/* ** 2009 Oct 23 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file is part of the SQLite FTS3 extension module. Specifically, ** this file contains code to insert, update and delete rows from FTS3 ** tables. It also contains code to merge FTS3 b-tree segments. Some ** of the sub-routines used to merge segments are also used by the query ** code in fts3.c. */ #include "fts3Int.h" #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #include #include #include #define FTS_MAX_APPENDABLE_HEIGHT 16 /* ** When full-text index nodes are loaded from disk, the buffer that they ** are loaded into has the following number of bytes of padding at the end ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer ** of 920 bytes is allocated for it. ** ** This means that if we have a pointer into a buffer containing node data, ** it is always safe to read up to two varints from it without risking an ** overread, even if the node data is corrupted. */ #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) /* ** Under certain circumstances, b-tree nodes (doclists) can be loaded into ** memory incrementally instead of all at once. This can be a big performance ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() ** method before retrieving all query results (as may happen, for example, ** if a query has a LIMIT clause). ** ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. ** The code is written so that the hard lower-limit for each of these values ** is 1. Clearly such small values would be inefficient, but can be useful ** for testing purposes. ** ** If this module is built with SQLITE_TEST defined, these constants may ** be overridden at runtime for testing purposes. File fts3_test.c contains ** a Tcl interface to read and write the values. */ #ifdef SQLITE_TEST int test_fts3_node_chunksize = (4*1024); int test_fts3_node_chunk_threshold = (4*1024)*4; # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold #else # define FTS3_NODE_CHUNKSIZE (4*1024) # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) #endif /* ** The two values that may be meaningfully bound to the :1 parameter in ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. */ #define FTS_STAT_DOCTOTAL 0 #define FTS_STAT_INCRMERGEHINT 1 #define FTS_STAT_AUTOINCRMERGE 2 /* ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic ** and incremental merge operation that takes place. This is used for ** debugging FTS only, it should not usually be turned on in production ** systems. */ #ifdef FTS3_LOG_MERGES static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); } #else #define fts3LogMerge(x, y) #endif typedef struct PendingList PendingList; typedef struct SegmentNode SegmentNode; typedef struct SegmentWriter SegmentWriter; /* ** An instance of the following data structure is used to build doclists ** incrementally. See function fts3PendingListAppend() for details. */ struct PendingList { int nData; char *aData; int nSpace; sqlite3_int64 iLastDocid; sqlite3_int64 iLastCol; sqlite3_int64 iLastPos; }; /* ** Each cursor has a (possibly empty) linked list of the following objects. */ struct Fts3DeferredToken { Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ int iCol; /* Column token must occur in */ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ PendingList *pList; /* Doclist is assembled here */ }; /* ** An instance of this structure is used to iterate through the terms on ** a contiguous set of segment b-tree leaf nodes. Although the details of ** this structure are only manipulated by code in this file, opaque handles ** of type Fts3SegReader* are also used by code in fts3.c to iterate through ** terms when querying the full-text index. See functions: ** ** sqlite3Fts3SegReaderNew() ** sqlite3Fts3SegReaderFree() ** sqlite3Fts3SegReaderIterate() ** ** Methods used to manipulate Fts3SegReader structures: ** ** fts3SegReaderNext() ** fts3SegReaderFirstDocid() ** fts3SegReaderNextDocid() */ struct Fts3SegReader { int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ u8 bLookup; /* True for a lookup only */ u8 rootOnly; /* True for a root-only reader */ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ char *aNode; /* Pointer to node data (or NULL) */ int nNode; /* Size of buffer at aNode (or 0) */ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ Fts3HashElem **ppNextElem; /* Variables set by fts3SegReaderNext(). These may be read directly ** by the caller. They are valid from the time SegmentReaderNew() returns ** until SegmentReaderNext() returns something other than SQLITE_OK ** (i.e. SQLITE_DONE). */ int nTerm; /* Number of bytes in current term */ char *zTerm; /* Pointer to current term */ int nTermAlloc; /* Allocated size of zTerm buffer */ char *aDoclist; /* Pointer to doclist of current entry */ int nDoclist; /* Size of doclist in current entry */ /* The following variables are used by fts3SegReaderNextDocid() to iterate ** through the current doclist (aDoclist/nDoclist). */ char *pOffsetList; int nOffsetList; /* For descending pending seg-readers only */ sqlite3_int64 iDocid; }; #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) /* ** An instance of this structure is used to create a segment b-tree in the ** database. The internal details of this type are only accessed by the ** following functions: ** ** fts3SegWriterAdd() ** fts3SegWriterFlush() ** fts3SegWriterFree() */ struct SegmentWriter { SegmentNode *pTree; /* Pointer to interior tree structure */ sqlite3_int64 iFirst; /* First slot in %_segments written */ sqlite3_int64 iFree; /* Next free slot in %_segments */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nSize; /* Size of allocation at aData */ int nData; /* Bytes of data in aData */ char *aData; /* Pointer to block from malloc() */ i64 nLeafData; /* Number of bytes of leaf data written */ }; /* ** Type SegmentNode is used by the following three functions to create ** the interior part of the segment b+-tree structures (everything except ** the leaf nodes). These functions and type are only ever used by code ** within the fts3SegWriterXXX() family of functions described above. ** ** fts3NodeAddTerm() ** fts3NodeWrite() ** fts3NodeFree() ** ** When a b+tree is written to the database (either as a result of a merge ** or the pending-terms table being flushed), leaves are written into the ** database file as soon as they are completely populated. The interior of ** the tree is assembled in memory and written out only once all leaves have ** been populated and stored. This is Ok, as the b+-tree fanout is usually ** very large, meaning that the interior of the tree consumes relatively ** little memory. */ struct SegmentNode { SegmentNode *pParent; /* Parent node (or NULL for root node) */ SegmentNode *pRight; /* Pointer to right-sibling */ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ int nEntry; /* Number of terms written to node so far */ char *zTerm; /* Pointer to previous term buffer */ int nTerm; /* Number of bytes in zTerm */ int nMalloc; /* Size of malloc'd buffer at zMalloc */ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ int nData; /* Bytes of valid data so far */ char *aData; /* Node data */ }; /* ** Valid values for the second argument to fts3SqlStmt(). */ #define SQL_DELETE_CONTENT 0 #define SQL_IS_EMPTY 1 #define SQL_DELETE_ALL_CONTENT 2 #define SQL_DELETE_ALL_SEGMENTS 3 #define SQL_DELETE_ALL_SEGDIR 4 #define SQL_DELETE_ALL_DOCSIZE 5 #define SQL_DELETE_ALL_STAT 6 #define SQL_SELECT_CONTENT_BY_ROWID 7 #define SQL_NEXT_SEGMENT_INDEX 8 #define SQL_INSERT_SEGMENTS 9 #define SQL_NEXT_SEGMENTS_ID 10 #define SQL_INSERT_SEGDIR 11 #define SQL_SELECT_LEVEL 12 #define SQL_SELECT_LEVEL_RANGE 13 #define SQL_SELECT_LEVEL_COUNT 14 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 #define SQL_DELETE_SEGDIR_LEVEL 16 #define SQL_DELETE_SEGMENTS_RANGE 17 #define SQL_CONTENT_INSERT 18 #define SQL_DELETE_DOCSIZE 19 #define SQL_REPLACE_DOCSIZE 20 #define SQL_SELECT_DOCSIZE 21 #define SQL_SELECT_STAT 22 #define SQL_REPLACE_STAT 23 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 #define SQL_DELETE_SEGDIR_RANGE 26 #define SQL_SELECT_ALL_LANGID 27 #define SQL_FIND_MERGE_LEVEL 28 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 #define SQL_DELETE_SEGDIR_ENTRY 30 #define SQL_SHIFT_SEGDIR_ENTRY 31 #define SQL_SELECT_SEGDIR 32 #define SQL_CHOMP_SEGDIR 33 #define SQL_SEGMENT_IS_APPENDABLE 34 #define SQL_SELECT_INDEXES 35 #define SQL_SELECT_MXLEVEL 36 #define SQL_SELECT_LEVEL_RANGE2 37 #define SQL_UPDATE_LEVEL_IDX 38 #define SQL_UPDATE_LEVEL 39 /* ** This function is used to obtain an SQLite prepared statement handle ** for the statement identified by the second argument. If successful, ** *pp is set to the requested statement handle and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned and *pp is set to 0. ** ** If argument apVal is not NULL, then it must point to an array with ** at least as many entries as the requested statement has bound ** parameters. The values are bound to the statements parameters before ** returning. */ static int fts3SqlStmt( Fts3Table *p, /* Virtual table handle */ int eStmt, /* One of the SQL_XXX constants above */ sqlite3_stmt **pp, /* OUT: Statement handle */ sqlite3_value **apVal /* Values to bind to statement */ ){ const char *azSql[] = { /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", /* 2 */ "DELETE FROM %Q.'%q_content'", /* 3 */ "DELETE FROM %Q.'%q_segments'", /* 4 */ "DELETE FROM %Q.'%q_segdir'", /* 5 */ "DELETE FROM %Q.'%q_docsize'", /* 6 */ "DELETE FROM %Q.'%q_stat'", /* 7 */ "SELECT %s WHERE rowid=?", /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", /* Return segments in order from oldest to newest.*/ /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" "ORDER BY level DESC, idx ASC", /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", /* 24 */ "", /* 25 */ "", /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'", /* This statement is used to determine which level to read the input from ** when performing an incremental merge. It returns the absolute level number ** of the oldest level in the db that contains at least ? segments. Or, ** if no level in the FTS index contains more than ? segments, the statement ** returns zero rows. */ /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' " " GROUP BY level HAVING cnt>=?" " ORDER BY (level %% 1024) ASC LIMIT 1", /* Estimate the upper limit on the number of leaf nodes in a new segment ** created by merging the oldest :2 segments from absolute level :1. See ** function sqlite3Fts3Incrmerge() for details. */ /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", /* SQL_DELETE_SEGDIR_ENTRY ** Delete the %_segdir entry on absolute level :1 with index :2. */ /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_SHIFT_SEGDIR_ENTRY ** Modify the idx value for the segment with idx=:3 on absolute level :2 ** to :1. */ /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", /* SQL_SELECT_SEGDIR ** Read a single entry from the %_segdir table. The entry from absolute ** level :1 with index value :2. */ /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", /* SQL_CHOMP_SEGDIR ** Update the start_block (:1) and root (:2) fields of the %_segdir ** entry located on absolute level :3 with index :4. */ /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" "WHERE level = ? AND idx = ?", /* SQL_SEGMENT_IS_APPENDABLE ** Return a single row if the segment with end_block=? is appendable. Or ** no rows otherwise. */ /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", /* SQL_SELECT_INDEXES ** Return the list of valid segment indexes for absolute level ? */ /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", /* SQL_SELECT_MXLEVEL ** Return the largest relative level in the FTS index or indexes. */ /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", /* Return segments in order from oldest to newest.*/ /* 37 */ "SELECT level, idx, end_block " "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " "ORDER BY level DESC, idx ASC", /* Update statements used while promoting segments */ /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " "WHERE level=? AND idx=?", /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" }; int rc = SQLITE_OK; sqlite3_stmt *pStmt; assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); assert( eStmt=0 ); pStmt = p->aStmt[eStmt]; if( !pStmt ){ int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB; char *zSql; if( eStmt==SQL_CONTENT_INSERT ){ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ f &= ~SQLITE_PREPARE_NO_VTAB; zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); }else{ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); } if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL); sqlite3_free(zSql); assert( rc==SQLITE_OK || pStmt==0 ); p->aStmt[eStmt] = pStmt; } } if( apVal ){ int i; int nParam = sqlite3_bind_parameter_count(pStmt); for(i=0; rc==SQLITE_OK && inPendingData==0 ){ sqlite3_stmt *pStmt; rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_null(pStmt, 1); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); } } return rc; } /* ** FTS maintains a separate indexes for each language-id (a 32-bit integer). ** Within each language id, a separate index is maintained to store the ** document terms, and each configured prefix size (configured the FTS ** "prefix=" option). And each index consists of multiple levels ("relative ** levels"). ** ** All three of these values (the language id, the specific index and the ** level within the index) are encoded in 64-bit integer values stored ** in the %_segdir table on disk. This function is used to convert three ** separate component values into the single 64-bit integer value that ** can be used to query the %_segdir table. ** ** Specifically, each language-id/index combination is allocated 1024 ** 64-bit integer level values ("absolute levels"). The main terms index ** for language-id 0 is allocate values 0-1023. The first prefix index ** (if any) for language-id 0 is allocated values 1024-2047. And so on. ** Language 1 indexes are allocated immediately following language 0. ** ** So, for a system with nPrefix prefix indexes configured, the block of ** absolute levels that corresponds to language-id iLangid and index ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). */ static sqlite3_int64 getAbsoluteLevel( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index in p->aIndex[] */ int iLevel /* Level of segments */ ){ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ assert_fts3_nc( iLangid>=0 ); assert( p->nIndex>0 ); assert( iIndex>=0 && iIndexnIndex ); iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; return iBase + iLevel; } /* ** Set *ppStmt to a statement handle that may be used to iterate through ** all rows in the %_segdir table, from oldest to newest. If successful, ** return SQLITE_OK. If an error occurs while preparing the statement, ** return an SQLite error code. ** ** There is only ever one instance of this SQL statement compiled for ** each FTS3 table. ** ** The statement returns the following columns from the %_segdir table: ** ** 0: idx ** 1: start_block ** 2: leaves_end_block ** 3: end_block ** 4: root */ int sqlite3Fts3AllSegdirs( Fts3Table *p, /* FTS3 table */ int iLangid, /* Language being queried */ int iIndex, /* Index for p->aIndex[] */ int iLevel, /* Level to select (relative level) */ sqlite3_stmt **ppStmt /* OUT: Compiled statement */ ){ int rc; sqlite3_stmt *pStmt = 0; assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); if( iLevel<0 ){ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); } } *ppStmt = pStmt; return rc; } /* ** Append a single varint to a PendingList buffer. SQLITE_OK is returned ** if successful, or an SQLite error code otherwise. ** ** This function also serves to allocate the PendingList structure itself. ** For example, to create a new PendingList structure containing two ** varints: ** ** PendingList *p = 0; ** fts3PendingListAppendVarint(&p, 1); ** fts3PendingListAppendVarint(&p, 2); */ static int fts3PendingListAppendVarint( PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ sqlite3_int64 i /* Value to append to data */ ){ PendingList *p = *pp; /* Allocate or grow the PendingList as required. */ if( !p ){ p = sqlite3_malloc(sizeof(*p) + 100); if( !p ){ return SQLITE_NOMEM; } p->nSpace = 100; p->aData = (char *)&p[1]; p->nData = 0; } else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ int nNew = p->nSpace * 2; p = sqlite3_realloc(p, sizeof(*p) + nNew); if( !p ){ sqlite3_free(*pp); *pp = 0; return SQLITE_NOMEM; } p->nSpace = nNew; p->aData = (char *)&p[1]; } /* Append the new serialized varint to the end of the list. */ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); p->aData[p->nData] = '\0'; *pp = p; return SQLITE_OK; } /* ** Add a docid/column/position entry to a PendingList structure. Non-zero ** is returned if the structure is sqlite3_realloced as part of adding ** the entry. Otherwise, zero. ** ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. ** Zero is always returned in this case. Otherwise, if no OOM error occurs, ** it is set to SQLITE_OK. */ static int fts3PendingListAppend( PendingList **pp, /* IN/OUT: PendingList structure */ sqlite3_int64 iDocid, /* Docid for entry to add */ sqlite3_int64 iCol, /* Column for entry to add */ sqlite3_int64 iPos, /* Position of term for entry to add */ int *pRc /* OUT: Return code */ ){ PendingList *p = *pp; int rc = SQLITE_OK; assert( !p || p->iLastDocid<=iDocid ); if( !p || p->iLastDocid!=iDocid ){ sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); if( p ){ assert( p->nDatanSpace ); assert( p->aData[p->nData]==0 ); p->nData++; } if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ goto pendinglistappend_out; } p->iLastCol = -1; p->iLastPos = 0; p->iLastDocid = iDocid; } if( iCol>0 && p->iLastCol!=iCol ){ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) ){ goto pendinglistappend_out; } p->iLastCol = iCol; p->iLastPos = 0; } if( iCol>=0 ){ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); if( rc==SQLITE_OK ){ p->iLastPos = iPos; } } pendinglistappend_out: *pRc = rc; if( p!=*pp ){ *pp = p; return 1; } return 0; } /* ** Free a PendingList object allocated by fts3PendingListAppend(). */ static void fts3PendingListDelete(PendingList *pList){ sqlite3_free(pList); } /* ** Add an entry to one of the pending-terms hash tables. */ static int fts3PendingTermsAddOne( Fts3Table *p, int iCol, int iPos, Fts3Hash *pHash, /* Pending terms hash table to add entry to */ const char *zToken, int nToken ){ PendingList *pList; int rc = SQLITE_OK; pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); if( pList ){ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); } if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ /* Malloc failed while inserting the new entry. This can only ** happen if there was no previous entry for this token. */ assert( 0==fts3HashFind(pHash, zToken, nToken) ); sqlite3_free(pList); rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); } return rc; } /* ** Tokenize the nul-terminated string zText and add all tokens to the ** pending-terms hash-table. The docid used is that currently stored in ** p->iPrevDocid, and the column is specified by argument iCol. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3PendingTermsAdd( Fts3Table *p, /* Table into which text will be inserted */ int iLangid, /* Language id to use */ const char *zText, /* Text of document to be inserted */ int iCol, /* Column into which text is being inserted */ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ ){ int rc; int iStart = 0; int iEnd = 0; int iPos = 0; int nWord = 0; char const *zToken; int nToken = 0; sqlite3_tokenizer *pTokenizer = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCsr; int (*xNext)(sqlite3_tokenizer_cursor *pCursor, const char**,int*,int*,int*,int*); assert( pTokenizer && pModule ); /* If the user has inserted a NULL value, this function may be called with ** zText==0. In this case, add zero token entries to the hash table and ** return early. */ if( zText==0 ){ *pnWord = 0; return SQLITE_OK; } rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); if( rc!=SQLITE_OK ){ return rc; } xNext = pModule->xNext; while( SQLITE_OK==rc && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) ){ int i; if( iPos>=nWord ) nWord = iPos+1; /* Positions cannot be negative; we use -1 as a terminator internally. ** Tokens must have a non-zero length. */ if( iPos<0 || !zToken || nToken<=0 ){ rc = SQLITE_ERROR; break; } /* Add the term to the terms index */ rc = fts3PendingTermsAddOne( p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken ); /* Add the term to each of the prefix indexes that it is not too ** short for. */ for(i=1; rc==SQLITE_OK && inIndex; i++){ struct Fts3Index *pIndex = &p->aIndex[i]; if( nTokennPrefix ) continue; rc = fts3PendingTermsAddOne( p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix ); } } pModule->xClose(pCsr); *pnWord += nWord; return (rc==SQLITE_DONE ? SQLITE_OK : rc); } /* ** Calling this function indicates that subsequent calls to ** fts3PendingTermsAdd() are to add term/position-list pairs for the ** contents of the document with docid iDocid. */ static int fts3PendingTermsDocid( Fts3Table *p, /* Full-text table handle */ int bDelete, /* True if this op is a delete */ int iLangid, /* Language id of row being written */ sqlite_int64 iDocid /* Docid of row being written */ ){ assert( iLangid>=0 ); assert( bDelete==1 || bDelete==0 ); /* TODO(shess) Explore whether partially flushing the buffer on ** forced-flush would provide better performance. I suspect that if ** we ordered the doclists by size and flushed the largest until the ** buffer was half empty, that would let the less frequent terms ** generate longer doclists. */ if( iDocidiPrevDocid || (iDocid==p->iPrevDocid && p->bPrevDelete==0) || p->iPrevLangid!=iLangid || p->nPendingData>p->nMaxPendingData ){ int rc = sqlite3Fts3PendingTermsFlush(p); if( rc!=SQLITE_OK ) return rc; } p->iPrevDocid = iDocid; p->iPrevLangid = iLangid; p->bPrevDelete = bDelete; return SQLITE_OK; } /* ** Discard the contents of the pending-terms hash tables. */ void sqlite3Fts3PendingTermsClear(Fts3Table *p){ int i; for(i=0; inIndex; i++){ Fts3HashElem *pElem; Fts3Hash *pHash = &p->aIndex[i].hPending; for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ PendingList *pList = (PendingList *)fts3HashData(pElem); fts3PendingListDelete(pList); } fts3HashClear(pHash); } p->nPendingData = 0; } /* ** This function is called by the xUpdate() method as part of an INSERT ** operation. It adds entries for each term in the new record to the ** pendingTerms hash table. ** ** Argument apVal is the same as the similarly named argument passed to ** fts3InsertData(). Parameter iDocid is the docid of the new row. */ static int fts3InsertTerms( Fts3Table *p, int iLangid, sqlite3_value **apVal, u32 *aSz ){ int i; /* Iterator variable */ for(i=2; inColumn+2; i++){ int iCol = i-2; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); if( rc!=SQLITE_OK ){ return rc; } aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); } } return SQLITE_OK; } /* ** This function is called by the xUpdate() method for an INSERT operation. ** The apVal parameter is passed a copy of the apVal argument passed by ** SQLite to the xUpdate() method. i.e: ** ** apVal[0] Not used for INSERT. ** apVal[1] rowid ** apVal[2] Left-most user-defined column ** ... ** apVal[p->nColumn+1] Right-most user-defined column ** apVal[p->nColumn+2] Hidden column with same name as table ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) ** apVal[p->nColumn+4] Hidden languageid column */ static int fts3InsertData( Fts3Table *p, /* Full-text table */ sqlite3_value **apVal, /* Array of values to insert */ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ ){ int rc; /* Return code */ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ if( p->zContentTbl ){ sqlite3_value *pRowid = apVal[p->nColumn+3]; if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ pRowid = apVal[1]; } if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ return SQLITE_CONSTRAINT; } *piDocid = sqlite3_value_int64(pRowid); return SQLITE_OK; } /* Locate the statement handle used to insert data into the %_content ** table. The SQL for this statement is: ** ** INSERT INTO %_content VALUES(?, ?, ?, ...) ** ** The statement features N '?' variables, where N is the number of user ** defined columns in the FTS3 table, plus one for the docid field. */ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); if( rc==SQLITE_OK && p->zLanguageid ){ rc = sqlite3_bind_int( pContentInsert, p->nColumn+2, sqlite3_value_int(apVal[p->nColumn+4]) ); } if( rc!=SQLITE_OK ) return rc; /* There is a quirk here. The users INSERT statement may have specified ** a value for the "rowid" field, for the "docid" field, or for both. ** Which is a problem, since "rowid" and "docid" are aliases for the ** same value. For example: ** ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); ** ** In FTS3, this is an error. It is an error to specify non-NULL values ** for both docid and some other rowid alias. */ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ if( SQLITE_NULL==sqlite3_value_type(apVal[0]) && SQLITE_NULL!=sqlite3_value_type(apVal[1]) ){ /* A rowid/docid conflict. */ return SQLITE_ERROR; } rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); if( rc!=SQLITE_OK ) return rc; } /* Execute the statement to insert the record. Set *piDocid to the ** new docid value. */ sqlite3_step(pContentInsert); rc = sqlite3_reset(pContentInsert); *piDocid = sqlite3_last_insert_rowid(p->db); return rc; } /* ** Remove all data from the FTS3 table. Clear the hash table containing ** pending terms. */ static int fts3DeleteAll(Fts3Table *p, int bContent){ int rc = SQLITE_OK; /* Return code */ /* Discard the contents of the pending-terms hash table. */ sqlite3Fts3PendingTermsClear(p); /* Delete everything from the shadow tables. Except, leave %_content as ** is if bContent is false. */ assert( p->zContentTbl==0 || bContent==0 ); if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); } if( p->bHasStat ){ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); } return rc; } /* ** */ static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ int iLangid = 0; if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); return iLangid; } /* ** The first element in the apVal[] array is assumed to contain the docid ** (an integer) of a row about to be deleted. Remove all terms from the ** full-text index. */ static void fts3DeleteTerms( int *pRC, /* Result code */ Fts3Table *p, /* The FTS table to delete from */ sqlite3_value *pRowid, /* The docid to be deleted */ u32 *aSz, /* Sizes of deleted document written here */ int *pbFound /* OUT: Set to true if row really does exist */ ){ int rc; sqlite3_stmt *pSelect; assert( *pbFound==0 ); if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); i64 iDocid = sqlite3_column_int64(pSelect, 0); rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ int iCol = i-1; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); } } if( rc!=SQLITE_OK ){ sqlite3_reset(pSelect); *pRC = rc; return; } *pbFound = 1; } rc = sqlite3_reset(pSelect); }else{ sqlite3_reset(pSelect); } *pRC = rc; } /* ** Forward declaration to account for the circular dependency between ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). */ static int fts3SegmentMerge(Fts3Table *, int, int, int); /* ** This function allocates a new level iLevel index in the segdir table. ** Usually, indexes are allocated within a level sequentially starting ** with 0, so the allocated index is one greater than the value returned ** by: ** ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel ** ** However, if there are already FTS3_MERGE_COUNT indexes at the requested ** level, they are merged into a single level (iLevel+1) segment and the ** allocated index is 0. ** ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK ** returned. Otherwise, an SQLite error code is returned. */ static int fts3AllocateSegdirIdx( Fts3Table *p, int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, int *piIdx ){ int rc; /* Return Code */ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ int iNext = 0; /* Result of query pNextIdx */ assert( iLangid>=0 ); assert( p->nIndex>=1 ); /* Set variable iNext to the next available segdir index at level iLevel. */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ iNext = sqlite3_column_int(pNextIdx, 0); } rc = sqlite3_reset(pNextIdx); } if( rc==SQLITE_OK ){ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already ** full, merge all segments in level iLevel into a single iLevel+1 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. */ if( iNext>=FTS3_MERGE_COUNT ){ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); *piIdx = 0; }else{ *piIdx = iNext; } } return rc; } /* ** The %_segments table is declared as follows: ** ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) ** ** This function reads data from a single row of the %_segments table. The ** specific row is identified by the iBlockid parameter. If paBlob is not ** NULL, then a buffer is allocated using sqlite3_malloc() and populated ** with the contents of the blob stored in the "block" column of the ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set ** to the size of the blob in bytes before returning. ** ** If an error occurs, or the table does not contain the specified row, ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If ** paBlob is non-NULL, then it is the responsibility of the caller to ** eventually free the returned buffer. ** ** This function may leave an open sqlite3_blob* handle in the ** Fts3Table.pSegments variable. This handle is reused by subsequent calls ** to this function. The handle may be closed by calling the ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy ** performance improvement, but the blob handle should always be closed ** before control is returned to the user (to prevent a lock being held ** on the database file for longer than necessary). Thus, any virtual table ** method (xFilter etc.) that may directly or indirectly call this function ** must call sqlite3Fts3SegmentsClose() before returning. */ int sqlite3Fts3ReadBlock( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ char **paBlob, /* OUT: Blob data in malloc'd buffer */ int *pnBlob, /* OUT: Size of blob data */ int *pnLoad /* OUT: Bytes actually loaded */ ){ int rc; /* Return code */ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ assert( pnBlob ); if( p->pSegments ){ rc = sqlite3_blob_reopen(p->pSegments, iBlockid); }else{ if( 0==p->zSegmentsTbl ){ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; } rc = sqlite3_blob_open( p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments ); } if( rc==SQLITE_OK ){ int nByte = sqlite3_blob_bytes(p->pSegments); *pnBlob = nByte; if( paBlob ){ char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); if( !aByte ){ rc = SQLITE_NOMEM; }else{ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ nByte = FTS3_NODE_CHUNKSIZE; *pnLoad = nByte; } rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); memset(&aByte[nByte], 0, FTS3_NODE_PADDING); if( rc!=SQLITE_OK ){ sqlite3_free(aByte); aByte = 0; } } *paBlob = aByte; } } return rc; } /* ** Close the blob handle at p->pSegments, if it is open. See comments above ** the sqlite3Fts3ReadBlock() function for details. */ void sqlite3Fts3SegmentsClose(Fts3Table *p){ sqlite3_blob_close(p->pSegments); p->pSegments = 0; } static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ int nRead; /* Number of bytes to read */ int rc; /* Return code */ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); rc = sqlite3_blob_read( pReader->pBlob, &pReader->aNode[pReader->nPopulate], nRead, pReader->nPopulate ); if( rc==SQLITE_OK ){ pReader->nPopulate += nRead; memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); if( pReader->nPopulate==pReader->nNode ){ sqlite3_blob_close(pReader->pBlob); pReader->pBlob = 0; pReader->nPopulate = 0; } } return rc; } static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ int rc = SQLITE_OK; assert( !pReader->pBlob || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) ); while( pReader->pBlob && rc==SQLITE_OK && (pFrom - pReader->aNode + nByte)>pReader->nPopulate ){ rc = fts3SegReaderIncrRead(pReader); } return rc; } /* ** Set an Fts3SegReader cursor to point at EOF. */ static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ if( !fts3SegReaderIsRootOnly(pSeg) ){ sqlite3_free(pSeg->aNode); sqlite3_blob_close(pSeg->pBlob); pSeg->pBlob = 0; } pSeg->aNode = 0; } /* ** Move the iterator passed as the first argument to the next term in the ** segment. If successful, SQLITE_OK is returned. If there is no next term, ** SQLITE_DONE. Otherwise, an SQLite error code. */ static int fts3SegReaderNext( Fts3Table *p, Fts3SegReader *pReader, int bIncr ){ int rc; /* Return code of various sub-routines */ char *pNext; /* Cursor variable */ int nPrefix; /* Number of bytes in term prefix */ int nSuffix; /* Number of bytes in term suffix */ if( !pReader->aDoclist ){ pNext = pReader->aNode; }else{ pNext = &pReader->aDoclist[pReader->nDoclist]; } if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ if( fts3SegReaderIsPending(pReader) ){ Fts3HashElem *pElem = *(pReader->ppNextElem); sqlite3_free(pReader->aNode); pReader->aNode = 0; if( pElem ){ char *aCopy; PendingList *pList = (PendingList *)fts3HashData(pElem); int nCopy = pList->nData+1; pReader->zTerm = (char *)fts3HashKey(pElem); pReader->nTerm = fts3HashKeysize(pElem); aCopy = (char*)sqlite3_malloc(nCopy); if( !aCopy ) return SQLITE_NOMEM; memcpy(aCopy, pList->aData, nCopy); pReader->nNode = pReader->nDoclist = nCopy; pReader->aNode = pReader->aDoclist = aCopy; pReader->ppNextElem++; assert( pReader->aNode ); } return SQLITE_OK; } fts3SegReaderSetEof(pReader); /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf ** blocks have already been traversed. */ #ifdef CORRUPT_DB assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB ); #endif if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ return SQLITE_OK; } rc = sqlite3Fts3ReadBlock( p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, (bIncr ? &pReader->nPopulate : 0) ); if( rc!=SQLITE_OK ) return rc; assert( pReader->pBlob==0 ); if( bIncr && pReader->nPopulatenNode ){ pReader->pBlob = p->pSegments; p->pSegments = 0; } pNext = pReader->aNode; } assert( !fts3SegReaderIsPending(pReader) ); rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); if( rc!=SQLITE_OK ) return rc; /* Because of the FTS3_NODE_PADDING bytes of padding, the following is ** safe (no risk of overread) even if the node data is corrupted. */ pNext += fts3GetVarint32(pNext, &nPrefix); pNext += fts3GetVarint32(pNext, &nSuffix); if( nSuffix<=0 || (&pReader->aNode[pReader->nNode] - pNext)pReader->nTermAlloc ){ return FTS_CORRUPT_VTAB; } /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer ** overflow - hence the (i64) casts. */ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){ i64 nNew = ((i64)nPrefix+nSuffix)*2; char *zNew = sqlite3_realloc64(pReader->zTerm, nNew); if( !zNew ){ return SQLITE_NOMEM; } pReader->zTerm = zNew; pReader->nTermAlloc = nNew; } rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); if( rc!=SQLITE_OK ) return rc; memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); pReader->nTerm = nPrefix+nSuffix; pNext += nSuffix; pNext += fts3GetVarint32(pNext, &pReader->nDoclist); pReader->aDoclist = pNext; pReader->pOffsetList = 0; /* Check that the doclist does not appear to extend past the end of the ** b-tree node. And that the final byte of the doclist is 0x00. If either ** of these statements is untrue, then the data structure is corrupt. */ if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode) || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) ){ return FTS_CORRUPT_VTAB; } return SQLITE_OK; } /* ** Set the SegReader to point to the first docid in the doclist associated ** with the current term. */ static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ int rc = SQLITE_OK; assert( pReader->aDoclist ); assert( !pReader->pOffsetList ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ u8 bEof = 0; pReader->iDocid = 0; pReader->nOffsetList = 0; sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, &pReader->iDocid, &pReader->nOffsetList, &bEof ); }else{ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); pReader->pOffsetList = &pReader->aDoclist[n]; } } return rc; } /* ** Advance the SegReader to point to the next docid in the doclist ** associated with the current term. ** ** If arguments ppOffsetList and pnOffsetList are not NULL, then ** *ppOffsetList is set to point to the first column-offset list ** in the doclist entry (i.e. immediately past the docid varint). ** *pnOffsetList is set to the length of the set of column-offset ** lists, not including the nul-terminator byte. For example: */ static int fts3SegReaderNextDocid( Fts3Table *pTab, Fts3SegReader *pReader, /* Reader to advance to next docid */ char **ppOffsetList, /* OUT: Pointer to current position-list */ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ ){ int rc = SQLITE_OK; char *p = pReader->pOffsetList; char c = 0; assert( p ); if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ /* A pending-terms seg-reader for an FTS4 table that uses order=desc. ** Pending-terms doclists are always built up in ascending order, so ** we have to iterate through them backwards here. */ u8 bEof = 0; if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = pReader->nOffsetList - 1; } sqlite3Fts3DoclistPrev(0, pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, &pReader->nOffsetList, &bEof ); if( bEof ){ pReader->pOffsetList = 0; }else{ pReader->pOffsetList = p; } }else{ char *pEnd = &pReader->aDoclist[pReader->nDoclist]; /* Pointer p currently points at the first byte of an offset list. The ** following block advances it to point one byte past the end of ** the same offset list. */ while( 1 ){ /* The following line of code (and the "p++" below the while() loop) is ** normally all that is required to move pointer p to the desired ** position. The exception is if this node is being loaded from disk ** incrementally and pointer "p" now points to the first byte past ** the populated part of pReader->aNode[]. */ while( *p | c ) c = *p++ & 0x80; assert( *p==0 ); if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; rc = fts3SegReaderIncrRead(pReader); if( rc!=SQLITE_OK ) return rc; } p++; /* If required, populate the output variables with a pointer to and the ** size of the previous offset-list. */ if( ppOffsetList ){ *ppOffsetList = pReader->pOffsetList; *pnOffsetList = (int)(p - pReader->pOffsetList - 1); } /* List may have been edited in place by fts3EvalNearTrim() */ while( p=pEnd ){ pReader->pOffsetList = 0; }else{ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); if( rc==SQLITE_OK ){ sqlite3_int64 iDelta; pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); if( pTab->bDescIdx ){ pReader->iDocid -= iDelta; }else{ pReader->iDocid += iDelta; } } } } return SQLITE_OK; } int sqlite3Fts3MsrOvfl( Fts3Cursor *pCsr, Fts3MultiSegReader *pMsr, int *pnOvfl ){ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; int nOvfl = 0; int ii; int rc = SQLITE_OK; int pgsz = p->nPgsz; assert( p->bFts4 ); assert( pgsz>0 ); for(ii=0; rc==SQLITE_OK && iinSegment; ii++){ Fts3SegReader *pReader = pMsr->apSegment[ii]; if( !fts3SegReaderIsPending(pReader) && !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_int64 jj; for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ int nBlob; rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); if( rc!=SQLITE_OK ) break; if( (nBlob+35)>pgsz ){ nOvfl += (nBlob + 34)/pgsz; } } } } *pnOvfl = nOvfl; return rc; } /* ** Free all allocations associated with the iterator passed as the ** second argument. */ void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ if( pReader ){ if( !fts3SegReaderIsPending(pReader) ){ sqlite3_free(pReader->zTerm); } if( !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_free(pReader->aNode); } sqlite3_blob_close(pReader->pBlob); } sqlite3_free(pReader); } /* ** Allocate a new SegReader object. */ int sqlite3Fts3SegReaderNew( int iAge, /* Segment "age". */ int bLookup, /* True for a lookup only */ sqlite3_int64 iStartLeaf, /* First leaf to traverse */ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ sqlite3_int64 iEndBlock, /* Final block of segment */ const char *zRoot, /* Buffer containing root node */ int nRoot, /* Size of buffer containing root node */ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ ){ Fts3SegReader *pReader; /* Newly allocated SegReader object */ int nExtra = 0; /* Bytes to allocate segment root node */ assert( zRoot!=0 || nRoot==0 ); #ifdef CORRUPT_DB assert( zRoot!=0 || CORRUPT_DB ); #endif if( iStartLeaf==0 ){ if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB; nExtra = nRoot + FTS3_NODE_PADDING; } pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); if( !pReader ){ return SQLITE_NOMEM; } memset(pReader, 0, sizeof(Fts3SegReader)); pReader->iIdx = iAge; pReader->bLookup = bLookup!=0; pReader->iStartBlock = iStartLeaf; pReader->iLeafEndBlock = iEndLeaf; pReader->iEndBlock = iEndBlock; if( nExtra ){ /* The entire segment is stored in the root node. */ pReader->aNode = (char *)&pReader[1]; pReader->rootOnly = 1; pReader->nNode = nRoot; if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot); memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); }else{ pReader->iCurrentBlock = iStartLeaf-1; } *ppReader = pReader; return SQLITE_OK; } /* ** This is a comparison function used as a qsort() callback when sorting ** an array of pending terms by term. This occurs as part of flushing ** the contents of the pending-terms hash table to the database. */ static int SQLITE_CDECL fts3CompareElemByTerm( const void *lhs, const void *rhs ){ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); int n = (n1aIndex */ const char *zTerm, /* Term to search for */ int nTerm, /* Size of buffer zTerm */ int bPrefix, /* True for a prefix iterator */ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ ){ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ Fts3HashElem *pE; /* Iterator variable */ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ int nElem = 0; /* Size of array at aElem */ int rc = SQLITE_OK; /* Return Code */ Fts3Hash *pHash; pHash = &p->aIndex[iIndex].hPending; if( bPrefix ){ int nAlloc = 0; /* Size of allocated array at aElem */ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ char *zKey = (char *)fts3HashKey(pE); int nKey = fts3HashKeysize(pE); if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ if( nElem==nAlloc ){ Fts3HashElem **aElem2; nAlloc += 16; aElem2 = (Fts3HashElem **)sqlite3_realloc( aElem, nAlloc*sizeof(Fts3HashElem *) ); if( !aElem2 ){ rc = SQLITE_NOMEM; nElem = 0; break; } aElem = aElem2; } aElem[nElem++] = pE; } } /* If more than one term matches the prefix, sort the Fts3HashElem ** objects in term order using qsort(). This uses the same comparison ** callback as is used when flushing terms to disk. */ if( nElem>1 ){ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); } }else{ /* The query is a simple term lookup that matches at most one term in ** the index. All that is required is a straight hash-lookup. ** ** Because the stack address of pE may be accessed via the aElem pointer ** below, the "Fts3HashElem *pE" must be declared so that it is valid ** within this entire function, not just this "else{...}" block. */ pE = fts3HashFindElem(pHash, zTerm, nTerm); if( pE ){ aElem = &pE; nElem = 1; } } if( nElem>0 ){ sqlite3_int64 nByte; nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); pReader = (Fts3SegReader *)sqlite3_malloc64(nByte); if( !pReader ){ rc = SQLITE_NOMEM; }else{ memset(pReader, 0, nByte); pReader->iIdx = 0x7FFFFFFF; pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); } } if( bPrefix ){ sqlite3_free(aElem); } *ppReader = pReader; return rc; } /* ** Compare the entries pointed to by two Fts3SegReader structures. ** Comparison is as follows: ** ** 1) EOF is greater than not EOF. ** ** 2) The current terms (if any) are compared using memcmp(). If one ** term is a prefix of another, the longer term is considered the ** larger. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc; if( pLhs->aNode && pRhs->aNode ){ int rc2 = pLhs->nTerm - pRhs->nTerm; if( rc2<0 ){ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); }else{ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); } if( rc==0 ){ rc = rc2; } }else{ rc = (pLhs->aNode==0) - (pRhs->aNode==0); } if( rc==0 ){ rc = pRhs->iIdx - pLhs->iIdx; } assert( rc!=0 ); return rc; } /* ** A different comparison function for SegReader structures. In this ** version, it is assumed that each SegReader points to an entry in ** a doclist for identical terms. Comparison is made as follows: ** ** 1) EOF (end of doclist in this case) is greater than not EOF. ** ** 2) By current docid. ** ** 3) By segment age. An older segment is considered larger. */ static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); if( rc==0 ){ if( pLhs->iDocid==pRhs->iDocid ){ rc = pRhs->iIdx - pLhs->iIdx; }else{ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; } } assert( pLhs->aNode && pRhs->aNode ); return rc; } /* ** Compare the term that the Fts3SegReader object passed as the first argument ** points to with the term specified by arguments zTerm and nTerm. ** ** If the pSeg iterator is already at EOF, return 0. Otherwise, return ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. */ static int fts3SegReaderTermCmp( Fts3SegReader *pSeg, /* Segment reader object */ const char *zTerm, /* Term to compare to */ int nTerm /* Size of term zTerm in bytes */ ){ int res = 0; if( pSeg->aNode ){ if( pSeg->nTerm>nTerm ){ res = memcmp(pSeg->zTerm, zTerm, nTerm); }else{ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); } if( res==0 ){ res = pSeg->nTerm-nTerm; } } return res; } /* ** Argument apSegment is an array of nSegment elements. It is known that ** the final (nSegment-nSuspect) members are already in sorted order ** (according to the comparison function provided). This function shuffles ** the array around until all entries are in sorted order. */ static void fts3SegReaderSort( Fts3SegReader **apSegment, /* Array to sort entries of */ int nSegment, /* Size of apSegment array */ int nSuspect, /* Unsorted entry count */ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ ){ int i; /* Iterator variable */ assert( nSuspect<=nSegment ); if( nSuspect==nSegment ) nSuspect--; for(i=nSuspect-1; i>=0; i--){ int j; for(j=i; j<(nSegment-1); j++){ Fts3SegReader *pTmp; if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; pTmp = apSegment[j+1]; apSegment[j+1] = apSegment[j]; apSegment[j] = pTmp; } } #ifndef NDEBUG /* Check that the list really is sorted now. */ for(i=0; i<(nSuspect-1); i++){ assert( xCmp(apSegment[i], apSegment[i+1])<0 ); } #endif } /* ** Insert a record into the %_segments table. */ static int fts3WriteSegment( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iBlock, /* Block id for new block */ char *z, /* Pointer to buffer containing block data */ int n /* Size of buffer z in bytes */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iBlock); sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); } return rc; } /* ** Find the largest relative level number in the table. If successful, set ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, ** set *pnMax to zero and return an SQLite error code. */ int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ int rc; int mxLevel = 0; sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ mxLevel = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } *pnMax = mxLevel; return rc; } /* ** Insert a record into the %_segdir table. */ static int fts3WriteSegdir( Fts3Table *p, /* Virtual table handle */ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ int iIdx, /* Value for "idx" field */ sqlite3_int64 iStartBlock, /* Value for "start_block" field */ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ sqlite3_int64 iEndBlock, /* Value for "end_block" field */ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ char *zRoot, /* Blob value for "root" field */ int nRoot /* Number of bytes in buffer zRoot */ ){ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pStmt, 1, iLevel); sqlite3_bind_int(pStmt, 2, iIdx); sqlite3_bind_int64(pStmt, 3, iStartBlock); sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); if( nLeafData==0 ){ sqlite3_bind_int64(pStmt, 5, iEndBlock); }else{ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); if( !zEnd ) return SQLITE_NOMEM; sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); } sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 6); } return rc; } /* ** Return the size of the common prefix (if any) shared by zPrev and ** zNext, in bytes. For example, ** ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 */ static int fts3PrefixCompress( const char *zPrev, /* Buffer containing previous term */ int nPrev, /* Size of buffer zPrev in bytes */ const char *zNext, /* Buffer containing next term */ int nNext /* Size of buffer zNext in bytes */ ){ int n; UNUSED_PARAMETER(nNext); for(n=0; nnData; /* Current size of node in bytes */ int nReq = nData; /* Required space after adding zTerm */ int nPrefix; /* Number of bytes of prefix compression */ int nSuffix; /* Suffix length */ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; if( nReq<=p->nNodeSize || !pTree->zTerm ){ if( nReq>p->nNodeSize ){ /* An unusual case: this is the first term to be added to the node ** and the static node buffer (p->nNodeSize bytes) is not large ** enough. Use a separately malloced buffer instead This wastes ** p->nNodeSize bytes, but since this scenario only comes about when ** the database contain two terms that share a prefix of almost 2KB, ** this is not expected to be a serious problem. */ assert( pTree->aData==(char *)&pTree[1] ); pTree->aData = (char *)sqlite3_malloc(nReq); if( !pTree->aData ){ return SQLITE_NOMEM; } } if( pTree->zTerm ){ /* There is no prefix-length field for first term in a node */ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); } nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); pTree->nData = nData + nSuffix; pTree->nEntry++; if( isCopyTerm ){ if( pTree->nMalloczMalloc, nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pTree->nMalloc = nTerm*2; pTree->zMalloc = zNew; } pTree->zTerm = pTree->zMalloc; memcpy(pTree->zTerm, zTerm, nTerm); pTree->nTerm = nTerm; }else{ pTree->zTerm = (char *)zTerm; pTree->nTerm = nTerm; } return SQLITE_OK; } } /* If control flows to here, it was not possible to append zTerm to the ** current node. Create a new node (a right-sibling of the current node). ** If this is the first node in the tree, the term is added to it. ** ** Otherwise, the term is not added to the new node, it is left empty for ** now. Instead, the term is inserted into the parent of pTree. If pTree ** has no parent, one is created here. */ pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); if( !pNew ){ return SQLITE_NOMEM; } memset(pNew, 0, sizeof(SegmentNode)); pNew->nData = 1 + FTS3_VARINT_MAX; pNew->aData = (char *)&pNew[1]; if( pTree ){ SegmentNode *pParent = pTree->pParent; rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); if( pTree->pParent==0 ){ pTree->pParent = pParent; } pTree->pRight = pNew; pNew->pLeftmost = pTree->pLeftmost; pNew->pParent = pParent; pNew->zMalloc = pTree->zMalloc; pNew->nMalloc = pTree->nMalloc; pTree->zMalloc = 0; }else{ pNew->pLeftmost = pNew; rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); } *ppTree = pNew; return rc; } /* ** Helper function for fts3NodeWrite(). */ static int fts3TreeFinishNode( SegmentNode *pTree, int iHeight, sqlite3_int64 iLeftChild ){ int nStart; assert( iHeight>=1 && iHeight<128 ); nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); pTree->aData[nStart] = (char)iHeight; sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); return nStart; } /* ** Write the buffer for the segment node pTree and all of its peers to the ** database. Then call this function recursively to write the parent of ** pTree and its peers to the database. ** ** Except, if pTree is a root node, do not write it to the database. Instead, ** set output variables *paRoot and *pnRoot to contain the root node. ** ** If successful, SQLITE_OK is returned and output variable *piLast is ** set to the largest blockid written to the database (or zero if no ** blocks were written to the db). Otherwise, an SQLite error code is ** returned. */ static int fts3NodeWrite( Fts3Table *p, /* Virtual table handle */ SegmentNode *pTree, /* SegmentNode handle */ int iHeight, /* Height of this node in tree */ sqlite3_int64 iLeaf, /* Block id of first leaf node */ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ char **paRoot, /* OUT: Data for root node */ int *pnRoot /* OUT: Size of root node in bytes */ ){ int rc = SQLITE_OK; if( !pTree->pParent ){ /* Root node of the tree. */ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); *piLast = iFree-1; *pnRoot = pTree->nData - nStart; *paRoot = &pTree->aData[nStart]; }else{ SegmentNode *pIter; sqlite3_int64 iNextFree = iFree; sqlite3_int64 iNextLeaf = iLeaf; for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); int nWrite = pIter->nData - nStart; rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); iNextFree++; iNextLeaf += (pIter->nEntry+1); } if( rc==SQLITE_OK ){ assert( iNextLeaf==iFree ); rc = fts3NodeWrite( p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot ); } } return rc; } /* ** Free all memory allocations associated with the tree pTree. */ static void fts3NodeFree(SegmentNode *pTree){ if( pTree ){ SegmentNode *p = pTree->pLeftmost; fts3NodeFree(p->pParent); while( p ){ SegmentNode *pRight = p->pRight; if( p->aData!=(char *)&p[1] ){ sqlite3_free(p->aData); } assert( pRight==0 || p->zMalloc==0 ); sqlite3_free(p->zMalloc); sqlite3_free(p); p = pRight; } } } /* ** Add a term to the segment being constructed by the SegmentWriter object ** *ppWriter. When adding the first term to a segment, *ppWriter should ** be passed NULL. This function will allocate a new SegmentWriter object ** and return it via the input/output variable *ppWriter in this case. ** ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. */ static int fts3SegWriterAdd( Fts3Table *p, /* Virtual table handle */ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ int isCopyTerm, /* True if buffer zTerm must be copied */ const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of term in bytes */ const char *aDoclist, /* Pointer to buffer containing doclist */ int nDoclist /* Size of doclist in bytes */ ){ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ int nReq; /* Number of bytes required on leaf page */ int nData; SegmentWriter *pWriter = *ppWriter; if( !pWriter ){ int rc; sqlite3_stmt *pStmt; /* Allocate the SegmentWriter structure */ pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); if( !pWriter ) return SQLITE_NOMEM; memset(pWriter, 0, sizeof(SegmentWriter)); *ppWriter = pWriter; /* Allocate a buffer in which to accumulate data */ pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); if( !pWriter->aData ) return SQLITE_NOMEM; pWriter->nSize = p->nNodeSize; /* Find the next free blockid in the %_segments table */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; if( SQLITE_ROW==sqlite3_step(pStmt) ){ pWriter->iFree = sqlite3_column_int64(pStmt, 0); pWriter->iFirst = pWriter->iFree; } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ) return rc; } nData = pWriter->nData; nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); nSuffix = nTerm-nPrefix; /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when ** compared with BINARY collation. This indicates corruption. */ if( nSuffix<=0 ) return FTS_CORRUPT_VTAB; /* Figure out how many bytes are required by this new entry */ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ nSuffix + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ if( nData>0 && nData+nReq>p->nNodeSize ){ int rc; /* The current leaf node is full. Write it out to the database. */ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); if( rc!=SQLITE_OK ) return rc; p->nLeafAdd++; /* Add the current term to the interior node tree. The term added to ** the interior tree must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pWriter->zTerm), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ assert( nPrefixpTree, isCopyTerm, zTerm, nPrefix+1); if( rc!=SQLITE_OK ) return rc; nData = 0; pWriter->nTerm = 0; nPrefix = 0; nSuffix = nTerm; nReq = 1 + /* varint containing prefix size */ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ nTerm + /* Term suffix */ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ nDoclist; /* Doclist data */ } /* Increase the total number of bytes written to account for the new entry. */ pWriter->nLeafData += nReq; /* If the buffer currently allocated is too small for this entry, realloc ** the buffer to make it large enough. */ if( nReq>pWriter->nSize ){ char *aNew = sqlite3_realloc(pWriter->aData, nReq); if( !aNew ) return SQLITE_NOMEM; pWriter->aData = aNew; pWriter->nSize = nReq; } assert( nData+nReq<=pWriter->nSize ); /* Append the prefix-compressed term and doclist to the buffer. */ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); nData += nSuffix; nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); memcpy(&pWriter->aData[nData], aDoclist, nDoclist); pWriter->nData = nData + nDoclist; /* Save the current term so that it can be used to prefix-compress the next. ** If the isCopyTerm parameter is true, then the buffer pointed to by ** zTerm is transient, so take a copy of the term data. Otherwise, just ** store a copy of the pointer. */ if( isCopyTerm ){ if( nTerm>pWriter->nMalloc ){ char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); if( !zNew ){ return SQLITE_NOMEM; } pWriter->nMalloc = nTerm*2; pWriter->zMalloc = zNew; pWriter->zTerm = zNew; } assert( pWriter->zTerm==pWriter->zMalloc ); memcpy(pWriter->zTerm, zTerm, nTerm); }else{ pWriter->zTerm = (char *)zTerm; } pWriter->nTerm = nTerm; return SQLITE_OK; } /* ** Flush all data associated with the SegmentWriter object pWriter to the ** database. This function must be called after all terms have been added ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is ** returned. Otherwise, an SQLite error code. */ static int fts3SegWriterFlush( Fts3Table *p, /* Virtual table handle */ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ int iIdx /* Value for 'idx' column of %_segdir */ ){ int rc; /* Return code */ if( pWriter->pTree ){ sqlite3_int64 iLast = 0; /* Largest block id written to database */ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ char *zRoot = NULL; /* Pointer to buffer containing root node */ int nRoot = 0; /* Size of buffer zRoot */ iLastLeaf = pWriter->iFree; rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); if( rc==SQLITE_OK ){ rc = fts3NodeWrite(p, pWriter->pTree, 1, pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); } if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); } }else{ /* The entire tree fits on the root node. Write it to the segdir table. */ rc = fts3WriteSegdir(p, iLevel, iIdx, 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); } p->nLeafAdd++; return rc; } /* ** Release all memory held by the SegmentWriter object passed as the ** first argument. */ static void fts3SegWriterFree(SegmentWriter *pWriter){ if( pWriter ){ sqlite3_free(pWriter->aData); sqlite3_free(pWriter->zMalloc); fts3NodeFree(pWriter->pTree); sqlite3_free(pWriter); } } /* ** The first value in the apVal[] array is assumed to contain an integer. ** This function tests if there exist any documents with docid values that ** are different from that integer. i.e. if deleting the document with docid ** pRowid would mean the FTS3 table were empty. ** ** If successful, *pisEmpty is set to true if the table is empty except for ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an ** error occurs, an SQLite error code is returned. */ static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ sqlite3_stmt *pStmt; int rc; if( p->zContentTbl ){ /* If using the content=xxx option, assume the table is never empty */ *pisEmpty = 0; rc = SQLITE_OK; }else{ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pisEmpty = sqlite3_column_int(pStmt, 0); } rc = sqlite3_reset(pStmt); } } return rc; } /* ** Set *pnMax to the largest segment level in the database for the index ** iIndex. ** ** Segment levels are stored in the 'level' column of the %_segdir table. ** ** Return SQLITE_OK if successful, or an SQLite error code if not. */ static int fts3SegmentMaxLevel( Fts3Table *p, int iLangid, int iIndex, sqlite3_int64 *pnMax ){ sqlite3_stmt *pStmt; int rc; assert( iIndex>=0 && iIndexnIndex ); /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pStmt, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pnMax = sqlite3_column_int64(pStmt, 0); } return sqlite3_reset(pStmt); } /* ** iAbsLevel is an absolute level that may be assumed to exist within ** the database. This function checks if it is the largest level number ** within its index. Assuming no error occurs, *pbMax is set to 1 if ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK ** is returned. If an error occurs, an error code is returned and the ** final value of *pbMax is undefined. */ static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ /* Set pStmt to the compiled version of: ** ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? ** ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). */ sqlite3_stmt *pStmt; int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); sqlite3_bind_int64(pStmt, 2, ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL ); *pbMax = 0; if( SQLITE_ROW==sqlite3_step(pStmt) ){ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; } return sqlite3_reset(pStmt); } /* ** Delete all entries in the %_segments table associated with the segment ** opened with seg-reader pSeg. This function does not affect the contents ** of the %_segdir table. */ static int fts3DeleteSegment( Fts3Table *p, /* FTS table handle */ Fts3SegReader *pSeg /* Segment to delete */ ){ int rc = SQLITE_OK; /* Return code */ if( pSeg->iStartBlock ){ sqlite3_stmt *pDelete; /* SQL statement to delete rows */ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } } return rc; } /* ** This function is used after merging multiple segments into a single large ** segment to delete the old, now redundant, segment b-trees. Specifically, ** it: ** ** 1) Deletes all %_segments entries for the segments associated with ** each of the SegReader objects in the array passed as the third ** argument, and ** ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir ** entries regardless of level if (iLevel<0). ** ** SQLITE_OK is returned if successful, otherwise an SQLite error code. */ static int fts3DeleteSegdir( Fts3Table *p, /* Virtual table handle */ int iLangid, /* Language id */ int iIndex, /* Index for p->aIndex */ int iLevel, /* Level of %_segdir entries to delete */ Fts3SegReader **apSegment, /* Array of SegReader objects */ int nReader /* Size of array apSegment */ ){ int rc = SQLITE_OK; /* Return Code */ int i; /* Iterator variable */ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ for(i=0; rc==SQLITE_OK && i=0 || iLevel==FTS3_SEGCURSOR_ALL ); if( iLevel==FTS3_SEGCURSOR_ALL ){ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); sqlite3_bind_int64(pDelete, 2, getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) ); } }else{ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64( pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) ); } } if( rc==SQLITE_OK ){ sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** When this function is called, buffer *ppList (size *pnList bytes) contains ** a position list that may (or may not) feature multiple columns. This ** function adjusts the pointer *ppList and the length *pnList so that they ** identify the subset of the position list that corresponds to column iCol. ** ** If there are no entries in the input position list for column iCol, then ** *pnList is set to zero before returning. ** ** If parameter bZero is non-zero, then any part of the input list following ** the end of the output list is zeroed before returning. */ static void fts3ColumnFilter( int iCol, /* Column to filter on */ int bZero, /* Zero out anything following *ppList */ char **ppList, /* IN/OUT: Pointer to position list */ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ ){ char *pList = *ppList; int nList = *pnList; char *pEnd = &pList[nList]; int iCurrent = 0; char *p = pList; assert( iCol>=0 ); while( 1 ){ char c = 0; while( ppMsr->nBuffer ){ char *pNew; pMsr->nBuffer = nList*2; pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); if( !pNew ) return SQLITE_NOMEM; pMsr->aBuffer = pNew; } memcpy(pMsr->aBuffer, pList, nList); return SQLITE_OK; } int sqlite3Fts3MsrIncrNext( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ sqlite3_int64 *piDocid, /* OUT: Docid value */ char **paPoslist, /* OUT: Pointer to position list */ int *pnPoslist /* OUT: Size of position list in bytes */ ){ int nMerge = pMsr->nAdvance; Fts3SegReader **apSegment = pMsr->apSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( nMerge==0 ){ *paPoslist = 0; return SQLITE_OK; } while( 1 ){ Fts3SegReader *pSeg; pSeg = pMsr->apSegment[0]; if( pSeg->pOffsetList==0 ){ *paPoslist = 0; break; }else{ int rc; char *pList; int nList; int j; sqlite3_int64 iDocid = apSegment[0]->iDocid; rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( rc==SQLITE_OK && jpOffsetList && apSegment[j]->iDocid==iDocid ){ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( rc!=SQLITE_OK ) return rc; fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pMsr, pList, nList+1); if( rc!=SQLITE_OK ) return rc; assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); pList = pMsr->aBuffer; } if( pMsr->iColFilter>=0 ){ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); } if( nList>0 ){ *paPoslist = pList; *piDocid = iDocid; *pnPoslist = nList; break; } } } return SQLITE_OK; } static int fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ const char *zTerm, /* Term searched for (or NULL) */ int nTerm /* Length of zTerm in bytes */ ){ int i; int nSeg = pCsr->nSegment; /* If the Fts3SegFilter defines a specific term (or term prefix) to search ** for, then advance each segment iterator until it points to a term of ** equal or greater value than the specified term. This prevents many ** unnecessary merge/sort operations for the case where single segment ** b-tree leaf nodes contain more than one term. */ for(i=0; pCsr->bRestart==0 && inSegment; i++){ int res = 0; Fts3SegReader *pSeg = pCsr->apSegment[i]; do { int rc = fts3SegReaderNext(p, pSeg, 0); if( rc!=SQLITE_OK ) return rc; }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); if( pSeg->bLookup && res!=0 ){ fts3SegReaderSetEof(pSeg); } } fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); return SQLITE_OK; } int sqlite3Fts3SegReaderStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ ){ pCsr->pFilter = pFilter; return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); } int sqlite3Fts3MsrIncrStart( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr, /* Cursor object */ int iCol, /* Column to match on. */ const char *zTerm, /* Term to iterate through a doclist for */ int nTerm /* Number of bytes in zTerm */ ){ int i; int rc; int nSegment = pCsr->nSegment; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); assert( pCsr->pFilter==0 ); assert( zTerm && nTerm>0 ); /* Advance each segment iterator until it points to the term zTerm/nTerm. */ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); if( rc!=SQLITE_OK ) return rc; /* Determine how many of the segments actually point to zTerm/nTerm. */ for(i=0; iapSegment[i]; if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ break; } } pCsr->nAdvance = i; /* Advance each of the segments to point to the first docid. */ for(i=0; inAdvance; i++){ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); assert( iCol<0 || iColnColumn ); pCsr->iColFilter = iCol; return SQLITE_OK; } /* ** This function is called on a MultiSegReader that has been started using ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also ** have been made. Calling this function puts the MultiSegReader in such ** a state that if the next two calls are: ** ** sqlite3Fts3SegReaderStart() ** sqlite3Fts3SegReaderStep() ** ** then the entire doclist for the term is available in ** MultiSegReader.aDoclist/nDoclist. */ int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ int i; /* Used to iterate through segment-readers */ assert( pCsr->zTerm==0 ); assert( pCsr->nTerm==0 ); assert( pCsr->aDoclist==0 ); assert( pCsr->nDoclist==0 ); pCsr->nAdvance = 0; pCsr->bRestart = 1; for(i=0; inSegment; i++){ pCsr->apSegment[i]->pOffsetList = 0; pCsr->apSegment[i]->nOffsetList = 0; pCsr->apSegment[i]->iDocid = 0; } return SQLITE_OK; } int sqlite3Fts3SegReaderStep( Fts3Table *p, /* Virtual table handle */ Fts3MultiSegReader *pCsr /* Cursor object */ ){ int rc = SQLITE_OK; int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); Fts3SegReader **apSegment = pCsr->apSegment; int nSegment = pCsr->nSegment; Fts3SegFilter *pFilter = pCsr->pFilter; int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp ); if( pCsr->nSegment==0 ) return SQLITE_OK; do { int nMerge; int i; /* Advance the first pCsr->nAdvance entries in the apSegment[] array ** forward. Then sort the list in order of current term again. */ for(i=0; inAdvance; i++){ Fts3SegReader *pSeg = apSegment[i]; if( pSeg->bLookup ){ fts3SegReaderSetEof(pSeg); }else{ rc = fts3SegReaderNext(p, pSeg, 0); } if( rc!=SQLITE_OK ) return rc; } fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); pCsr->nAdvance = 0; /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ assert( rc==SQLITE_OK ); if( apSegment[0]->aNode==0 ) break; pCsr->nTerm = apSegment[0]->nTerm; pCsr->zTerm = apSegment[0]->zTerm; /* If this is a prefix-search, and if the term that apSegment[0] points ** to does not share a suffix with pFilter->zTerm/nTerm, then all ** required callbacks have been made. In this case exit early. ** ** Similarly, if this is a search for an exact match, and the first term ** of segment apSegment[0] is not a match, exit early. */ if( pFilter->zTerm && !isScan ){ if( pCsr->nTermnTerm || (!isPrefix && pCsr->nTerm>pFilter->nTerm) || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) ){ break; } } nMerge = 1; while( nMergeaNode && apSegment[nMerge]->nTerm==pCsr->nTerm && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) ){ nMerge++; } assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); if( nMerge==1 && !isIgnoreEmpty && !isFirst && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) ){ pCsr->nDoclist = apSegment[0]->nDoclist; if( fts3SegReaderIsPending(apSegment[0]) ){ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); pCsr->aDoclist = pCsr->aBuffer; }else{ pCsr->aDoclist = apSegment[0]->aDoclist; } if( rc==SQLITE_OK ) rc = SQLITE_ROW; }else{ int nDoclist = 0; /* Size of doclist */ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ /* The current term of the first nMerge entries in the array ** of Fts3SegReader objects is the same. The doclists must be merged ** and a single term returned with the merged doclist. */ for(i=0; ipOffsetList ){ int j; /* Number of segments that share a docid */ char *pList = 0; int nList = 0; int nByte; sqlite3_int64 iDocid = apSegment[0]->iDocid; fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( jpOffsetList && apSegment[j]->iDocid==iDocid ){ fts3SegReaderNextDocid(p, apSegment[j], 0, 0); j++; } if( isColFilter ){ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); } if( !isIgnoreEmpty || nList>0 ){ /* Calculate the 'docid' delta value to write into the merged ** doclist. */ sqlite3_int64 iDelta; if( p->bDescIdx && nDoclist>0 ){ iDelta = iPrev - iDocid; }else{ iDelta = iDocid - iPrev; } if( iDelta<=0 && (nDoclist>0 || iDelta!=iDocid) ){ return FTS_CORRUPT_VTAB; } assert( nDoclist>0 || iDelta==iDocid ); nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); if( nDoclist+nByte>pCsr->nBuffer ){ char *aNew; pCsr->nBuffer = (nDoclist+nByte)*2; aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); if( !aNew ){ return SQLITE_NOMEM; } pCsr->aBuffer = aNew; } if( isFirst ){ char *a = &pCsr->aBuffer[nDoclist]; int nWrite; nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); if( nWrite ){ iPrev = iDocid; nDoclist += nWrite; } }else{ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); iPrev = iDocid; if( isRequirePos ){ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); nDoclist += nList; pCsr->aBuffer[nDoclist++] = '\0'; } } } fts3SegReaderSort(apSegment, nMerge, j, xCmp); } if( nDoclist>0 ){ pCsr->aDoclist = pCsr->aBuffer; pCsr->nDoclist = nDoclist; rc = SQLITE_ROW; } } pCsr->nAdvance = nMerge; }while( rc==SQLITE_OK ); return rc; } void sqlite3Fts3SegReaderFinish( Fts3MultiSegReader *pCsr /* Cursor object */ ){ if( pCsr ){ int i; for(i=0; inSegment; i++){ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); } sqlite3_free(pCsr->apSegment); sqlite3_free(pCsr->aBuffer); pCsr->nSegment = 0; pCsr->apSegment = 0; pCsr->aBuffer = 0; } } /* ** Decode the "end_block" field, selected by column iCol of the SELECT ** statement passed as the first argument. ** ** The "end_block" field may contain either an integer, or a text field ** containing the text representation of two non-negative integers separated ** by one or more space (0x20) characters. In the first case, set *piEndBlock ** to the integer value and *pnByte to zero before returning. In the second, ** set *piEndBlock to the first value and *pnByte to the second. */ static void fts3ReadEndBlockField( sqlite3_stmt *pStmt, int iCol, i64 *piEndBlock, i64 *pnByte ){ const unsigned char *zText = sqlite3_column_text(pStmt, iCol); if( zText ){ int i; int iMul = 1; i64 iVal = 0; for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *piEndBlock = iVal; while( zText[i]==' ' ) i++; iVal = 0; if( zText[i]=='-' ){ i++; iMul = -1; } for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ iVal = iVal*10 + (zText[i] - '0'); } *pnByte = (iVal * (i64)iMul); } } /* ** A segment of size nByte bytes has just been written to absolute level ** iAbsLevel. Promote any segments that should be promoted as a result. */ static int fts3PromoteSegments( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level just updated */ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ ){ int rc = SQLITE_OK; sqlite3_stmt *pRange; rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); if( rc==SQLITE_OK ){ int bOk = 0; i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; i64 nLimit = (nByte*3)/2; /* Loop through all entries in the %_segdir table corresponding to ** segments in this index on levels greater than iAbsLevel. If there is ** at least one such segment, and it is possible to determine that all ** such segments are smaller than nLimit bytes in size, they will be ** promoted to level iAbsLevel. */ sqlite3_bind_int64(pRange, 1, iAbsLevel+1); sqlite3_bind_int64(pRange, 2, iLast); while( SQLITE_ROW==sqlite3_step(pRange) ){ i64 nSize = 0, dummy; fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); if( nSize<=0 || nSize>nLimit ){ /* If nSize==0, then the %_segdir.end_block field does not not ** contain a size value. This happens if it was written by an ** old version of FTS. In this case it is not possible to determine ** the size of the segment, and so segment promotion does not ** take place. */ bOk = 0; break; } bOk = 1; } rc = sqlite3_reset(pRange); if( bOk ){ int iIdx = 0; sqlite3_stmt *pUpdate1 = 0; sqlite3_stmt *pUpdate2 = 0; if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); } if( rc==SQLITE_OK ){ /* Loop through all %_segdir entries for segments in this index with ** levels equal to or greater than iAbsLevel. As each entry is visited, ** updated it to set (level = -1) and (idx = N), where N is 0 for the ** oldest segment in the range, 1 for the next oldest, and so on. ** ** In other words, move all segments being promoted to level -1, ** setting the "idx" fields as appropriate to keep them in the same ** order. The contents of level -1 (which is never used, except ** transiently here), will be moved back to level iAbsLevel below. */ sqlite3_bind_int64(pRange, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pRange) ){ sqlite3_bind_int(pUpdate1, 1, iIdx++); sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); sqlite3_step(pUpdate1); rc = sqlite3_reset(pUpdate1); if( rc!=SQLITE_OK ){ sqlite3_reset(pRange); break; } } } if( rc==SQLITE_OK ){ rc = sqlite3_reset(pRange); } /* Move level -1 to level iAbsLevel */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); sqlite3_step(pUpdate2); rc = sqlite3_reset(pUpdate2); } } } return rc; } /* ** Merge all level iLevel segments in the database into a single ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a ** single segment with a level equal to the numerically largest level ** currently present in the database. ** ** If this function is called with iLevel<0, but there is only one ** segment in the database, SQLITE_DONE is returned immediately. ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, ** an SQLite error code is returned. */ static int fts3SegmentMerge( Fts3Table *p, int iLangid, /* Language id to merge */ int iIndex, /* Index in p->aIndex[] to merge */ int iLevel /* Level to merge */ ){ int rc; /* Return code */ int iIdx = 0; /* Index of new segment */ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ Fts3SegFilter filter; /* Segment term filter condition */ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ int bIgnoreEmpty = 0; /* True to ignore empty segments */ i64 iMaxLevel = 0; /* Max level number for this index/langid */ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevel=0 && iIndexnIndex ); rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; if( iLevel!=FTS3_SEGCURSOR_PENDING ){ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); if( rc!=SQLITE_OK ) goto finished; } if( iLevel==FTS3_SEGCURSOR_ALL ){ /* This call is to merge all segments in the database to a single ** segment. The level of the new segment is equal to the numerically ** greatest segment level currently present in the database for this ** index. The idx of the new segment is always 0. */ if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){ rc = SQLITE_DONE; goto finished; } iNewLevel = iMaxLevel; bIgnoreEmpty = 1; }else{ /* This call is to merge all segments at level iLevel. find the next ** available segment index at level iLevel+1. The call to ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to ** a single iLevel+2 segment if necessary. */ assert( FTS3_SEGCURSOR_PENDING==-1 ); iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); } if( rc!=SQLITE_OK ) goto finished; assert( csr.nSegment>0 ); assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); assert_fts3_nc( iNewLevelnLeafData); } } } finished: fts3SegWriterFree(pWriter); sqlite3Fts3SegReaderFinish(&csr); return rc; } /* ** Flush the contents of pendingTerms to level 0 segments. */ int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } sqlite3Fts3PendingTermsClear(p); /* Determine the auto-incr-merge setting if unknown. If enabled, ** estimate the number of leaf blocks of content to be written */ if( rc==SQLITE_OK && p->bHasStat && p->nAutoincrmerge==0xff && p->nLeafAdd>0 ){ sqlite3_stmt *pStmt = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; }else if( rc==SQLITE_DONE ){ p->nAutoincrmerge = 0; } rc = sqlite3_reset(pStmt); } } return rc; } /* ** Encode N integers as varints into a blob. */ static void fts3EncodeIntArray( int N, /* The number of integers to encode */ u32 *a, /* The integer values */ char *zBuf, /* Write the BLOB here */ int *pNBuf /* Write number of bytes if zBuf[] used here */ ){ int i, j; for(i=j=0; iiPrevDocid. The sizes are encoded as ** a blob of varints. */ static void fts3InsertDocsize( int *pRC, /* Result code */ Fts3Table *p, /* Table into which to insert */ u32 *aSz /* Sizes of each column, in tokens */ ){ char *pBlob; /* The BLOB encoding of the document size */ int nBlob; /* Number of bytes in the BLOB */ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ int rc; /* Result code from subfunctions */ if( *pRC ) return; pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn ); if( pBlob==0 ){ *pRC = SQLITE_NOMEM; return; } fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); if( rc ){ sqlite3_free(pBlob); *pRC = rc; return; } sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); } /* ** Record 0 of the %_stat table contains a blob consisting of N varints, ** where N is the number of user defined columns in the fts3 table plus ** two. If nCol is the number of user defined columns, then values of the ** varints are set as follows: ** ** Varint 0: Total number of rows in the table. ** ** Varint 1..nCol: For each column, the total number of tokens stored in ** the column for all rows of the table. ** ** Varint 1+nCol: The total size, in bytes, of all text values in all ** columns of all rows of the table. ** */ static void fts3UpdateDocTotals( int *pRC, /* The result code */ Fts3Table *p, /* Table being updated */ u32 *aSzIns, /* Size increases */ u32 *aSzDel, /* Size decreases */ int nChng /* Change in the number of documents */ ){ char *pBlob; /* Storage for BLOB written into %_stat */ int nBlob; /* Size of BLOB written into %_stat */ u32 *a; /* Array of integers that becomes the BLOB */ sqlite3_stmt *pStmt; /* Statement for reading and writing */ int i; /* Loop counter */ int rc; /* Result code from subfunctions */ const int nStat = p->nColumn+2; if( *pRC ) return; a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat ); if( a==0 ){ *pRC = SQLITE_NOMEM; return; } pBlob = (char*)&a[nStat]; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); if( sqlite3_step(pStmt)==SQLITE_ROW ){ fts3DecodeIntArray(nStat, a, sqlite3_column_blob(pStmt, 0), sqlite3_column_bytes(pStmt, 0)); }else{ memset(a, 0, sizeof(u32)*(nStat) ); } rc = sqlite3_reset(pStmt); if( rc!=SQLITE_OK ){ sqlite3_free(a); *pRC = rc; return; } if( nChng<0 && a[0]<(u32)(-nChng) ){ a[0] = 0; }else{ a[0] += nChng; } for(i=0; inColumn+1; i++){ u32 x = a[i+1]; if( x+aSzIns[i] < aSzDel[i] ){ x = 0; }else{ x = x + aSzIns[i] - aSzDel[i]; } a[i+1] = x; } fts3EncodeIntArray(nStat, a, pBlob, &nBlob); rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ){ sqlite3_free(a); *pRC = rc; return; } sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); sqlite3_step(pStmt); *pRC = sqlite3_reset(pStmt); sqlite3_bind_null(pStmt, 2); sqlite3_free(a); } /* ** Merge the entire database so that there is one segment for each ** iIndex/iLangid combination. */ static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ int bSeenDone = 0; int rc; sqlite3_stmt *pAllLangid = 0; rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ int i; int iLangid = sqlite3_column_int(pAllLangid, 0); for(i=0; rc==SQLITE_OK && inIndex; i++){ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); if( rc==SQLITE_DONE ){ bSeenDone = 1; rc = SQLITE_OK; } } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } sqlite3Fts3SegmentsClose(p); sqlite3Fts3PendingTermsClear(p); return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; } /* ** This function is called when the user executes the following statement: ** ** INSERT INTO () VALUES('rebuild'); ** ** The entire FTS index is discarded and rebuilt. If the table is one ** created using the content=xxx option, then the new index is based on ** the current contents of the xxx table. Otherwise, it is rebuilt based ** on the contents of the %_content table. */ static int fts3DoRebuild(Fts3Table *p){ int rc; /* Return Code */ rc = fts3DeleteAll(p, 0); if( rc==SQLITE_OK ){ u32 *aSz = 0; u32 *aSzIns = 0; u32 *aSzDel = 0; sqlite3_stmt *pStmt = 0; int nEntry = 0; /* Compose and prepare an SQL statement to loop through the content table */ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } if( rc==SQLITE_OK ){ sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3; aSz = (u32 *)sqlite3_malloc64(nByte); if( aSz==0 ){ rc = SQLITE_NOMEM; }else{ memset(aSz, 0, nByte); aSzIns = &aSz[p->nColumn+1]; aSzDel = &aSzIns[p->nColumn+1]; } } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); } } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSz); } if( rc!=SQLITE_OK ){ sqlite3_finalize(pStmt); pStmt = 0; }else{ nEntry++; for(iCol=0; iCol<=p->nColumn; iCol++){ aSzIns[iCol] += aSz[iCol]; } } } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); } sqlite3_free(aSz); if( pStmt ){ int rc2 = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** This function opens a cursor used to read the input data for an ** incremental merge operation. Specifically, it opens a cursor to scan ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute ** level iAbsLevel. */ static int fts3IncrmergeCsr( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to open */ int nSeg, /* Number of segments to merge */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc; /* Return Code */ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ memset(pCsr, 0, sizeof(*pCsr)); nByte = sizeof(Fts3SegReader *) * nSeg; pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte); if( pCsr->apSegment==0 ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->apSegment, 0, nByte); rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); } if( rc==SQLITE_OK ){ int i; int rc2; sqlite3_bind_int64(pStmt, 1, iAbsLevel); assert( pCsr->nSegment==0 ); for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && iapSegment[i] ); pCsr->nSegment++; } rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_OK ) rc = rc2; } return rc; } typedef struct IncrmergeWriter IncrmergeWriter; typedef struct NodeWriter NodeWriter; typedef struct Blob Blob; typedef struct NodeReader NodeReader; /* ** An instance of the following structure is used as a dynamic buffer ** to build up nodes or other blobs of data in. ** ** The function blobGrowBuffer() is used to extend the allocation. */ struct Blob { char *a; /* Pointer to allocation */ int n; /* Number of valid bytes of data in a[] */ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ }; /* ** This structure is used to build up buffers containing segment b-tree ** nodes (blocks). */ struct NodeWriter { sqlite3_int64 iBlock; /* Current block id */ Blob key; /* Last key written to the current block */ Blob block; /* Current block image */ }; /* ** An object of this type contains the state required to create or append ** to an appendable b-tree segment. */ struct IncrmergeWriter { int nLeafEst; /* Space allocated for leaf blocks */ int nWork; /* Number of leaf pages flushed */ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ int iIdx; /* Index of *output* segment in iAbsLevel+1 */ sqlite3_int64 iStart; /* Block number of first allocated block */ sqlite3_int64 iEnd; /* Block number of last allocated block */ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ u8 bNoLeafData; /* If true, store 0 for segment size */ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; }; /* ** An object of the following type is used to read data from a single ** FTS segment node. See the following functions: ** ** nodeReaderInit() ** nodeReaderNext() ** nodeReaderRelease() */ struct NodeReader { const char *aNode; int nNode; int iOff; /* Current offset within aNode[] */ /* Output variables. Containing the current node entry. */ sqlite3_int64 iChild; /* Pointer to child node */ Blob term; /* Current term */ const char *aDoclist; /* Pointer to doclist */ int nDoclist; /* Size of doclist in bytes */ }; /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if the allocation at pBlob->a is not already at least nMin ** bytes in size, extend (realloc) it to be so. ** ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc ** to reflect the new size of the pBlob->a[] buffer. */ static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ int nAlloc = nMin; char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); if( a ){ pBlob->nAlloc = nAlloc; pBlob->a = a; }else{ *pRc = SQLITE_NOMEM; } } } /* ** Attempt to advance the node-reader object passed as the first argument to ** the next entry on the node. ** ** Return an error code if an error occurs (SQLITE_NOMEM is possible). ** Otherwise return SQLITE_OK. If there is no next entry on the node ** (e.g. because the current entry is the last) set NodeReader->aNode to ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output ** variables for the new entry. */ static int nodeReaderNext(NodeReader *p){ int bFirst = (p->term.n==0); /* True for first term on the node */ int nPrefix = 0; /* Bytes to copy from previous term */ int nSuffix = 0; /* Bytes to append to the prefix */ int rc = SQLITE_OK; /* Return code */ assert( p->aNode ); if( p->iChild && bFirst==0 ) p->iChild++; if( p->iOff>=p->nNode ){ /* EOF */ p->aNode = 0; }else{ if( bFirst==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); } p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); if( nPrefix>p->iOff || nSuffix>p->nNode-p->iOff ){ return FTS_CORRUPT_VTAB; } blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); if( rc==SQLITE_OK ){ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); p->term.n = nPrefix+nSuffix; p->iOff += nSuffix; if( p->iChild==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); if( (p->nNode-p->iOff)nDoclist ){ return FTS_CORRUPT_VTAB; } p->aDoclist = &p->aNode[p->iOff]; p->iOff += p->nDoclist; } } } assert( p->iOff<=p->nNode ); return rc; } /* ** Release all dynamic resources held by node-reader object *p. */ static void nodeReaderRelease(NodeReader *p){ sqlite3_free(p->term.a); } /* ** Initialize a node-reader object to read the node in buffer aNode/nNode. ** ** If successful, SQLITE_OK is returned and the NodeReader object set to ** point to the first entry on the node (if any). Otherwise, an SQLite ** error code is returned. */ static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ memset(p, 0, sizeof(NodeReader)); p->aNode = aNode; p->nNode = nNode; /* Figure out if this is a leaf or an internal node. */ if( p->aNode[0] ){ /* An internal node. */ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); }else{ p->iOff = 1; } return nodeReaderNext(p); } /* ** This function is called while writing an FTS segment each time a leaf o ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed ** to be greater than the largest key on the node just written, but smaller ** than or equal to the first key that will be written to the next leaf ** node. ** ** The block id of the leaf node just written to disk may be found in ** (pWriter->aNodeWriter[0].iBlock) when this function is called. */ static int fts3IncrmergePush( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ const char *zTerm, /* Term to write to internal node */ int nTerm /* Bytes at zTerm */ ){ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; int iLayer; assert( nTerm>0 ); for(iLayer=1; ALWAYS(iLayeraNodeWriter[iLayer]; int rc = SQLITE_OK; int nPrefix; int nSuffix; int nSpace; /* Figure out how much space the key will consume if it is written to ** the current node of layer iLayer. Due to the prefix compression, ** the space required changes depending on which node the key is to ** be added to. */ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ /* If the current node of layer iLayer contains zero keys, or if adding ** the key to it will not cause it to grow to larger than nNodeSize ** bytes in size, write the key here. */ Blob *pBlk = &pNode->block; if( pBlk->n==0 ){ blobGrowBuffer(pBlk, p->nNodeSize, &rc); if( rc==SQLITE_OK ){ pBlk->a[0] = (char)iLayer; pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); } } blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); blobGrowBuffer(&pNode->key, nTerm, &rc); if( rc==SQLITE_OK ){ if( pNode->key.n ){ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); } pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); pBlk->n += nSuffix; memcpy(pNode->key.a, zTerm, nTerm); pNode->key.n = nTerm; } }else{ /* Otherwise, flush the current node of layer iLayer to disk. ** Then allocate a new, empty sibling node. The key will be written ** into the parent of this node. */ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); assert( pNode->block.nAlloc>=p->nNodeSize ); pNode->block.a[0] = (char)iLayer; pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); iNextPtr = pNode->iBlock; pNode->iBlock++; pNode->key.n = 0; } if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; iPtr = iNextPtr; } assert( 0 ); return 0; } /* ** Append a term and (optionally) doclist to the FTS segment node currently ** stored in blob *pNode. The node need not contain any terms, but the ** header must be written before this function is called. ** ** A node header is a single 0x00 byte for a leaf node, or a height varint ** followed by the left-hand-child varint for an internal node. ** ** The term to be appended is passed via arguments zTerm/nTerm. For a ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal ** node, both aDoclist and nDoclist must be passed 0. ** ** If the size of the value in blob pPrev is zero, then this is the first ** term written to the node. Otherwise, pPrev contains a copy of the ** previous term. Before this function returns, it is updated to contain a ** copy of zTerm/nTerm. ** ** It is assumed that the buffer associated with pNode is already large ** enough to accommodate the new entry. The buffer associated with pPrev ** is extended by this function if requrired. ** ** If an error (i.e. OOM condition) occurs, an SQLite error code is ** returned. Otherwise, SQLITE_OK. */ static int fts3AppendToNode( Blob *pNode, /* Current node image to append to */ Blob *pPrev, /* Buffer containing previous term written */ const char *zTerm, /* New term to write */ int nTerm, /* Size of zTerm in bytes */ const char *aDoclist, /* Doclist (or NULL) to write */ int nDoclist /* Size of aDoclist in bytes */ ){ int rc = SQLITE_OK; /* Return code */ int bFirst = (pPrev->n==0); /* True if this is the first term written */ int nPrefix; /* Size of term prefix in bytes */ int nSuffix; /* Size of term suffix in bytes */ /* Node must have already been started. There must be a doclist for a ** leaf node, and there must not be a doclist for an internal node. */ assert( pNode->n>0 ); assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); blobGrowBuffer(pPrev, nTerm, &rc); if( rc!=SQLITE_OK ) return rc; nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); nSuffix = nTerm - nPrefix; memcpy(pPrev->a, zTerm, nTerm); pPrev->n = nTerm; if( bFirst==0 ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); } pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); pNode->n += nSuffix; if( aDoclist ){ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); pNode->n += nDoclist; } assert( pNode->n<=pNode->nAlloc ); return SQLITE_OK; } /* ** Append the current term and doclist pointed to by cursor pCsr to the ** appendable b-tree segment opened for writing by pWriter. ** ** Return SQLITE_OK if successful, or an SQLite error code otherwise. */ static int fts3IncrmergeAppend( Fts3Table *p, /* Fts3 table handle */ IncrmergeWriter *pWriter, /* Writer object */ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ ){ const char *zTerm = pCsr->zTerm; int nTerm = pCsr->nTerm; const char *aDoclist = pCsr->aDoclist; int nDoclist = pCsr->nDoclist; int rc = SQLITE_OK; /* Return code */ int nSpace; /* Total space in bytes required on leaf */ int nPrefix; /* Size of prefix shared with previous term */ int nSuffix; /* Size of suffix (nTerm - nPrefix) */ NodeWriter *pLeaf; /* Object used to write leaf nodes */ pLeaf = &pWriter->aNodeWriter[0]; nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); nSuffix = nTerm - nPrefix; nSpace = sqlite3Fts3VarintLen(nPrefix); nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; /* If the current block is not empty, and if adding this term/doclist ** to the current block would make it larger than Fts3Table.nNodeSize ** bytes, write this block out to the database. */ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); pWriter->nWork++; /* Add the current term to the parent node. The term added to the ** parent must: ** ** a) be greater than the largest term on the leaf node just written ** to the database (still available in pLeaf->key), and ** ** b) be less than or equal to the term about to be added to the new ** leaf node (zTerm/nTerm). ** ** In other words, it must be the prefix of zTerm 1 byte longer than ** the common prefix (if any) of zTerm and pWriter->zTerm. */ if( rc==SQLITE_OK ){ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); } /* Advance to the next output block */ pLeaf->iBlock++; pLeaf->key.n = 0; pLeaf->block.n = 0; nSuffix = nTerm; nSpace = 1; nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; } pWriter->nLeafData += nSpace; blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); if( rc==SQLITE_OK ){ if( pLeaf->block.n==0 ){ pLeaf->block.n = 1; pLeaf->block.a[0] = '\0'; } rc = fts3AppendToNode( &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist ); } return rc; } /* ** This function is called to release all dynamic resources held by the ** merge-writer object pWriter, and if no error has occurred, to flush ** all outstanding node buffers held by pWriter to disk. ** ** If *pRc is not SQLITE_OK when this function is called, then no attempt ** is made to write any data to disk. Instead, this function serves only ** to release outstanding resources. ** ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while ** flushing buffers to disk, *pRc is set to an SQLite error code before ** returning. */ static void fts3IncrmergeRelease( Fts3Table *p, /* FTS3 table handle */ IncrmergeWriter *pWriter, /* Merge-writer object */ int *pRc /* IN/OUT: Error code */ ){ int i; /* Used to iterate through non-root layers */ int iRoot; /* Index of root in pWriter->aNodeWriter */ NodeWriter *pRoot; /* NodeWriter for root node */ int rc = *pRc; /* Error code */ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment ** root node. If the segment fits entirely on a single leaf node, iRoot ** will be set to 0. If the root node is the parent of the leaves, iRoot ** will be 1. And so on. */ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; if( pNode->block.n>0 ) break; assert( *pRc || pNode->block.nAlloc==0 ); assert( *pRc || pNode->key.nAlloc==0 ); sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Empty output segment. This is a no-op. */ if( iRoot<0 ) return; /* The entire output segment fits on a single node. Normally, this means ** the node would be stored as a blob in the "root" column of the %_segdir ** table. However, this is not permitted in this case. The problem is that ** space has already been reserved in the %_segments table, and so the ** start_block and end_block fields of the %_segdir table must be populated. ** And, by design or by accident, released versions of FTS cannot handle ** segments that fit entirely on the root node with start_block!=0. ** ** Instead, create a synthetic root node that contains nothing but a ** pointer to the single content node. So that the segment consists of a ** single leaf and a single interior (root) node. ** ** Todo: Better might be to defer allocating space in the %_segments ** table until we are sure it is needed. */ if( iRoot==0 ){ Blob *pBlock = &pWriter->aNodeWriter[1].block; blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); if( rc==SQLITE_OK ){ pBlock->a[0] = 0x01; pBlock->n = 1 + sqlite3Fts3PutVarint( &pBlock->a[1], pWriter->aNodeWriter[0].iBlock ); } iRoot = 1; } pRoot = &pWriter->aNodeWriter[iRoot]; /* Flush all currently outstanding nodes to disk. */ for(i=0; iaNodeWriter[i]; if( pNode->block.n>0 && rc==SQLITE_OK ){ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); } sqlite3_free(pNode->block.a); sqlite3_free(pNode->key.a); } /* Write the %_segdir record. */ if( rc==SQLITE_OK ){ rc = fts3WriteSegdir(p, pWriter->iAbsLevel+1, /* level */ pWriter->iIdx, /* idx */ pWriter->iStart, /* start_block */ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ pWriter->iEnd, /* end_block */ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ pRoot->block.a, pRoot->block.n /* root */ ); } sqlite3_free(pRoot->block.a); sqlite3_free(pRoot->key.a); *pRc = rc; } /* ** Compare the term in buffer zLhs (size in bytes nLhs) with that in ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of ** the other, it is considered to be smaller than the other. ** ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve ** if it is greater. */ static int fts3TermCmp( const char *zLhs, int nLhs, /* LHS of comparison */ const char *zRhs, int nRhs /* RHS of comparison */ ){ int nCmp = MIN(nLhs, nRhs); int res; res = memcmp(zLhs, zRhs, nCmp); if( res==0 ) res = nLhs - nRhs; return res; } /* ** Query to see if the entry in the %_segments table with blockid iEnd is ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before ** returning. Otherwise, set *pbRes to 0. ** ** Or, if an error occurs while querying the database, return an SQLite ** error code. The final value of *pbRes is undefined in this case. ** ** This is used to test if a segment is an "appendable" segment. If it ** is, then a NULL entry has been inserted into the %_segments table ** with blockid %_segdir.end_block. */ static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ int bRes = 0; /* Result to set *pbRes to */ sqlite3_stmt *pCheck = 0; /* Statement to query database with */ int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck, 1, iEnd); if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; rc = sqlite3_reset(pCheck); } *pbRes = bRes; return rc; } /* ** This function is called when initializing an incremental-merge operation. ** It checks if the existing segment with index value iIdx at absolute level ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the ** merge-writer object *pWriter is initialized to write to it. ** ** An existing segment can be appended to by an incremental merge if: ** ** * It was initially created as an appendable segment (with all required ** space pre-allocated), and ** ** * The first key read from the input (arguments zKey and nKey) is ** greater than the largest key currently stored in the potential ** output segment. */ static int fts3IncrmergeLoad( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of candidate output segment */ const char *zKey, /* First key to write */ int nKey, /* Number of bytes in nKey */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return code */ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); if( rc==SQLITE_OK ){ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ int nRoot = 0; /* Size of aRoot[] in bytes */ int rc2; /* Return code from sqlite3_reset() */ int bAppendable = 0; /* Set to true if segment is appendable */ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); sqlite3_bind_int(pSelect, 2, iIdx); if( sqlite3_step(pSelect)==SQLITE_ROW ){ iStart = sqlite3_column_int64(pSelect, 1); iLeafEnd = sqlite3_column_int64(pSelect, 2); fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); if( pWriter->nLeafData<0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } pWriter->bNoLeafData = (pWriter->nLeafData==0); nRoot = sqlite3_column_bytes(pSelect, 4); aRoot = sqlite3_column_blob(pSelect, 4); }else{ return sqlite3_reset(pSelect); } /* Check for the zero-length marker in the %_segments table */ rc = fts3IsAppendable(p, iEnd, &bAppendable); /* Check that zKey/nKey is larger than the largest key the candidate */ if( rc==SQLITE_OK && bAppendable ){ char *aLeaf = 0; int nLeaf = 0; rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); if( rc==SQLITE_OK ){ NodeReader reader; for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ assert( reader.aNode ); } if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ bAppendable = 0; } nodeReaderRelease(&reader); } sqlite3_free(aLeaf); } if( rc==SQLITE_OK && bAppendable ){ /* It is possible to append to this segment. Set up the IncrmergeWriter ** object to do so. */ int i; int nHeight = (int)aRoot[0]; NodeWriter *pNode; pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; pWriter->iStart = iStart; pWriter->iEnd = iEnd; pWriter->iAbsLevel = iAbsLevel; pWriter->iIdx = iIdx; for(i=nHeight+1; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } pNode = &pWriter->aNodeWriter[nHeight]; pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aRoot, nRoot); pNode->block.n = nRoot; } for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ NodeReader reader; pNode = &pWriter->aNodeWriter[i]; rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); blobGrowBuffer(&pNode->key, reader.term.n, &rc); if( rc==SQLITE_OK ){ memcpy(pNode->key.a, reader.term.a, reader.term.n); pNode->key.n = reader.term.n; if( i>0 ){ char *aBlock = 0; int nBlock = 0; pNode = &pWriter->aNodeWriter[i-1]; pNode->iBlock = reader.iChild; rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); if( rc==SQLITE_OK ){ memcpy(pNode->block.a, aBlock, nBlock); pNode->block.n = nBlock; } sqlite3_free(aBlock); } } nodeReaderRelease(&reader); } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** Determine the largest segment index value that exists within absolute ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus ** one before returning SQLITE_OK. Or, if there are no segments at all ** within level iAbsLevel, set *piIdx to zero. ** ** If an error occurs, return an SQLite error code. The final value of ** *piIdx is undefined in this case. */ static int fts3IncrmergeOutputIdx( Fts3Table *p, /* FTS Table handle */ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ int *piIdx /* OUT: Next free index at iAbsLevel+1 */ ){ int rc; sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); sqlite3_step(pOutputIdx); *piIdx = sqlite3_column_int(pOutputIdx, 0); rc = sqlite3_reset(pOutputIdx); } return rc; } /* ** Allocate an appendable output segment on absolute level iAbsLevel+1 ** with idx value iIdx. ** ** In the %_segdir table, a segment is defined by the values in three ** columns: ** ** start_block ** leaves_end_block ** end_block ** ** When an appendable segment is allocated, it is estimated that the ** maximum number of leaf blocks that may be required is the sum of the ** number of leaf blocks consumed by the input segments, plus the number ** of input segments, multiplied by two. This value is stored in stack ** variable nLeafEst. ** ** A total of 16*nLeafEst blocks are allocated when an appendable segment ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous ** array of leaf nodes starts at the first block allocated. The array ** of interior nodes that are parents of the leaf nodes start at block ** (start_block + (1 + end_block - start_block) / 16). And so on. ** ** In the actual code below, the value "16" is replaced with the ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. */ static int fts3IncrmergeWriter( Fts3Table *p, /* Fts3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ int iIdx, /* Index of new output segment */ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ IncrmergeWriter *pWriter /* Populate this object */ ){ int rc; /* Return Code */ int i; /* Iterator variable */ int nLeafEst = 0; /* Blocks allocated for leaf nodes */ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ /* Calculate nLeafEst. */ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ nLeafEst = sqlite3_column_int(pLeafEst, 0); } rc = sqlite3_reset(pLeafEst); } if( rc!=SQLITE_OK ) return rc; /* Calculate the first block to use in the output segment */ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); pWriter->iEnd = pWriter->iStart - 1; pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; } rc = sqlite3_reset(pFirstBlock); } if( rc!=SQLITE_OK ) return rc; /* Insert the marker in the %_segments table to make sure nobody tries ** to steal the space just allocated. This is also used to identify ** appendable segments. */ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); if( rc!=SQLITE_OK ) return rc; pWriter->iAbsLevel = iAbsLevel; pWriter->nLeafEst = nLeafEst; pWriter->iIdx = iIdx; /* Set up the array of NodeWriter objects */ for(i=0; iaNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; } return SQLITE_OK; } /* ** Remove an entry from the %_segdir table. This involves running the ** following two statements: ** ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx ** ** The DELETE statement removes the specific %_segdir level. The UPDATE ** statement ensures that the remaining segments have contiguously allocated ** idx values. */ static int fts3RemoveSegdirEntry( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ int iIdx /* Index of %_segdir entry to delete */ ){ int rc; /* Return code */ sqlite3_stmt *pDelete = 0; /* DELETE statement */ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDelete, 1, iAbsLevel); sqlite3_bind_int(pDelete, 2, iIdx); sqlite3_step(pDelete); rc = sqlite3_reset(pDelete); } return rc; } /* ** One or more segments have just been removed from absolute level iAbsLevel. ** Update the 'idx' values of the remaining segments in the level so that ** the idx values are a contiguous sequence starting from 0. */ static int fts3RepackSegdirLevel( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel /* Absolute level to repack */ ){ int rc; /* Return code */ int *aIdx = 0; /* Array of remaining idx values */ int nIdx = 0; /* Valid entries in aIdx[] */ int nAlloc = 0; /* Allocated size of aIdx[] */ int i; /* Iterator variable */ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int64(pSelect, 1, iAbsLevel); while( SQLITE_ROW==sqlite3_step(pSelect) ){ if( nIdx>=nAlloc ){ int *aNew; nAlloc += 16; aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); if( !aNew ){ rc = SQLITE_NOMEM; break; } aIdx = aNew; } aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } if( rc==SQLITE_OK ){ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); } if( rc==SQLITE_OK ){ sqlite3_bind_int64(pUpdate, 2, iAbsLevel); } assert( p->bIgnoreSavepoint==0 ); p->bIgnoreSavepoint = 1; for(i=0; rc==SQLITE_OK && ibIgnoreSavepoint = 0; sqlite3_free(aIdx); return rc; } static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ pNode->a[0] = (char)iHeight; if( iChild ){ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); }else{ assert( pNode->nAlloc>=1 ); pNode->n = 1; } } /* ** The first two arguments are a pointer to and the size of a segment b-tree ** node. The node may be a leaf or an internal node. ** ** This function creates a new node image in blob object *pNew by copying ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. */ static int fts3TruncateNode( const char *aNode, /* Current node image */ int nNode, /* Size of aNode in bytes */ Blob *pNew, /* OUT: Write new node image here */ const char *zTerm, /* Omit all terms smaller than this */ int nTerm, /* Size of zTerm in bytes */ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ ){ NodeReader reader; /* Reader object */ Blob prev = {0, 0, 0}; /* Previous term written to new node */ int rc = SQLITE_OK; /* Return code */ int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ /* Allocate required output space */ blobGrowBuffer(pNew, nNode, &rc); if( rc!=SQLITE_OK ) return rc; pNew->n = 0; /* Populate new node buffer */ for(rc = nodeReaderInit(&reader, aNode, nNode); rc==SQLITE_OK && reader.aNode; rc = nodeReaderNext(&reader) ){ if( pNew->n==0 ){ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); if( res<0 || (bLeaf==0 && res==0) ) continue; fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } rc = fts3AppendToNode( pNew, &prev, reader.term.a, reader.term.n, reader.aDoclist, reader.nDoclist ); if( rc!=SQLITE_OK ) break; } if( pNew->n==0 ){ fts3StartNode(pNew, (int)aNode[0], reader.iChild); *piBlock = reader.iChild; } assert( pNew->n<=pNew->nAlloc ); nodeReaderRelease(&reader); sqlite3_free(prev.a); return rc; } /* ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute ** level iAbsLevel. This may involve deleting entries from the %_segments ** table, and modifying existing entries in both the %_segments and %_segdir ** tables. ** ** SQLITE_OK is returned if the segment is updated successfully. Or an ** SQLite error code otherwise. */ static int fts3TruncateSegment( Fts3Table *p, /* FTS3 table handle */ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ int iIdx, /* Index within level of segment to modify */ const char *zTerm, /* Remove terms smaller than this */ int nTerm /* Number of bytes in buffer zTerm */ ){ int rc = SQLITE_OK; /* Return code */ Blob root = {0,0,0}; /* New root page image */ Blob block = {0,0,0}; /* Buffer used for any other block */ sqlite3_int64 iBlock = 0; /* Block id */ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); if( rc==SQLITE_OK ){ int rc2; /* sqlite3_reset() return code */ sqlite3_bind_int64(pFetch, 1, iAbsLevel); sqlite3_bind_int(pFetch, 2, iIdx); if( SQLITE_ROW==sqlite3_step(pFetch) ){ const char *aRoot = sqlite3_column_blob(pFetch, 4); int nRoot = sqlite3_column_bytes(pFetch, 4); iOldStart = sqlite3_column_int64(pFetch, 1); rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); } rc2 = sqlite3_reset(pFetch); if( rc==SQLITE_OK ) rc = rc2; } while( rc==SQLITE_OK && iBlock ){ char *aBlock = 0; int nBlock = 0; iNewStart = iBlock; rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); if( rc==SQLITE_OK ){ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); } if( rc==SQLITE_OK ){ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); } sqlite3_free(aBlock); } /* Variable iNewStart now contains the first valid leaf node. */ if( rc==SQLITE_OK && iNewStart ){ sqlite3_stmt *pDel = 0; rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pDel, 1, iOldStart); sqlite3_bind_int64(pDel, 2, iNewStart-1); sqlite3_step(pDel); rc = sqlite3_reset(pDel); } } if( rc==SQLITE_OK ){ sqlite3_stmt *pChomp = 0; rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int64(pChomp, 1, iNewStart); sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); sqlite3_bind_int64(pChomp, 3, iAbsLevel); sqlite3_bind_int(pChomp, 4, iIdx); sqlite3_step(pChomp); rc = sqlite3_reset(pChomp); sqlite3_bind_null(pChomp, 2); } } sqlite3_free(root.a); sqlite3_free(block.a); return rc; } /* ** This function is called after an incrmental-merge operation has run to ** merge (or partially merge) two or more segments from absolute level ** iAbsLevel. ** ** Each input segment is either removed from the db completely (if all of ** its data was copied to the output segment by the incrmerge operation) ** or modified in place so that it no longer contains those entries that ** have been duplicated in the output segment. */ static int fts3IncrmergeChomp( Fts3Table *p, /* FTS table handle */ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ int *pnRem /* Number of segments not deleted */ ){ int i; int nRem = 0; int rc = SQLITE_OK; for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ Fts3SegReader *pSeg = 0; int j; /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding ** somewhere in the pCsr->apSegment[] array. */ for(j=0; ALWAYS(jnSegment); j++){ pSeg = pCsr->apSegment[j]; if( pSeg->iIdx==i ) break; } assert( jnSegment && pSeg->iIdx==i ); if( pSeg->aNode==0 ){ /* Seg-reader is at EOF. Remove the entire input segment. */ rc = fts3DeleteSegment(p, pSeg); if( rc==SQLITE_OK ){ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); } *pnRem = 0; }else{ /* The incremental merge did not copy all the data from this ** segment to the upper level. The segment is modified in place ** so that it contains no keys smaller than zTerm/nTerm. */ const char *zTerm = pSeg->zTerm; int nTerm = pSeg->nTerm; rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); nRem++; } } if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ rc = fts3RepackSegdirLevel(p, iAbsLevel); } *pnRem = nRem; return rc; } /* ** Store an incr-merge hint in the database. */ static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pReplace = 0; int rc; /* Return code */ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); if( rc==SQLITE_OK ){ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); sqlite3_step(pReplace); rc = sqlite3_reset(pReplace); sqlite3_bind_null(pReplace, 2); } return rc; } /* ** Load an incr-merge hint from the database. The incr-merge hint, if one ** exists, is stored in the rowid==1 row of the %_stat table. ** ** If successful, populate blob *pHint with the value read from the %_stat ** table and return SQLITE_OK. Otherwise, if an error occurs, return an ** SQLite error code. */ static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ sqlite3_stmt *pSelect = 0; int rc; pHint->n = 0; rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); if( rc==SQLITE_OK ){ int rc2; sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); if( SQLITE_ROW==sqlite3_step(pSelect) ){ const char *aHint = sqlite3_column_blob(pSelect, 0); int nHint = sqlite3_column_bytes(pSelect, 0); if( aHint ){ blobGrowBuffer(pHint, nHint, &rc); if( rc==SQLITE_OK ){ memcpy(pHint->a, aHint, nHint); pHint->n = nHint; } } } rc2 = sqlite3_reset(pSelect); if( rc==SQLITE_OK ) rc = rc2; } return rc; } /* ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry ** consists of two varints, the absolute level number of the input segments ** and the number of input segments. ** ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, ** set *pRc to an SQLite error code before returning. */ static void fts3IncrmergeHintPush( Blob *pHint, /* Hint blob to append to */ i64 iAbsLevel, /* First varint to store in hint */ int nInput, /* Second varint to store in hint */ int *pRc /* IN/OUT: Error code */ ){ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); if( *pRc==SQLITE_OK ){ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); } } /* ** Read the last entry (most recently pushed) from the hint blob *pHint ** and then remove the entry. Write the two values read to *piAbsLevel and ** *pnInput before returning. ** ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. */ static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ const int nHint = pHint->n; int i; i = pHint->n-2; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; while( i>0 && (pHint->a[i-1] & 0x80) ) i--; pHint->n = i; i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); i += fts3GetVarint32(&pHint->a[i], pnInput); if( i!=nHint ) return FTS_CORRUPT_VTAB; return SQLITE_OK; } /* ** Attempt an incremental merge that writes nMerge leaf blocks. ** ** Incremental merges happen nMin segments at a time. The segments ** to be merged are the nMin oldest segments (the ones with the smallest ** values for the _segdir.idx field) in the highest level that contains ** at least nMin segments. Multiple merges might occur in an attempt to ** write the quota of nMerge leaf blocks. */ int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ int rc; /* Return code */ int nRem = nMerge; /* Number of leaf pages yet to be written */ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ IncrmergeWriter *pWriter; /* Writer object */ int nSeg = 0; /* Number of input segments */ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ int bDirtyHint = 0; /* True if blob 'hint' has been modified */ /* Allocate space for the cursor, filter and writer objects */ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); if( !pWriter ) return SQLITE_NOMEM; pFilter = (Fts3SegFilter *)&pWriter[1]; pCsr = (Fts3MultiSegReader *)&pFilter[1]; rc = fts3IncrmergeHintLoad(p, &hint); while( rc==SQLITE_OK && nRem>0 ){ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ int bUseHint = 0; /* True if attempting to append */ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ /* Search the %_segdir table for the absolute level with the smallest ** relative level number that contains at least nMin segments, if any. ** If one is found, set iAbsLevel to the absolute level number and ** nSeg to nMin. If no level with at least nMin segments can be found, ** set nSeg to -1. */ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin)); if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ iAbsLevel = sqlite3_column_int64(pFindLevel, 0); nSeg = sqlite3_column_int(pFindLevel, 1); assert( nSeg>=2 ); }else{ nSeg = -1; } rc = sqlite3_reset(pFindLevel); /* If the hint read from the %_stat table is not empty, check if the ** last entry in it specifies a relative level smaller than or equal ** to the level identified by the block above (if any). If so, this ** iteration of the loop will work on merging at the hinted level. */ if( rc==SQLITE_OK && hint.n ){ int nHint = hint.n; sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ int nHintSeg = 0; /* Hint number of segments */ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ iAbsLevel = iHintAbsLevel; nSeg = nHintSeg; bUseHint = 1; bDirtyHint = 1; }else{ /* This undoes the effect of the HintPop() above - so that no entry ** is removed from the hint blob. */ hint.n = nHint; } } /* If nSeg is less that zero, then there is no level with at least ** nMin segments and no hint in the %_stat table. No work to do. ** Exit early in this case. */ if( nSeg<0 ) break; /* Open a cursor to iterate through the contents of the oldest nSeg ** indexes of absolute level iAbsLevel. If this cursor is opened using ** the 'hint' parameters, it is possible that there are less than nSeg ** segments available in level iAbsLevel. In this case, no work is ** done on iAbsLevel - fall through to the next iteration of the loop ** to start work on some other level. */ memset(pWriter, 0, nAlloc); pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; if( rc==SQLITE_OK ){ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); assert( bUseHint==1 || bUseHint==0 ); if( iIdx==0 || (bUseHint && iIdx==1) ){ int bIgnore = 0; rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); if( bIgnore ){ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; } } } if( rc==SQLITE_OK ){ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); } if( SQLITE_OK==rc && pCsr->nSegment==nSeg && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) ){ if( bUseHint && iIdx>0 ){ const char *zKey = pCsr->zTerm; int nKey = pCsr->nTerm; rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); }else{ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); } if( rc==SQLITE_OK && pWriter->nLeafEst ){ fts3LogMerge(nSeg, iAbsLevel); do { rc = fts3IncrmergeAppend(p, pWriter, pCsr); if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; }while( rc==SQLITE_ROW ); /* Update or delete the input segments */ if( rc==SQLITE_OK ){ nRem -= (1 + pWriter->nWork); rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); if( nSeg!=0 ){ bDirtyHint = 1; fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); } } } if( nSeg!=0 ){ pWriter->nLeafData = pWriter->nLeafData * -1; } fts3IncrmergeRelease(p, pWriter, &rc); if( nSeg==0 && pWriter->bNoLeafData==0 ){ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); } } sqlite3Fts3SegReaderFinish(pCsr); } /* Write the hint values into the %_stat table for the next incr-merger */ if( bDirtyHint && rc==SQLITE_OK ){ rc = fts3IncrmergeHintStore(p, &hint); } sqlite3_free(pWriter); sqlite3_free(hint.a); return rc; } /* ** Convert the text beginning at *pz into an integer and return ** its value. Advance *pz to point to the first character past ** the integer. ** ** This function used for parameters to merge= and incrmerge= ** commands. */ static int fts3Getint(const char **pz){ const char *z = *pz; int i = 0; while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0'; *pz = z; return i; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('merge=A,B'); ** ** A and B are integers that decode to be the number of leaf pages ** written for the merge, and the minimum number of segments on a level ** before it will be selected for a merge, respectively. */ static int fts3DoIncrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing "A,B" */ ){ int rc; int nMin = (FTS3_MERGE_COUNT / 2); int nMerge = 0; const char *z = zParam; /* Read the first integer value */ nMerge = fts3Getint(&z); /* If the first integer value is followed by a ',', read the second ** integer value. */ if( z[0]==',' && z[1]!='\0' ){ z++; nMin = fts3Getint(&z); } if( z[0]!='\0' || nMin<2 ){ rc = SQLITE_ERROR; }else{ rc = SQLITE_OK; if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); } if( rc==SQLITE_OK ){ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); } sqlite3Fts3SegmentsClose(p); } return rc; } /* ** Process statements of the form: ** ** INSERT INTO table(table) VALUES('automerge=X'); ** ** where X is an integer. X==0 means to turn automerge off. X!=0 means ** turn it on. The setting is persistent. */ static int fts3DoAutoincrmerge( Fts3Table *p, /* FTS3 table handle */ const char *zParam /* Nul-terminated string containing boolean */ ){ int rc = SQLITE_OK; sqlite3_stmt *pStmt = 0; p->nAutoincrmerge = fts3Getint(&zParam); if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){ p->nAutoincrmerge = 8; } if( !p->bHasStat ){ assert( p->bFts4==0 ); sqlite3Fts3CreateStatTable(&rc, p); if( rc ) return rc; } rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); if( rc ) return rc; sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); return rc; } /* ** Return a 64-bit checksum for the FTS index entry specified by the ** arguments to this function. */ static u64 fts3ChecksumEntry( const char *zTerm, /* Pointer to buffer containing term */ int nTerm, /* Size of zTerm in bytes */ int iLangid, /* Language id for current row */ int iIndex, /* Index (0..Fts3Table.nIndex-1) */ i64 iDocid, /* Docid for current row. */ int iCol, /* Column number */ int iPos /* Position */ ){ int i; u64 ret = (u64)iDocid; ret += (ret<<3) + iLangid; ret += (ret<<3) + iIndex; ret += (ret<<3) + iCol; ret += (ret<<3) + iPos; for(i=0; inIndex-1) */ int *pRc /* OUT: Return code */ ){ Fts3SegFilter filter; Fts3MultiSegReader csr; int rc; u64 cksum = 0; assert( *pRc==SQLITE_OK ); memset(&filter, 0, sizeof(filter)); memset(&csr, 0, sizeof(csr)); filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; filter.flags |= FTS3_SEGMENT_SCAN; rc = sqlite3Fts3SegReaderCursor( p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); } if( rc==SQLITE_OK ){ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ char *pCsr = csr.aDoclist; char *pEnd = &pCsr[csr.nDoclist]; i64 iDocid = 0; i64 iCol = 0; i64 iPos = 0; pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); while( pCsriPrevLangid); sqlite3_bind_int(pAllLangid, 2, p->nIndex); while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ int iLangid = sqlite3_column_int(pAllLangid, 0); int i; for(i=0; inIndex; i++){ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); } } rc2 = sqlite3_reset(pAllLangid); if( rc==SQLITE_OK ) rc = rc2; } /* This block calculates the checksum according to the %_content table */ if( rc==SQLITE_OK ){ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; sqlite3_stmt *pStmt = 0; char *zSql; zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); sqlite3_free(zSql); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ i64 iDocid = sqlite3_column_int64(pStmt, 0); int iLang = langidFromSelect(p, pStmt); int iCol; for(iCol=0; rc==SQLITE_OK && iColnColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); int nText = sqlite3_column_bytes(pStmt, iCol+1); sqlite3_tokenizer_cursor *pT = 0; rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); if( rc==SQLITE_OK ){ int i; cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, nToken, iLang, 0, iDocid, iCol, iPos ); for(i=1; inIndex; i++){ if( p->aIndex[i].nPrefix<=nToken ){ cksum2 = cksum2 ^ fts3ChecksumEntry( zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos ); } } } } if( pT ) pModule->xClose(pT); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } } sqlite3_finalize(pStmt); } *pbOk = (cksum1==cksum2); return rc; } /* ** Run the integrity-check. If no error occurs and the current contents of ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. ** ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite ** error code. ** ** The integrity-check works as follows. For each token and indexed token ** prefix in the document set, a 64-bit checksum is calculated (by code ** in fts3ChecksumEntry()) based on the following: ** ** + The index number (0 for the main index, 1 for the first prefix ** index etc.), ** + The token (or token prefix) text itself, ** + The language-id of the row it appears in, ** + The docid of the row it appears in, ** + The column it appears in, and ** + The tokens position within that column. ** ** The checksums for all entries in the index are XORed together to create ** a single checksum for the entire index. ** ** The integrity-check code calculates the same checksum in two ways: ** ** 1. By scanning the contents of the FTS index, and ** 2. By scanning and tokenizing the content table. ** ** If the two checksums are identical, the integrity-check is deemed to have ** passed. */ static int fts3DoIntegrityCheck( Fts3Table *p /* FTS3 table handle */ ){ int rc; int bOk = 0; rc = fts3IntegrityCheck(p, &bOk); if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB; return rc; } /* ** Handle a 'special' INSERT of the form: ** ** "INSERT INTO tbl(tbl) VALUES()" ** ** Argument pVal contains the result of . Currently the only ** meaningful value to insert is the text 'optimize'. */ static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ int rc; /* Return Code */ const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3DoOptimize(p, 0); }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ rc = fts3DoRebuild(p); }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ rc = fts3DoIntegrityCheck(p); }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ rc = fts3DoIncrmerge(p, &zVal[6]); }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ rc = fts3DoAutoincrmerge(p, &zVal[10]); #ifdef SQLITE_TEST }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ p->nNodeSize = atoi(&zVal[9]); rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ p->nMaxPendingData = atoi(&zVal[11]); rc = SQLITE_OK; }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){ p->bNoIncrDoclist = atoi(&zVal[21]); rc = SQLITE_OK; #endif }else{ rc = SQLITE_ERROR; } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** Delete all cached deferred doclists. Deferred doclists are cached ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. */ void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ fts3PendingListDelete(pDef->pList); pDef->pList = 0; } } /* ** Free all entries in the pCsr->pDeffered list. Entries are added to ** this list using sqlite3Fts3DeferToken(). */ void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ Fts3DeferredToken *pDef; Fts3DeferredToken *pNext; for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ pNext = pDef->pNext; fts3PendingListDelete(pDef->pList); sqlite3_free(pDef); } pCsr->pDeferred = 0; } /* ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list ** based on the row that pCsr currently points to. ** ** A deferred-doclist is like any other doclist with position information ** included, except that it only contains entries for a single row of the ** table, not for all rows. */ int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return code */ if( pCsr->pDeferred ){ int i; /* Used to iterate through table columns */ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; sqlite3_tokenizer *pT = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pT->pModule; assert( pCsr->isRequireSeek==0 ); iDocid = sqlite3_column_int64(pCsr->pStmt, 0); for(i=0; inColumn && rc==SQLITE_OK; i++){ if( p->abNotindexed[i]==0 ){ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); sqlite3_tokenizer_cursor *pTC = 0; rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ Fts3PhraseToken *pPT = pDef->pToken; if( (pDef->iCol>=p->nColumn || pDef->iCol==i) && (pPT->bFirst==0 || iPos==0) && (pPT->n==nToken || (pPT->isPrefix && pPT->nz, pPT->n)) ){ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); } } } if( pTC ) pModule->xClose(pTC); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } } for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ if( pDef->pList ){ rc = fts3PendingListAppendVarint(&pDef->pList, 0); } } } return rc; } int sqlite3Fts3DeferredTokenList( Fts3DeferredToken *p, char **ppData, int *pnData ){ char *pRet; int nSkip; sqlite3_int64 dummy; *ppData = 0; *pnData = 0; if( p->pList==0 ){ return SQLITE_OK; } pRet = (char *)sqlite3_malloc(p->pList->nData); if( !pRet ) return SQLITE_NOMEM; nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); *pnData = p->pList->nData - nSkip; *ppData = pRet; memcpy(pRet, &p->pList->aData[nSkip], *pnData); return SQLITE_OK; } /* ** Add an entry for token pToken to the pCsr->pDeferred list. */ int sqlite3Fts3DeferToken( Fts3Cursor *pCsr, /* Fts3 table cursor */ Fts3PhraseToken *pToken, /* Token to defer */ int iCol /* Column that token must appear in (or -1) */ ){ Fts3DeferredToken *pDeferred; pDeferred = sqlite3_malloc(sizeof(*pDeferred)); if( !pDeferred ){ return SQLITE_NOMEM; } memset(pDeferred, 0, sizeof(*pDeferred)); pDeferred->pToken = pToken; pDeferred->pNext = pCsr->pDeferred; pDeferred->iCol = iCol; pCsr->pDeferred = pDeferred; assert( pToken->pDeferred==0 ); pToken->pDeferred = pDeferred; return SQLITE_OK; } #endif /* ** SQLite value pRowid contains the rowid of a row that may or may not be ** present in the FTS3 table. If it is, delete it and adjust the contents ** of subsiduary data structures accordingly. */ static int fts3DeleteByRowid( Fts3Table *p, sqlite3_value *pRowid, int *pnChng, /* IN/OUT: Decrement if row is deleted */ u32 *aSzDel ){ int rc = SQLITE_OK; /* Return code */ int bFound = 0; /* True if *pRowid really is in the table */ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); if( bFound && rc==SQLITE_OK ){ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ rc = fts3IsEmpty(p, pRowid, &isEmpty); if( rc==SQLITE_OK ){ if( isEmpty ){ /* Deleting this row means the whole table is empty. In this case ** delete the contents of all three tables and throw away any ** data in the pendingTerms hash table. */ rc = fts3DeleteAll(p, 1); *pnChng = 0; memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); }else{ *pnChng = *pnChng - 1; if( p->zContentTbl==0 ){ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); } if( p->bHasDocsize ){ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); } } } } return rc; } /* ** This function does the work for the xUpdate method of FTS3 virtual ** tables. The schema of the virtual table being: ** ** CREATE TABLE ( ** , **
HIDDEN, ** docid HIDDEN, ** HIDDEN ** ); ** ** */ int sqlite3Fts3UpdateMethod( sqlite3_vtab *pVtab, /* FTS3 vtab object */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return Code */ u32 *aSzIns = 0; /* Sizes of inserted documents */ u32 *aSzDel = 0; /* Sizes of deleted documents */ int nChng = 0; /* Net change in number of documents */ int bInsertDone = 0; /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ assert( p->bHasStat==0 || p->bHasStat==1 ); assert( p->pSegments==0 ); assert( nArg==1 /* DELETE operations */ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ ); /* Check for a "special" INSERT operation. One of the form: ** ** INSERT INTO xyz(xyz) VALUES('command'); */ if( nArg>1 && sqlite3_value_type(apVal[0])==SQLITE_NULL && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); goto update_out; } if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ rc = SQLITE_CONSTRAINT; goto update_out; } /* Allocate space to hold the change in document sizes */ aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2); if( aSzDel==0 ){ rc = SQLITE_NOMEM; goto update_out; } aSzIns = &aSzDel[p->nColumn+1]; memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); rc = fts3Writelock(p); if( rc!=SQLITE_OK ) goto update_out; /* If this is an INSERT operation, or an UPDATE that modifies the rowid ** value, then this operation requires constraint handling. ** ** If the on-conflict mode is REPLACE, this means that the existing row ** should be deleted from the database before inserting the new row. Or, ** if the on-conflict mode is other than REPLACE, then this method must ** detect the conflict and return SQLITE_CONSTRAINT before beginning to ** modify the database file. */ if( nArg>1 && p->zContentTbl==0 ){ /* Find the value object that holds the new rowid value. */ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ pNewRowid = apVal[1]; } if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( sqlite3_value_type(apVal[0])==SQLITE_NULL || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) )){ /* The new rowid is not NULL (in this case the rowid will be ** automatically assigned and there is no chance of a conflict), and ** the statement is either an INSERT or an UPDATE that modifies the ** rowid column. So if the conflict mode is REPLACE, then delete any ** existing row with rowid=pNewRowid. ** ** Or, if the conflict mode is not REPLACE, insert the new record into ** the %_content table. If we hit the duplicate rowid constraint (or any ** other error) while doing so, return immediately. ** ** This branch may also run if pNewRowid contains a value that cannot ** be losslessly converted to an integer. In this case, the eventual ** call to fts3InsertData() (either just below or further on in this ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is ** invoked, it will delete zero rows (since no row will have ** docid=$pNewRowid if $pNewRowid is not an integer value). */ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); }else{ rc = fts3InsertData(p, apVal, pRowid); bInsertDone = 1; } } } if( rc!=SQLITE_OK ){ goto update_out; } /* If this is a DELETE or UPDATE operation, remove the old record. */ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); } /* If this is an INSERT or UPDATE operation, insert the new record. */ if( nArg>1 && rc==SQLITE_OK ){ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } if( rc==SQLITE_OK ){ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); } if( rc==SQLITE_OK ){ assert( p->iPrevDocid==*pRowid ); rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSzIns); } nChng++; } if( p->bFts4 ){ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); } update_out: sqlite3_free(aSzDel); sqlite3Fts3SegmentsClose(p); return rc; } /* ** Flush any data in the pending-terms hash table to disk. If successful, ** merge all segments in the database (including the new segment, if ** there was any data to flush) into a single segment. */ int sqlite3Fts3Optimize(Fts3Table *p){ int rc; rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); if( rc==SQLITE_OK ){ rc = fts3DoOptimize(p, 1); if( rc==SQLITE_OK || rc==SQLITE_DONE ){ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); if( rc2!=SQLITE_OK ) rc = rc2; }else{ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); } } sqlite3Fts3SegmentsClose(p); return rc; } #endif