
1 | P a g e

Managing Cisco UCS with Ansible
DNW07
Speaker:

David Soper, Technical Marketing Engineer

2 | P a g e

Table of Contents

Learning Objectives ..2

Overview ..2

Prerequisites ..2

Getting Started ...2

Lab Tasks ..3

Task 1: Verify Ansible and the UCSM Python SDK are Installed3
Step 1: Install Ansible .. 3
Step 2: Install UCSM Python SDK .. 3

Task 2: Get Example Playbooks ..3

Task 3: View and Customize Example Playbooks ..4
Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection Information 4
Step 2: Run a Server Configuration and Deployment Playbook ... 4
Step 3: View Roles for the Server Deployment Playbook ... 5
Step 4: Checking what Ansible will Change ... 6
Step 5: Run the Server Deployment Playbook .. 7
Step 6: View Policy/Profile Roles .. 8

Task 4 (Optional): ucs_managed_objects and User Defined Configuration9

Learning Objectives

Overview
Cisco Unified Computing System™ (Cisco UCS®) and Cisco HyperFlex® platforms offer an
intelligent level of management that enables IT organizations to analyze, simplify, and
automate their environments.
Within this workshop, you will use Ansible to interact with the UCS API and perform a
variety of resource management tasks.

Prerequisites
While not required prior to starting this lab, familiarity with the Linux/MacOS command line
and use of a text editor such as Vi will be helpful. Working knowledge of Ansible will also be
helpful, but again is not required.

Getting Started
This lab will interact with the UCS API from a Linux/MacOS workstation.

3 | P a g e

Lab Tasks
The following tasks will configure Ansible on your system, retrieve a set of example Ansible
playbooks, and customize the playbooks for use in this lab.

Task 1: Verify Ansible and the UCSM Python SDK are Installed

Step 1: Install Ansible

Open a terminal on your workstation (you can spotlight search for “terminal” if you

are on MacOS), and type “ansible --version”. You should see
2.8 or later:
$ ansible --version

ansible 2.8.2

 config file = None

 configured module search path =

['/Users/dsoper/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

 ansible python module location =

/usr/local/lib/python3.6/site-packages/ansible

 executable location = /usr/local/bin/ansible

 python version = 3.6.5 (default, Apr 20 2018, 18:22:17) [GCC

4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)]

If Ansible is not installed or reports an older version, you can type “pip install -U ansible” to
install/update.

Step 2: Install UCSM Python SDK
To install the UCS Manager python SDK, type “pip install -U ucsmsdk”. You can verify that
the Python SDK is installed with the following commands:
$ python

Python 3.6.5 (default, Apr 20 2018, 18:22:17)

[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)] on

darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>> from ucsmsdk import ucshandle

Task 2: Get Example Playbooks
Several example playbooks are hosted on GitHub at https://github.com/CiscoUcs/ucsm-
ansible. In the terminal window, create a working directory and change to it:

$ mkdir ~/dnw07; cd ~/dnw07

Then use git to clone the ucsm-ansible repo and change directories to it:

$ git clone https://github.com/CiscoUcs/ucsm-ansible

Cloning into 'ucsm-ansible'...

<snip>

Resolving deltas: 100% (74/74), done.

https://github.com/CiscoUcs/ucsm-ansible
https://github.com/CiscoUcs/ucsm-ansible

4 | P a g e

$ cd ucsm-ansible/

Task 3: View and Customize Example Playbooks
There are many ways to organize data and connection information for resources you want
to manage with Ansible. In this lab, we’ll use a basic inventory file with UCS login
information and playbooks with default values used in configuration (you can change values
used with Ansible variable substitution).

Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection
Information
Ansible uses SSH to connect to UCS just like it would with any other host, right? Actually,
we use the UCS API for UCS Manager connections and management, and the API uses the
same HTTPS connections you use with a web browser to access the UCS Manager web UI.

The API is the basis for everything in UCS (including CLI commands that you might use via
SSH), so we’ll cut out the middle man and use the API for configuration. Our API access is
driven through the UCS Manager Python SDK, but you usually don’t have to deal with
Python (unless you want to) outside of installing the SDK which you did above.

To tell Ansible how to connect to UCS’s API, we’ll specify our ip/hostname in the inventory
file along with our credentials (username and password). Ansible has several options such
as vault for securely storing system credentials, but in this lab it’s in the inventory for
simplicity.

[ucs]

13.58.22.56

[ucs:vars]

username=admin

password=password

Edit the ip address (which is what Ansible will use for a hostname) if needed for the UCS
Manager IP you want to configure. In this basic inventory, we have a ‘ucs’ host group where
we could add other hosts as needed and they’ll all share variables setup in the [ucs:vars]
block.

Step 2: Run a Server Configuration and Deployment Playbook
The ucsm-ansible repository has a Server configuration and deployment playbook named
server_deploy.yml. View this file:

Configure UCS, Associate Service Profiles, and Install OS

...

- hosts: "{{ group | default('ucs') }}"

 connection: local

 gather_facts: false

 vars:

 # The UCS domain hostname can be set in the inventory or on the

command line as needed

 hostname: "{{ inventory_hostname }}"

5 | P a g e

 # Names for Service Profiles, Policies, and number of Profiles

 template_name: auto-template

 vmedia_policy: cdd-nfs

 profile_name: auto-profile

 num_profiles: 2

 tasks:

 - block:

 # Configure default pools and other settings

 ...

Note that the “vars” section above contains Service Profile Template, Virtual Media Policy,
and other variables that you can change if you’d like. Variables would usually come from
Ansible group_vars and host_vars directories (or the inventory), but we’ve placed them in
the playbook for simplicity (check out Ansible’s excellent documentation pages if you need
more information on how to organize your inventory and variables that Ansible will use in
configuration).

Recommended Steps to Check YAML Syntax
What’s going to happen if I run a playbook but I have a typo?

Ansible doesn’t always tell you right away what’s wrong with your YAML, and YAML syntax
can be challenging to debug. Have no fear though, as there are utilities such as yamllint that
can help identify issues prior to running playbooks:

$ yamllint server_deploy.yml

(“pip install yamllint” if yamllint is not already installed on the workstation)

You can ignore “line too long” errors/warnings, and note that these can be turned off by
creating and editing a ~/.config/yamllint/config file:

yamllint config file

extends: default

rules:

 # 140 chars should be enough, but don't fail if a line is

longer

 line-length:

 max: 140

 level: warning

Yamllint is pretty simple to use and should save you some headaches. Are you using
something better for checking/debugging YAML – let the instructor know!

Step 3: View Roles for the Server Deployment Playbook
The server_deploy.yml playbook has 1 play and several tasks that configure all of the
policies and profiles needed to deploy service profiles from templates (in this case the
default will be 2 profiles deployed from a single template).

The playbook uses roles defined in the “roles” subdirectory of the repo to configure each
specific policy and profile. Here’s what the tasks look like:

6 | P a g e

 tasks:

 - block:

 # Configure default pools and other settings

 - import_role:

 name: servers/defaults

 tags: defaults

 # Configure Service Profile Template with default settings

 - import_role:

 name: servers/service_profile_templates

 tags: templates

 # Create Service Profiles from template and associate

 - import_role:

 name: servers/service_profiles

 tags: profiles

 # Use the localhost's environment and Python

 delegate_to: localhost

A few things to note in the example playbook:

• We use “block” to wrap related tasks so there are common directives for all the
enclosed tasks. “delegate_to: localhost” is used to run with the same python
interpreter used to install Ansible (what “which python” shows for the current user).

• Each import_role line will run tasks in the roles subdirectory. For example, the
servers/defaults will run tasks in roles/servers/defaults/tasks/main.yml. Vars in the
playbook (or defined anywhere else that Ansible looks them up) will be passed to the
roles tasks.

• Tags can be used to run only a specific part of the playbook if needed.

Step 4: Checking what Ansible will Change

We’re almost ready to run the playbook, but do we really want to make changes?
Fortunately, the UCS modules all support Ansible’s check mode. Check mode allows you to
see what Ansible would change without actually making any changes to UCSM:

$ ansible-playbook -i inventory server_deploy.yml --check

PLAY [ucs]

**

TASK [servers/defaults : Configure default IP Pool]

You can increase Ansible’s verbosity with the -v option (and multiple Vs, like -vvv) to see
exactly what Ansible will do:

$ ansible-playbook -i inventory server_deploy.yml --check -vvv

ansible-playbook 2.7.9

 config file = None

 configured module search path =

['/Users/dsoper/.ansible/plugins/modules',

'/usr/share/ansible/plugins/modules']

7 | P a g e

 ansible python module location =

/usr/local/lib/python3.6/site-packages/ansible

 executable location = /usr/local/bin/ansible-playbook

 python version = 3.6.5 (default, Apr 20 2018, 18:22:17) [GCC

4.2.1 …

<snip>

<localhost> EXEC /bin/sh -c

'/usr/local/opt/python/bin/python3.6

/Users/dsoper/.ansible/tmp/ansible-tmp-1556645678.4761322-

240916740175025/AnsiballZ_ucs_ip_pool.py && sleep 0'

<localhost> EXEC /bin/sh -c 'rm -f -r

/Users/dsoper/.ansible/tmp/ansible-tmp-1556645678.4761322-

240916740175025/ > /dev/null 2>&1 && sleep 0'

ok: [172.16.143.175 -> localhost] => {

 "changed": false,

 "invocation": {

 "module_args": {

 "default_gw": "0.0.0.0",

 "descr": "",

 "first_addr": null,

 "hostname": "172.16.143.175",

 "ipv4_blocks": [

 {

 "default_gw": "198.18.0.1",

The “module_args” just above are what’s being passed to the ucs_ip_pool module.

Step 5: Run the Server Deployment Playbook

You can run the server_deploy.yml playbook, and when run without the --check option you
should see your UCS Manager domain configured. You should also be able to re-run and see
‘ok’ for all the tasks indicating that Ansible hasn’t made any changes.:

$ ansible-playbook -i inventory server_deploy.yml

PLAY [ucs]

**

TASK [servers/defaults : Configure default IP Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default MAC Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default UUID Pool]

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default Virtual Media

Policy] ***************

8 | P a g e

ok: [172.16.143.175 -> localhost]

TASK [servers/defaults : Configure default Boot Order Policy]

ok: [172.16.143.175 -> localhost]

There’s a lot more you can do with Ansible, so feel free to try other settings or operations.
Since this lab is using a shared environment the default playbook may not make any
changes, but you can change profile_name or other variables to see how Ansible manages
changes.

Step 6: View Policy/Profile Roles
The IP Pool and other configuration of UCS Manager is performed in tasks within the roles
subdirectory using the ucs_ip_pool and other UCS Ansible module. Here’s the IP pool
configuration portion of the defaults role defined at roles/servers/defaults/tasks/main.yml:

 ucs_ip_pool:

 <<: *login_info

 name: ext-mgmt

 ipv4_blocks:

 - first_addr: 198.18.0.20

 last_addr: 198.18.0.40

 subnet_mask: 255.255.255.0

 default_gw: 198.18.0.1

 tags: ip_pool

Ansible’s official documentation (on the web) or ansible-doc ucs_ip_pool will tell you more
about how to use the module and what’s supported:

> UCS_IP_POOL (/usr/local/lib/python3.6/site-packages/ansible/modules/remote_

 Configures IP address pools and blocks of IP addresses on
 Cisco UCS Manager. Examples can be used with the UCS Platform
 Emulator https://communities.cisco.com/ucspe.

OPTIONS (= is mandatory):

- default_gw
 The default gateway associated with the IPv4 addresses in the
 block.
 [Default: 0.0.0.0]

9 | P a g e

Task 4 (Optional): ucs_managed_objects and User Defined Configuration

From the previous task, when you look at boot order or server pool setup, you’ll see use of a
“general purpose” Ansible module – ucs_managed_objects. ucs_managed_objects does not
abstract away API details like some of the ip_pool/mac_pool/etc. modules do, but it does
allow for Ansible config of any UCS Managed Object. Also, the module still supports check
mode and is idempotent (you can run repeatedly and still get the same result).

ucs_managed_objects directly imports Python modules as needed to carry out
configuration. Unsure what is needed to create Python definitions in Ansible – checkout the
Python DevNet or other Python SDK programming labs in DevNet to learn more about the
Python SDK’s structure and how to do code gen in Python. Once you have Python code
ready, you can just put the Python module names and property values into Ansible and
Ansible will handle the rest (including only making changes if needed based on the supplied
property values):

 ucs_managed_objects:

 <<: *login_info

 objects:

 - module: ucsmsdk.mometa.compute.ComputePool

 class: ComputePool

 properties:

 parent_mo_or_dn: org-root

 name: default

 children:

 - module: ucsmsdk.mometa.compute.ComputePooledSlot

 class: ComputePooledSlot

 properties:

 chassis_id: '1'

 slot_id: '1'

Congratulations on completing the UCS and Ansible DevNet workshop!

	Learning Objectives
	Overview
	Prerequisites
	Getting Started
	Lab Tasks
	Task 1: Verify Ansible and the UCSM Python SDK are Installed
	Step 1: Install Ansible
	Step 2: Install UCSM Python SDK

	Task 2: Get Example Playbooks
	Task 3: View and Customize Example Playbooks
	Step 1: Connecting to UCS: Edit the Inventory File with UCS API Connection Information
	Step 2: Run a Server Configuration and Deployment Playbook
	Recommended Steps to Check YAML Syntax

	Step 3: View Roles for the Server Deployment Playbook
	Step 4: Checking what Ansible will Change
	Step 5: Run the Server Deployment Playbook
	Step 6: View Policy/Profile Roles

	Task 4 (Optional): ucs_managed_objects and User Defined Configuration

