
 

 
 

 
 
 
 
 

SONIC API User Guide 
 

Version 0.2.0 

                                               Dec 30, 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 



 
 

 

Table of Contents 
 
Legal 4 

Document Revision History 5 

NAPLES Offload Engine Overview 6 
Introduction 6 
Prerequisites 7 
Offload Engines and Algorithms 7 

Block Diagram of the NAPLES Adapter, including all offload engines 8 
Table of Offload Engine Algorithms, supported by the current SONIC driver 9 

SONIC Driver Overview 10 
About the SONIC Driver 10 

Driver initialization 10 
FreeBSD SONIC Driver Configuration 10 
FreeBSD SONIC Driver Installation 10 

SONIC API Overview 11 
About the SONIC API 11 
Architecture of the API 12 
Service Requests 13 

Single Service Request 13 
Chaining Service Requests 13 

Service Request Overview 13 
Synchronous 13 
Asynchronous 13 
Poll 13 

Processing of the Submitted Request 14 
Non-Batch 14 
Batch 14 

Service Request Types 14 
Non-Batched, Single Service Request 14 
Non-Batched, Chained Service Request 15 
Batched, Multiple Service Requests 16 
Submitting and Processing the Request 17 

Synchronous (Non-Batched) 17 
Synchronous (Batched) 18 
Asynchronous (Non-Batched) 19 
Asynchronous (Batched) 20 
Poll (Non-Batch) 21 
Poll (Batched) 22 

Pensando Systems, Inc. Confidential 
Page 2 



 
 

 

Using the Storage API 23 
Include Files 23 
Memory Allocation and Ownership 23 
Buffers and Lists 23 

Flat Buffer 24 
Scatter Gather List (SGL) 24 
Flat Buffers and SGL Relationship 24 

Initialization and Service Descriptors 25 
API initialization 25 
Offload Service Initialization 26 

Crypto Engine Initialization 26 
Compression Engine Initialization 27 

Offload Service Descriptors 28 
Crypto Engine 28 
Compression/Decompression Engine 29 
Hash Engine 31 
Checksum Engine 32 

Submitting an Offload Service Request 33 
Access the Result 34 

Coding Guidelines 36 

Logging 36 

Appendix A  :  Compiling with COMPAT_LINUXKPI 37 
 
 
  

Pensando Systems, Inc. Confidential 
Page 3 



 
 

 

Legal 
All information in this document is provided on a non-disclosure basis.   Anyone reading this 
document implicitly agrees to be bound by Pensando Systems’ non-disclosure terms.  
 
 
 

  

Pensando Systems, Inc. Confidential 
Page 4 



 
 

 

Document Revision History 
 

Revision Author Date Status and Description 

0.1 Roger 2018-04-16 Initial Version 

0.2 Jeff 2018-11-19 Target for 11/30 deliverables. 

0.2.1 Jeff 2019-01-01 Target for 1/2/19 deliverables 

 

  

Pensando Systems, Inc. Confidential 
Page 5 



 
 

 

NAPLES Offload Engine Overview 

Introduction 
Pensando NAPLES is a SmartNIC capable of handling both network traffic as well as providing 
hardware and CPU offload for Encryption/Decryption, Compression/Decompression, hash and 
checksum calculations, also known as accelerator services.  To access these hardware 
accelerator services Pensando has developed the SONIC kernel driver that provides APIs for 
interaction with the offload services on NAPLES. "offload services" are defined as service 
requests that interact with the offload engines. 
 
 
This document is intended for software engineers who need an understanding of the Pensando 
SONIC kernel driver and API for writing software that interacts with the offload services. This 
document contains the information needed to get started using and interacting with the SONIC 
kernel driver and the different accelerator services. 
 
 
 
 

  

Pensando Systems, Inc. Confidential 
Page 6 



 
 

 

Prerequisites 
If running on a FreeBSD-based kernel, this driver assumes that the kernel is compiled with 
COMPAT_LINUXKPI.  Instructions are included in Appendix A. 
 
The SONIC driver also requires that PCI ARI is disabled in the running kernel. 
To verify: 

# sysctl -a | grep hw.pci.enable_ari 

hw.pci.enable_ari: 0 

 

If enable_ari is not set to zero, then please run the command below and reboot: 
 

# Disable PCI ARI 

echo hw.pci.enable_ari="0" >> /boot/loader.conf 

 

Offload Engines and Algorithms 
The NAPLES adapter provides multiple offload engines and algorithms, as described by the 
block diagram and table below.   The block diagram shows all the offload engines connected to 
the Network-on-chip (NOC) switch.  Each accelerator engine supports data transfer bandwidth 
up to 100 Gbps.  
 
These offload services can be chained and batched together as atomic operations, with all 
operations performed at wire speed. 

  

Pensando Systems, Inc. Confidential 
Page 7 



 
 

 

Block Diagram of the NAPLES Adapter, including all offload engines 

 

 

  

Pensando Systems, Inc. Confidential 
Page 8 



 
 

 

Table of Offload Engine Algorithms, supported by the current SONIC driver 
 

Offload   Algorithm  Block Size  Info 

Data 
Compression 

LZRW1A  up to 64K  Insertion of an 8-Byte 
Compression Header 
(32-bit Checksum, 16-bit 
Length, 16-bit Version) 

Data  
Decompression 

LZRW1A  up to 64K  Removal of the 8-Byte 
compression Header 

Data 
Encryption 

XTS 
256-bit 

up to 4M 
and multiple of 16 Bytes 

IV = LBA # 

Data 
Decryption 

XTS 
256-bit 

up to 4M 
and multiple of 16 Bytes 

IV = LBA # 

Deduplication  SHA-256/512   up to 4M   

Checksum  M-Adler-32     

 
Please note: The NAPLES SONIC driver currently under development.   As a result, this 
document may describe features that have not currently been implemented.   As of 11/30/18, 
the NAPLES SONIC driver supports only Data Compression/Decompression offload services. 
 
Please note: The NAPLES adapter has additional offload engines that can be used by various 
networking protocols, that are currently not available in the SONIC driver. 
 
 

  

Pensando Systems, Inc. Confidential 
Page 9 



 
 

 

SONIC Driver Overview 

About the SONIC Driver 
The Pensando SONIC Driver is a kernel device driver that supports all the necessary API’s 
needed to interact with the offload services.  As with any kernel module or device driver, the 
Pensando device driver can be loaded and unloaded to and from kernel at any time.  [  Ex: 
kldload/kldunload (FreeBSD) or insmod/rmmod (Centos). ] 
 

Driver initialization 
The SONIC driver needs to be loaded into the kernel with root privileges. Below are the 
commands,  depending on the specific OS: 
 

OS Command 

FreeBSD kldload sonic.ko 

Linux insmod sonic.ko 

 

FreeBSD SONIC Driver Configuration 
The SONIC Driver has the following tunable configuration variables that can set via 
“kenv”: 

● compat.linuxkpi.sonic_log_level="N" 
Specifies the logging level for the SONIC Driver.   The standard Linux logging 
levels are used (See “Logging”) 
 

● compat.linuxkpi.sonic_core_count=”N” 
Specifies the maximum number of cpu cores that can be used by the SONIC 
Driver. 
 
WARNING: The value of compat.linuxkpi.sonic_core_count should generally 
not be used, except to set it to the actual number of system cores. 

Ex: 
 

# kenv compat.linuxkpi.sonic_log_level=”7” 

# kenv compat.linuxkpi.sonic_core_count=”16” 

 

FreeBSD SONIC Driver Installation 
The SONIC Driver is a binary file that is installed using the “kldload” command.  Ex: 
 

Pensando Systems, Inc. Confidential 
Page 10 



 
 

 

# kldload sonic.ko  

 

SONIC API Overview 

About the SONIC API 
The SONIC driver is a kernel driver available in both FreeBSD and LINUX. 
Please note that decompression and XTS decryption API has been optimized for low latency 
and is therefore synchronous in nature.  All other API’s are optimized for high throughput and 
are therefore asynchronous in nature. 

  

Pensando Systems, Inc. Confidential 
Page 11 



 
 

 

Architecture of the API 
Host API is supported by P4 Programs and P4 DMA acting as an intermediary. 
P4+ programs are controlling the Storage Accelerator. See diagram below. 
 

 

  

Pensando Systems, Inc. Confidential 
Page 12 



 
 

 

Service Requests 
A service request includes a single data set to be processed by one or more offload engines.  A 
service request can be sent as a single request (one service) or chained (multiple services). 
Please see below. 

Single Service Request 
A single request is used when a single dataset needs processing by a single service, such as 
encryption or compression. A single request invokes only a single accelerator service. 

Chaining Service Requests 
Chaining is used when the same dataset needs to be processed by multiple services, for 
example Encryption, Compression and Checksum calculation.  The benefit with chaining is that 
a request is processed and forwarded among the different offload engines.  A chaining request 
is processed as a single atomic operation. 

Service Request Overview 
Requests can be submitted to the offload engines in one of three different ways:  Synchronous, 
Asynchronous or Poll. 

Synchronous 
Submitting a request synchronously will hold the calling thread until the result is returned. 
Please note this could affect the overall performance and might not be the optimal way to 
submit the requests.   In general, synchronous requests should be avoided, except for data and 
meta-data updates that require the strictest serialization.  

Asynchronous 
Submitting a request asynchronously will execute the request as a separate thread and will not 
hold the calling thread. Rather than using interrupts, the asynchronous API callback functions 
will return the result via a callback function provided at the time of submission.  Please note that 
the callbacks are invoked in the context of the submitting thread, and that the API does not 
allocate memory/buffers for the callback function. 

Poll 
Submitting a request through the Poll function is similar to Asynchronous requests.  The Poll 
type also uses a callback function, but the user needs to poll to get the status of the request. 
Once the result is ready, the poll function will invoke the callback function.  
Please note that the callbacks are invoked in the context of a polling thread, and that the API is 
not handling the creation and scheduling of these polling threads. 
 
 

Pensando Systems, Inc. Confidential 
Page 13 



 
 

 

Processing of the Submitted Request 
Requests can be processed in Non-Batch or Batch mode.  Non-Bach requests contains one 
single service request (Single or chained).  Batch mode is used to submit multiple different 
service requests (Single or chained), to be processed in a single call. 

Non-Batch 
Non-Batch is used to submit one dataset for processing, using one or more services (Single or 
Chained). 

Batch 
Batching is way to submit multiple requests with different service requests (Single or Chained) 
all to be processed in a single call.  When submitting the request as a batch request, each 
service request is processed in parallel and atomicly, but the result is not returned until all 
processing of all data sets is completed.  

Service Request Types 

Non-Batched, Single Service Request 
Below shows a single service compression request. 
 

 

Pensando Systems, Inc. Confidential 
Page 14 



 
 

 

 

Non-Batched, Chained Service Request 
Below shows a chained request on a single data set that includes multiple different services 
(Compression, Hash and Encryption). 
 

 
 
 
 
 
 
 

  

Pensando Systems, Inc. Confidential 
Page 15 



 
 

 

Batched, Multiple Service Requests 
Below shows three chained service requests that use multiple different offload services 
(Compression, Hash and Encryption) in various combinations. The batched request is 
considered complete once all processing of all service requests are completed. 
 

 
 
 

  

Pensando Systems, Inc. Confidential 
Page 16 



 
 

 

Submitting and Processing the Request 
There are three different ways which service requests can be submitted, depending on the 
desired  interaction with the offload services and the processing of the results.  Requests can be 
submitted by one of three methods:  Synchronous, Asynchronous or Poll. The three different 
methods will determine how the request is submitted and how the caller is notified upon 
completion.   The different methods are described below. 

Synchronous (Non-Batched)  
The ‘pnso_submit_request’ function will complete the request and return with the result.  The 
calling thread will wait synchronously for completion of the request. This request requires 
pointers to the request (*req) and response (*res) buffers. 

 

 

 

Type API Function Call Description 

Request + Flush pnso_submit_request Submit and process one request atomically. 
(Chained or Non-Chained) 
 
Note: Caller thread is blocked until the response is 
returned. 

Pensando Systems, Inc. Confidential 
Page 17 



 
 

 

Synchronous (Batched)  
The ‘pnso_add_to_batch’ and ‘pnso_flush_batch’ functions will complete multiple batched 
requests and return with the batched result.  The calling thread will be waiting synchronously for 
the completion of all requests in the batch. Synchronous requests require pointers to the 
request (*req) and response (*res) buffers. 

 

 
 

 

Type API Function Call Description 

Request pnso_add_to_batch Adds a request to batch buffer. 
(Chained or Non-Chained) 

Flush pnso_flush_batch Processes all of the requests in the batch buffer atomically. 
Responses are available once all requests has been processed. 
 
Note: Caller thread is blocked until the response is 
returned. 

  

Pensando Systems, Inc. Confidential 
Page 18 



 
 

 

Asynchronous (Non-Batched) 
The ‘pnso_submit_request’ function returns immediately, and completes the request in the 
background before invoking a caller-provided callback function. In this request, pointers are 
provided for the request (*req) and response (*res) buffers, the callback function (cb_func) and 
callback context (*cb_ctx).  Once the request has been completed, the callback function will be 
invoked, indicating that the result is ready for processing.  
 

 

 
 

Type API Function Call Description 

Request + Flush pnso_submit_request Submit and process one request atomically. 
(Chained or Non-Chained) 
 
Note: Caller thread continues to execute.  The 
response is returned by a caller-provided callback 
function. 

  

Pensando Systems, Inc. Confidential 
Page 19 



 
 

 

Asynchronous (Batched) 
The ‘pnso_add_to_batch’ and ‘pnso_flush_batch’ functions return immediately. In this 
request,  pointers are provided for the requests (*req) and response (*res) buffers, the callback 
function (cb_func) and callback context (*cb_ctx).  Once all the requests have been completed, 
the callback function will be invoked, indicating that the results are ready for processing.  
 

 

 
 

Type API Function Call Description 

Request pnso_add_to_batch Adds a request to batch buffer. 
(Chained or Non-Chained) 

Flush pnso_flush_batch Processes all of the requests in the batch buffer atomically. 
Responses are available once all requests has been processed. 
 
Note: Caller thread continues to execute.  The responses are 
returned by a caller-provided callback function. 

  

Pensando Systems, Inc. Confidential 
Page 20 



 
 

 

Poll (Non-Batch) 
The ‘pnso_submit_request’ function returns immediately.  The request is completed in the 
background before invoking a caller-provided callback function. In this request, pointers are 
provided for the request (*req) and response (*res) buffers, and poll function (*poll_func) and 
opaque poll context (**poll_ctx).  Competition status is polled for, indicating that the result is 
ready for processing.  The poll is done through the API-provided ‘pnso_poll_fn’ polling function 
pointer, in combination with the API-provided ‘pnso_poll_ctx’ for the polling function.   The API 
provides both the polling function and the polling function context to use when calling the polling 
function.    The caller has the responsibility for maintaining the corresponding polling context for 
each outstanding poll request. 
 
Please note: The callback function is called AFTER a successful poll check call, please 
see below: 
 

 

 
 

Type API Function Call Description 

Request + Flush pnso_submit_request Submit and process one request atomically. 
(Chained or Non-Chained) 
 
Note: Caller thread continues to execute.  The 
response is returned by a caller-provided callback 
function AFTER the caller thread performs a poll check 

Pensando Systems, Inc. Confidential 
Page 21 



 
 

 

and the result is available. 

Poll Check pnso_poll_fn Polling function to check for completion.  Context is 
provided by ‘pnso_poll_ctx’. 
 

Poll (Batched) 
The ‘pnso_add_to_batch’ and ‘pnso_flush_batch’ functions return immediately. In this 
request, pointers are provided for the request (*req) and response (*res) buffers, and poll 
function (*poll_func) and poll function context (**poll_ctx).   Both the (*poll_func) and the 
(**poll_ctx) are returned/provided by the API driver.  Completion status is polled for, indicating 
that  the result is ready for processing. The poll is done through the ‘pnso_poll_fn’ polling 
function pointer, in combination with the API-provided ‘pnso_poll_ctx’ for the polling function. 
The API provides both the polling function and the polling function context to use when calling 
the polling function.    The caller has the responsibility for maintaining the corresponding polling 
context for each outstanding poll request. 
 
 
Please note: The callback function is called AFTER a successful poll check call.  Please 
see below: 
 

 

 
 
  

Pensando Systems, Inc. Confidential 
Page 22 



 
 

 

 

Type API Function Call Description 

Request pnso_add_to_batch Adds a request to batch buffer 
(Chained or Non-Chained) 

Flush pnso_flush_batch Processes all of the requests in the batch buffer atomically. 
Responses are available once all requests have been processed. 
 
Note: Caller thread continues to execute.  The response is 
returned by a caller-provided callback function AFTER the 
caller thread performs a poll check and the result is available. 

Poll Check pnso_poll_fn Polling function to check for completion.  Context is provided by 
‘pnso_poll_ctx’. 

 

Using the Storage API 

Include Files 
Callers of the SONIC API must include the following files: 
 
#include “pnso_api.h” 

Memory Allocation and Ownership  

Please note that all host memory needs to allocated outside the API.  The API assumes that the 
calling functions must provide pointers to allocated host memory.   The API does not allocate 
memory. 

Buffers and Lists 
All buffers and buffer lists are passed using physical addresses to avoid virtual to physical 
address translation costs. 

 

Flat Buffer 
The smallest unit of buffer is ‘pnso_flat_buffer’, containing ‘len’ which is the length of the 
buffer in bytes, and ‘buf’ which is a pointer to a physical address where the data (buffer) 
resides. 
 

struct pnso_flat_buffer { 

    uint32_t len; 

Pensando Systems, Inc. Confidential 
Page 23 



 
 

 

    uint64_t buf; 

}; 

 
 

Scatter Gather List (SGL) 
The ‘pnso_buffer_list’ defines a scatter/gather buffer list.   This structure is used to represent a 
collection of physical memory buffers that are not contiguous. The ‘count’ specifies the 
numbers of buffers in the list and ‘buffers’ specifies an unbounded array of flat buffers as 
defined by ‘count’. The buffers are used for offload engine data requests and results.  
 

struct pnso_buffer_list { 

    uint32_t count; 

    struct pnso_flat_buffer buffers[0]; 

}; 

 

Flat Buffers and SGL Relationship 
Below is a visualization of the ‘flat_buffer’ and ‘buffer_list’ relationship: 

 
 
 
 
The image below is an example of a buffer_list with 3 x flat_buffer’s pointing to 3 different 
physical memory addresses where the buffers (data) reside. 
 
 
 
 

Pensando Systems, Inc. Confidential 
Page 24 



 
 

 

 
 

Initialization and Service Descriptors 

Before any of the offload services can be invoked, certain initialization is required, depending on 
which accelerator is invoked.  Please see below: 
 

● Driver Initialization 
● API Initialization 
● Offload service Initialization 
● Offload service description 
● Submit offload service request 
● Access and process the result 

 

API initialization 
API initialization is required before the offload services can be invoked. Initialization is done by 
invoking the ‘pnso_init’ function. 
 
The ‘pnso_init’ expect to be passed initialization parameters for the offload services.  This is 
done through the struct ‘pnso_init_params’.  The ‘pnso_init’ function will return ‘PNSO_OK’ 
indicating success, or ‘-EINVAL’ if invalid parameters where passed. 
 
The function ‘pnso_init’ is defined as follows: 
 
pnso_error_t pnso_init(struct pnso_init_params *init_params); 
 
Please note: Caller is responsible for allocation and deallocation of memory for input 
parameters. 
 
 

Pensando Systems, Inc. Confidential 
Page 25 



 
 

 

The ‘pnso_init_params’ represents the initialization parameters for Pensando offload services. 

It is a struct and is defined as follow: 

● per_core_qdepth: Specifies the maximum number of parallel outstanding requests per 

host CPU core. 

● core_count:  Specifies the number of CPU cores  

● block_size: Specifies the native filesystem block size in bytes. 

struct pnso_init_params { 

        uint16_t per_core_qdepth; 

        uint16_t core_count; 

        uint32_t block_size; 

}; 

 

Setting the “per_core_qdepth” should aim to balance request concurrency with system memory 

use.  Setting the value too low may result in service request not being accepted by the API. 

Setting the value too high may consume memory unnecessarily.  

 

Offload Service Initialization 

Crypto Engine Initialization 

The crypto accelerator service requires first registering the crypto key descriptor index, and 
Initialization Vector (IV).  
 
XTS (XEX-based tweaked-codebook mode with ciphertext stealing) is a symmetric algorithm 
and requires a key, and a key index definition in the key index descriptor table. 
 
The initialization is done by calling the ‘pnso_set_key_dec_idx’ function and set the key for 
data encryption and a key for the descriptor index, please see below: 
 

● key1: Specifies the key that will be used to encrypt the data 
● key2: Specifies the key that will be used to encrypt initialization vector 
● key_size: Specifies the size of the key in bytes -- 16 and 32 bytes for AES128 and 

AES256 respectively. 
● key_idx: Specifies the key index in the descriptor table. 

 
Return Value: 

● PNSO_OK - on success 
● -EINVAL - on invalid input parameters 

 
pnso_error_t pnso_set_key_desc_idx(const void *key1, 

   const void *key2, 

   uint32_t key_size, uint32_t key_idx); 

 

Pensando Systems, Inc. Confidential 
Page 26 



 
 

 

Please note: The caller is responsible for allocation/deallocation of memory for input 
parameters. 

Compression Engine Initialization 
Initialization of the compression accelerator requires registering a new header format, and 
adding a compression algorithm mapping.  The mapping is the Pensando compression 
algorithm number to the customer’s opaque algorithm identifier in the compression header. 
This allows customers to have their own list mapped to potentially different Pensando 
capabilities. 
 
The registration is done by calling the ‘pnso_register_compression_header_format’ function 
and providing the header format to be embedded at the beginning of the the compressed data. 
Please see below: 

 
● cp_hdr_fmt: The header format to be embedded 
● hdr_fmt_idx: Non-Zero index to uniquely identify the header format 

 
Return Value: 

● PNSO_OK - on success 
● -EINVAL - on invalid input parameters 

 
pnso_error_t pnso_register_compression_header_format( 

        struct pnso_compression_header_format *cp_hdr_fmt, 

        uint16_t hdr_fmt_idx); 

 
Algorithm mapping is done by calling the ‘pnso_add_compression_algo_mapping’ function 
and providing the compression algorithm number (Please see the API reference for a complete 
list of algorithms supported), and the compression header algorithm number.  Please see below: 
 

● pnso_algo: The compression algorithm number 
● header_algo: The compression header algorithm number 

 
Return Value: 

● PNSO_OK - on success 
● -EINVAL - on invalid input parameters 

 
pnso_error_t pnso_add_compression_algo_mapping( 

        enum pnso_compression_type pnso_algo, 

        uint32_t header_algo); 

 
 
Please Note: Caller is responsible for managing the hdr_fmt_idx space and 
allocation/deallocation of memory for input parameters 
 
 
 

  

Pensando Systems, Inc. Confidential 
Page 27 



 
 

 

Offload Service Descriptors 
Offload service requests require configuration of the service details.    This configuration is done 
through service descriptors “pnso_service_request“.   As mentioned earlier, it is possible to 
chain multiple accelerator requests through service chaining.   Chaining is done through a 
“svc[]” array. 
 
A location must be provided for the result set through the “pnso_service_result” parameter. 
 
Details for the different accelerator engines are provided below. 

Crypto Engine 
The crypto service is defined using the ‘pnso_service’.  Please note that it is a ‘union’, and for 
the crypto accelerator the ‘pnso_crypto_desc’ is used. The ‘pnso_service’ is defined as 
follows: 
 

● svc_type: specifies one of the enumerated values for the accelerator service type (for 
crypto, use the pnso_crypto_desc). 

● rsvd: specifies a 'reserved' field meant to be used by Pensando. 
● crypto_desc: struct that specifies the descriptor for encryption/decryption service. 

 
The other services in this struct are described together with the corresponding accelerator 
service in this document. 
 

struct pnso_service { 

    uint16_t svc_type; 

    uint16_t rsvd; 

    union { 

        struct pnso_crypto_desc crypto_desc; 

        struct pnso_compression_desc cp_desc; 

        struct pnso_decompression_desc dc_desc; 

        struct pnso_hash_desc hash_desc; 

        struct pnso_checksum_desc chksum_desc; 

        struct pnso_decompaction_desc decompact_desc; 

    } u; 

}; 

 

The ‘pnso_crypto_desc’ is the descriptor for encryption or decryption operation, it is a struct 

and is defined as follow: 

● algo_type:  Specifies one of the enumerated values of the crypto type (i.e. the enum 
pnso_crypto_type.  See below). 

● rsvd: Specifies a 'reserved' field meant to be used by Pensando. 
● key_desc_idx: Specifies the key index in the descriptor table. 
● iv_addr: Specifies the physical address of the initialization vector. 

 
struct pnso_crypto_desc { 

    uint16_t algo_type; 

Pensando Systems, Inc. Confidential 
Page 28 



 
 

 

    uint16_t rsvd; 

    uint32_t key_desc_idx; 

    uint64_t iv_addr; 

}; 

 

 

The ‘pnso_crypto_type’ is an enum and is defined as follow: 

enum pnso_crypto_type { 

    PNSO_CRYPTO_TYPE_NONE = 0, 

    PNSO_CRYPTO_TYPE_XTS = 1, 

    PNSO_CRYPTO_TYPE_MAX 

}; 

 
This list allows capabilities to be extended with additional crypto types in future releases.   For a 
complete list, please refer to the API Reference Guide.   Currently, XTS is the only crypto 
service supported. 

Compression/Decompression Engine 
The compression service is defined using the ‘pnso_service’.  Please note that it is a ‘union’, 
and for the compression accelerator the ‘pnso_compression_desc’ or 
‘pnso_decompression_desc’ are used. The ‘pnso_service’ is defined as follows: 
 

● svc_type: specifies one of the enumerated values for the accelerator service type (for 
compression/decompression it would be defined as either ‘pnso_compression_desc’ or 
‘pnso_decompression_desc’). 

● rsvd: specifies a 'reserved' field meant to be used by Pensando. 
● cp_desc/dc_desc: struct that specifies the descriptor for compression/decompression 

services. 
 
The other services in this struct are described together with the corresponding accelerator 
service in this document. 
 

struct pnso_service { 

    uint16_t svc_type; 

    uint16_t rsvd; 

    union { 

        struct pnso_crypto_desc crypto_desc; 

        struct pnso_compression_desc cp_desc; 

        struct pnso_decompression_desc dc_desc; 

        struct pnso_hash_desc hash_desc; 

        struct pnso_checksum_desc chksum_desc; 

        struct pnso_decompaction_desc decompact_desc; 

    } u; 

}; 

 

The ‘pnso_compression_desc’ is the descriptor for compression operation.  It is a struct and 
defined as follow: 

Pensando Systems, Inc. Confidential 
Page 29 



 
 

 

● algo_type:  Specifies one of the enumerated values of the compressor algorithm (i.e. 
pnso_compression_type). 

● flags: Specifies the following applicable descriptor flags to compression descriptor: 

 

Flags Description 

PNSO_CP_DFLAG_ZERO_PAD Zero fill the compressed output buffer aligning to 
block size. 

PNSO_CP_DFLAG_INSERT_HEADER 

 

Insert compression header defined by the format 
supplied in 'struct pnso_init_params'. 

PNSO_CP_DFLAG_BYPASS_ONFAIL Use the source buffer as input buffer to hash 
and/or checksum, services, when compression 
operation fails. This flag is effective only when 
compression, hash and/or checksum operation is 
requested. 

 
● threshold_len: specifies the expected compressed buffer length in bytes. (This is to 

instruct the compression operation, upon its completion, to compress the buffer to a 
length that must be less than or equal to 'threshold_len'). 

● hdr_fmt_idx: specifies the index for the header format in the header format array. 
● hdr_algo: specifies the value for header field PNSO_HDR_FIELD_TYPE_ALGO (This is 

the same value that is registered in ‘pnso_add_compression_algo_mapping’). 
 

struct pnso_compression_desc { 

    uint16_t algo_type; 

    uint16_t flags; 

    uint16_t threshold_len; 

    uint16_t hdr_fmt_idx; 

    uint32_t hdr_algo; 

}; 

 
The ‘pnso_decompression_desc’ is the descriptor for the compression operation.  It is a 
struct, defined as follows: 

● algo_type: specifies one of the enumerated values of the compressor algorithm (i.e. 
pnso_compression_type) for decompression. 

● flags: specifies the following applicable descriptor flags to decompression descriptor: 
 

Flags Description 

PNSO_DC_DFLAG_HEADER_PRESENT Indicates the compression header is present. 

 
● hdr_fmt_idx: specifies the index for the header format in the header format array. 
● rsvd: specifies a 'reserved' field meant to be used by Pensando. 

 

Pensando Systems, Inc. Confidential 
Page 30 



 
 

 

struct pnso_decompression_desc { 

    uint16_t algo_type; 

    uint16_t flags; 

    uint16_t hdr_fmt_idx; 

    uint16_t rsvd; 

}; 

 
 
The ‘pnso_compression_type’ is an enum and is defined as follows: 

enum pnso_compression_type { 

    PNSO_COMPRESSION_TYPE_NONE = 0, 

    PNSO_COMPRESSION_TYPE_LZRW1A = 1, 

    PNSO_COMPRESSION_TYPE_MAX 

}; 

This list allows capabilities to be extended with additional crypto types in future releases.   For a 
complete list, please refer to the API Reference Guide.   Currently, LZRW1A is the only 
compression service supported. 

Hash Engine 
The hash service is defined using the ‘pnso_service’.  Please note that it is a ‘union’, and for 
the compression accelerator the ‘pnso_hash_desc’ is used. The ‘pnso_service’ is defined as 
follows: 
 

● svc_type: specifies one of the enumerated values for the accelerator service type (for 
hash calculation it would be defined as ‘pnso_hash_desc’. 

● rsvd: specifies a 'reserved' field meant to be used by Pensando. 
● hash_desc: struct that specifies the descriptor for data deduplication service. 

 
The other services in this struct are described together with the corresponding accelerator 
service in this document. 
 

struct pnso_service { 

    uint16_t svc_type; 

    uint16_t rsvd; 

    union { 

        struct pnso_crypto_desc crypto_desc; 

        struct pnso_compression_desc cp_desc; 

        struct pnso_decompression_desc dc_desc; 

        struct pnso_hash_desc hash_desc; 

        struct pnso_checksum_desc chksum_desc; 

        struct pnso_decompaction_desc decompact_desc; 

    } u; 

}; 

 
 
The ‘pnso_hash_desc’ is the descriptor for hash calculation operation.  It is a struct and 
defined as follow: 

● algo_type:  Specifies one of the enumerated values of the hash algorithm (i.e. 
pnso_hash_type) for data deduplication. 

Pensando Systems, Inc. Confidential 
Page 31 



 
 

 

● flags: specifies the following applicable descriptor flag(s) to hash descriptor: 

 

Flags Description 

PNSO_HASH_DFLAG_PER_BLOCK Indicates to produce one hash per block. 
When this flag is not specified, hash for the entire 
buffer will be produced. 

 
struct pnso_hash_desc { 

    uint16_t algo_type; 

    uint16_t flags; 

}; 

 
 

The pnso_hash_type is an enum and is defined as follow: 

enum pnso_hash_type { 

    PNSO_HASH_TYPE_NONE = 0, 

    PNSO_HASH_TYPE_SHA2_512 = 1, 

    PNSO_HASH_TYPE_SHA2_256 = 2, 

    PNSO_HASH_TYPE_MAX 

}; 

 

Checksum Engine 
The checksum service is defined using the ‘pnso_service’.  Please note that it is a ‘union’, and 
for the checksum accelerator the ‘pnso_checksum_desc’ is used. The ‘pnso_service’ is 
defined as follows: 
 

● svc_type: specifies one of the enumerated values for the accelerator service type (for 
hash calculation it would be defined as ‘pnso_checksum_desc’. 

● rsvd: specifies a 'reserved' field meant to be used by Pensando. 
● chksum_desc: struct that specifies the descriptor for the checksum calculation service. 

 
The other services in this struct are described together with the corresponding accelerator 
service in this document. 
 

struct pnso_service { 

    uint16_t svc_type; 

    uint16_t rsvd; 

    union { 

        struct pnso_crypto_desc crypto_desc; 

        struct pnso_compression_desc cp_desc; 

        struct pnso_decompression_desc dc_desc; 

        struct pnso_hash_desc hash_desc; 

        struct pnso_checksum_desc chksum_desc; 

        struct pnso_decompaction_desc decompact_desc; 

    } u; 

}; 

Pensando Systems, Inc. Confidential 
Page 32 



 
 

 

 
The ‘pnso_checksum_desc’ is the descriptor for checksum calculation operation.  It is a struct 

and defined as follow: 

● algo_type:  Specifies one of the enumerated values of the checksum algorithm (i.e. 
pnso_chksum_type). 

● flags: Specifies the following applicable descriptor flag(s) to checksum descriptor: 

 

Flags Description 

PNSO_CHKSUM_DFLAG_PER_BLOCK Indicates to produce one checksum per block. 
When this flag is not specified, a checksum for 
the entire buffer will be produced. 

 
struct pnso_checksum_desc { 

    uint16_t algo_type; 

    uint16_t flags; 

}; 

 
 

Submitting an Offload Service Request 
The table below describes the ‘pnso_submit_request’ and the required parameters depending 
on request function: 
 
Param Type Sync Async Poll Description 

*req struct 

pnso_service_request 

 

in in in The set of service request structures to be used to submit 

the request 

*resp struct 

pnso_service_result 

in/out in/out in/out The set of service result structures to report the status of 

each service within a request upon its completion 

 

cb_func typedef completion_cb_t 

 

NULL valid optional The caller-supplied completion callback routine 

*cb_ctx Void * NULL valid optional The caller-supplied callback context information 

*poll_func typedef *pnso_poll_fn_t 
 

NULL NULL valid The polling function, which the caller will use to poll for 

completion of the request 

**poll_ctx void ** NULL NULL valid The context to use when calling the polling function 

 
The ‘cb_func’ and ‘*cb_ctx’ are both caller-defined.     ‘cb_func’ is the function to call upon 
request completion, and “*cb_ctx” can be used as the user-supplied context to identify which 
outstanding request has completed. 
 

Pensando Systems, Inc. Confidential 
Page 33 



 
 

 

Correspondingly, ‘*poll_func’ and “**poll_ctx” are both API-defined and opaque from the caller 
perspective.   After submitting a poll request, the caller can poll for completion status by calling 
the “*poll_func” while passing in the “**poll_ctx” that corresponds to the given outstanding 
request.  
 
Please note: The caller is responsible for allocation/deallocation of memory for both input and 
output parameters.  Caller should keep the memory intact (ex: req/res) until the Pensando 
accelerator returns the result via completion callback. 
 

Access the Result 
The ‘pnso_service_result’ represents the result of the request upon completion for one or all 
services.  It is a struct and is defined as follow: 
 

● err: specifies the overall error code of the request. When set to '0', the request 
processing can be considered successful. Otherwise, one of the services in the request 
failed, and any output data should be discarded 

● num_services: specifies the number of services in the request 
● svc: specifies an array of service status structures to report the status of each service 

within a request upon its completion 
 
Please note: When 'err' is set to '0', the overall request processing can be considered 
successful.  Otherwise, one of the services in the request is failed, and any output data should 
be discarded. 
 

struct pnso_service_result { 

    pnso_error_t err; 

    uint32_t num_services; 

    struct pnso_service_status svc[0]; 

}; 

 
 
The “pnso_service_status” represents the result for an individual element within a 
“pnso_service_result” set.     It is a struct and is defined as follows: 
 

● err: specifies the overall error code of the request. When set to '0', the request 
processing can be considered successful. Otherwise, one of the services in the request 
failed, and any output data should be discarded 

● svc_type:  specifies the service request type, corresponding to one of the 
“pnso_service_type” enum values  

● rsvd_1:  reserved for use by Pensando.  Not to be used by caller. 
● u:  descriptor for output/result locations of the service requests.  For the 

compression/decompression offload services (PNSO_SVC_TYPE_COMPRESS or 
PNSO_SVC_TYPE_DECOMPRESS) the dst structure will be used, representing a SGL 
for the service result set. 

 
Please note:   The caller is responsible for allocating all memory that is referenced by the SGL 
(“pnso_buffer_list” and all associated buffers)  

Pensando Systems, Inc. Confidential 
Page 34 



 
 

 

 
 
 
 

struct pnso_service_status { 

pnso_error_t err; 

uint16_t svc_type; 

uint16_t rsvd_1; 

union { 

struct { 

uint16_t num_tags; 

uint16_t rsvd_2; 

struct pnso_hash_tag *tags; 

} hash; 

struct { 

uint16_t num_tags; 

uint16_t rsvd_3; 

struct pnso_chksum_tag *tags; 

} chksum; 

struct { 

uint32_t data_len; 

struct pnso_buffer_list *sgl; 

} dst; 

} u; 

} 

 
 

  

Pensando Systems, Inc. Confidential 
Page 35 



 
 

 

Coding Guidelines 
● Avoid “Synchronous” service requests, except for the most critical meta-data updates 

that require the strictest serialization.  
 

● Chain service requests whenever possible, rather than manually creating multiple single 
service request pipelines in software. 
 

● Batched versus Non-Batched requests 
○ In general, use of batching and batched requests with larger batch size can 

increase aggregate throughput.  However, use of batched requests and large 
batch sizes will result in higher request latency.   The caller must establish 
guidelines and policies that are in-line with expected service level requirements. 

● Synchronous, Asynchronous and Poll Requests 
○ Synchronous requests can be used when the lowest-possible latency is required 
○ Asynchronous and Poll can be used when highest-possible throughput is 

required 
● In general, the number of outstanding asynchronous requests per core should not 

exceed the pnso_init “per_core_qdepth” at any given time 
● Input SGL buffers can be in 1 byte increments 
● Output SGL buffers must be in “block size” increments, where “block size” corresponds 

to the “block_size” parameter given in the pnso_init_params function (e.g. 4096). 

Logging 
 

All logging is done through printk() and can be seen through: 
● The system console 
● syslog 
● dmesg 

 
Standard kernel logging levels are provided here for reference: 
 

 

Name String Description 

KERN_EMERG “0” System is unusable 

KERN_ALERT “1” Action must be taken immediately 

KERN_CRIT “2” Critical conditions 

KERN_ERR “3” Error conditions 

KERN_WARNING “4” Warning conditions 

Pensando Systems, Inc. Confidential 
Page 36 



 
 

 

KERN_NOTICE “5” Normal but significant condition 

KERN_INFO “6” Informational 

KERN_DEBUG “7” Debug-level messages 

 
 

Appendix A  :  Compiling with COMPAT_LINUXKPI 
The SONIC driver requires a FreeBSD-based kernel to be compiled with COMPAT_LINUXKPI. 
Below are the instructions: 
 
# Install git and vim 

env ASSUME_ALWAYS_YES=YES pkg install git vim 

  

# Clone FreeBSD source. 

git clone http://github.com/freebsd/freebsd  /usr/src 
  

# Checkout 11.2 branch 

git checkout releng/11.2 

  

# Create User ntpd 

echo "test" | pw useradd -n ntpd -m -g wheel -s /sbin/nologin -d 

/var/lib/ntpd -h – 

  

# Create Group ntpd 

pw groupadd ntpd 

  

# Enable LINUXKPI option 

cd /usr/src 

echo "options COMPAT_LINUXKPI" >> sys/amd64/conf/GENERIC 

  

# Enable OFED for RDMA 

echo "options OFED" >> sys/amd64/conf/GENERIC 

  

# Optional: Enable Journaling and Debugging Support. 
echo "options GEOM_JOURNAL" >> sys/amd64/conf/GENERIC 

echo "options KDB_UNATTENDED" >> sys/amd64/conf/GENERIC 

echo "options KDB" >> sys/amd64/conf/GENERIC 

echo "options DDB" >> sys/amd64/conf/GENERIC 

  

# Build and Install the new Kernel 

make buildworld buildkernel installworld installkernel 

  

Pensando Systems, Inc. Confidential 
Page 37 

http://github.com/freebsd/freebsd


 
 

 

# Disable PCI ARI 

echo hw.pci.enable_ari="0" >> /boot/loader.conf 

  

# Optional: Enable Journaling and Disable background fsck 
echo geom_journal_load="YES" >> /etc/rc.conf 

echo fsck_y_enable="YES" >> /etc/rc.conf 

echo background_fsck="NO" >> /etc/rc.conf 

  

# Reboot 

reboot 

  

 

Pensando Systems, Inc. Confidential 
Page 38 


