIC_STD_SHARED_PTR std::lock_guard g(ticket_keys_m_); return ticket_keys_; #endif // !HAVE_ATOMIC_STD_SHARED_PTR } void Worker::set_ticket_keys(std::shared_ptr ticket_keys) { #ifdef HAVE_ATOMIC_STD_SHARED_PTR // This is single writer std::atomic_store_explicit(&ticket_keys_, std::move(ticket_keys), std::memory_order_release); #else // !HAVE_ATOMIC_STD_SHARED_PTR std::lock_guard g(ticket_keys_m_); ticket_keys_ = std::move(ticket_keys); #endif // !HAVE_ATOMIC_STD_SHARED_PTR } WorkerStat *Worker::get_worker_stat() { return &worker_stat_; } struct ev_loop *Worker::get_loop() const { return loop_; } SSL_CTX *Worker::get_sv_ssl_ctx() const { return sv_ssl_ctx_; } SSL_CTX *Worker::get_cl_ssl_ctx() const { return cl_ssl_ctx_; } void Worker::set_graceful_shutdown(bool f) { graceful_shutdown_ = f; } bool Worker::get_graceful_shutdown() const { return graceful_shutdown_; } MemchunkPool *Worker::get_mcpool() { return &mcpool_; } MemcachedDispatcher *Worker::get_session_cache_memcached_dispatcher() { return session_cache_memcached_dispatcher_.get(); } std::mt19937 &Worker::get_randgen() { return randgen_; } #ifdef HAVE_MRUBY int Worker::create_mruby_context() { mruby_ctx_ = mruby::create_mruby_context(StringRef{get_config()->mruby_file}); if (!mruby_ctx_) { return -1; } return 0; } mruby::MRubyContext *Worker::get_mruby_context() const { return mruby_ctx_.get(); } #endif // HAVE_MRUBY std::vector> & Worker::get_downstream_addr_groups() { return downstream_addr_groups_; } ConnectBlocker *Worker::get_connect_blocker() const { return connect_blocker_.get(); } const DownstreamConfig *Worker::get_downstream_config() const { return downstreamconf_.get(); } ConnectionHandler *Worker::get_connection_handler() const { return conn_handler_; } DNSTracker *Worker::get_dns_tracker() { return &dns_tracker_; } namespace { size_t match_downstream_addr_group_host( const RouterConfig &routerconf, const StringRef &host, const StringRef &path, const std::vector> &groups, size_t catch_all, BlockAllocator &balloc) { const auto &router = routerconf.router; const auto &rev_wildcard_router = routerconf.rev_wildcard_router; const auto &wildcard_patterns = routerconf.wildcard_patterns; if (LOG_ENABLED(INFO)) { LOG(INFO) << "Perform mapping selection, using host=" << host << ", path=" << path; } auto group = router.match(host, path); if (group != -1) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Found pattern with query " << host << path << ", matched pattern=" << groups[group]->pattern; } return group; } if (!wildcard_patterns.empty() && !host.empty()) { auto rev_host_src = make_byte_ref(balloc, host.size() - 1); auto ep = std::copy(std::begin(host) + 1, std::end(host), rev_host_src.base); std::reverse(rev_host_src.base, ep); auto rev_host = StringRef{rev_host_src.base, ep}; ssize_t best_group = -1; const RNode *last_node = nullptr; for (;;) { size_t nread = 0; auto wcidx = rev_wildcard_router.match_prefix(&nread, &last_node, rev_host); if (wcidx == -1) { break; } rev_host = StringRef{std::begin(rev_host) + nread, std::end(rev_host)}; auto &wc = wildcard_patterns[wcidx]; auto group = wc.router.match(StringRef{}, path); if (group != -1) { // We sorted wildcard_patterns in a way that first match is the // longest host pattern. if (LOG_ENABLED(INFO)) { LOG(INFO) << "Found wildcard pattern with query " << host << path << ", matched pattern=" << groups[group]->pattern; } best_group = group; } } if (best_group != -1) { return best_group; } } group = router.match(StringRef::from_lit(""), path); if (group != -1) { if (LOG_ENABLED(INFO)) { LOG(INFO) << "Found pattern with query " << path << ", matched pattern=" << groups[group]->pattern; } return group; } if (LOG_ENABLED(INFO)) { LOG(INFO) << "None match. Use catch-all pattern"; } return catch_all; } } // namespace size_t match_downstream_addr_group( const RouterConfig &routerconf, const StringRef &hostport, const StringRef &raw_path, const std::vector> &groups, size_t catch_all, BlockAllocator &balloc) { if (std::find(std::begin(hostport), std::end(hostport), '/') != std::end(hostport)) { // We use '/' specially, and if '/' is included in host, it breaks // our code. Select catch-all case. return catch_all; } auto fragment = std::find(std::begin(raw_path), std::end(raw_path), '#'); auto query = std::find(std::begin(raw_path), fragment, '?'); auto path = StringRef{std::begin(raw_path), query}; if (path.empty() || path[0] != '/') { path = StringRef::from_lit("/"); } if (hostport.empty()) { return match_downstream_addr_group_host(routerconf, hostport, path, groups, catch_all, balloc); } StringRef host; if (hostport[0] == '[') { // assume this is IPv6 numeric address auto p = std::find(std::begin(hostport), std::end(hostport), ']'); if (p == std::end(hostport)) { return catch_all; } if (p + 1 < std::end(hostport) && *(p + 1) != ':') { return catch_all; } host = StringRef{std::begin(hostport), p + 1}; } else { auto p = std::find(std::begin(hostport), std::end(hostport), ':'); if (p == std::begin(hostport)) { return catch_all; } host = StringRef{std::begin(hostport), p}; } if (std::find_if(std::begin(host), std::end(host), [](char c) { return 'A' <= c || c <= 'Z'; }) != std::end(host)) { auto low_host = make_byte_ref(balloc, host.size() + 1); auto ep = std::copy(std::begin(host), std::end(host), low_host.base); *ep = '\0'; util::inp_strlower(low_host.base, ep); host = StringRef{low_host.base, ep}; } return match_downstream_addr_group_host(routerconf, host, path, groups, catch_all, balloc); } void downstream_failure(DownstreamAddr *addr, const Address *raddr) { const auto &connect_blocker = addr->connect_blocker; if (connect_blocker->in_offline()) { return; } connect_blocker->on_failure(); if (addr->fall == 0) { return; } auto fail_count = connect_blocker->get_fail_count(); if (fail_count >= addr->fall) { if (raddr) { LOG(WARN) << "Could not connect to " << util::to_numeric_addr(raddr) << " " << fail_count << " times in a row; considered as offline"; } else { LOG(WARN) << "Could not connect to " << addr->host << ":" << addr->port << " " << fail_count << " times in a row; considered as offline"; } connect_blocker->offline(); if (addr->rise) { addr->live_check->schedule(); } } } } // namespace shrpx