// Copyright 2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Code generated by protoc-gen-go. DO NOT EDIT. // versions: // protoc-gen-go v1.25.0-devel // protoc v3.12.2 // source: google/monitoring/dashboard/v1/common.proto package dashboard import ( reflect "reflect" sync "sync" proto "github.com/golang/protobuf/proto" _ "google.golang.org/genproto/googleapis/api/distribution" protoreflect "google.golang.org/protobuf/reflect/protoreflect" protoimpl "google.golang.org/protobuf/runtime/protoimpl" durationpb "google.golang.org/protobuf/types/known/durationpb" ) const ( // Verify that this generated code is sufficiently up-to-date. _ = protoimpl.EnforceVersion(20 - protoimpl.MinVersion) // Verify that runtime/protoimpl is sufficiently up-to-date. _ = protoimpl.EnforceVersion(protoimpl.MaxVersion - 20) ) // This is a compile-time assertion that a sufficiently up-to-date version // of the legacy proto package is being used. const _ = proto.ProtoPackageIsVersion4 // The `Aligner` specifies the operation that will be applied to the data // points in each alignment period in a time series. Except for // `ALIGN_NONE`, which specifies that no operation be applied, each alignment // operation replaces the set of data values in each alignment period with // a single value: the result of applying the operation to the data values. // An aligned time series has a single data value at the end of each // `alignment_period`. // // An alignment operation can change the data type of the values, too. For // example, if you apply a counting operation to boolean values, the data // `value_type` in the original time series is `BOOLEAN`, but the `value_type` // in the aligned result is `INT64`. type Aggregation_Aligner int32 const ( // No alignment. Raw data is returned. Not valid if cross-series reduction // is requested. The `value_type` of the result is the same as the // `value_type` of the input. Aggregation_ALIGN_NONE Aggregation_Aligner = 0 // Align and convert to // [DELTA][google.api.MetricDescriptor.MetricKind.DELTA]. // The output is `delta = y1 - y0`. // // This alignment is valid for // [CUMULATIVE][google.api.MetricDescriptor.MetricKind.CUMULATIVE] and // `DELTA` metrics. If the selected alignment period results in periods // with no data, then the aligned value for such a period is created by // interpolation. The `value_type` of the aligned result is the same as // the `value_type` of the input. Aggregation_ALIGN_DELTA Aggregation_Aligner = 1 // Align and convert to a rate. The result is computed as // `rate = (y1 - y0)/(t1 - t0)`, or "delta over time". // Think of this aligner as providing the slope of the line that passes // through the value at the start and at the end of the `alignment_period`. // // This aligner is valid for `CUMULATIVE` // and `DELTA` metrics with numeric values. If the selected alignment // period results in periods with no data, then the aligned value for // such a period is created by interpolation. The output is a `GAUGE` // metric with `value_type` `DOUBLE`. // // If, by "rate", you mean "percentage change", see the // `ALIGN_PERCENT_CHANGE` aligner instead. Aggregation_ALIGN_RATE Aggregation_Aligner = 2 // Align by interpolating between adjacent points around the alignment // period boundary. This aligner is valid for `GAUGE` metrics with // numeric values. The `value_type` of the aligned result is the same as the // `value_type` of the input. Aggregation_ALIGN_INTERPOLATE Aggregation_Aligner = 3 // Align by moving the most recent data point before the end of the // alignment period to the boundary at the end of the alignment // period. This aligner is valid for `GAUGE` metrics. The `value_type` of // the aligned result is the same as the `value_type` of the input. Aggregation_ALIGN_NEXT_OLDER Aggregation_Aligner = 4 // Align the time series by returning the minimum value in each alignment // period. This aligner is valid for `GAUGE` and `DELTA` metrics with // numeric values. The `value_type` of the aligned result is the same as // the `value_type` of the input. Aggregation_ALIGN_MIN Aggregation_Aligner = 10 // Align the time series by returning the maximum value in each alignment // period. This aligner is valid for `GAUGE` and `DELTA` metrics with // numeric values. The `value_type` of the aligned result is the same as // the `value_type` of the input. Aggregation_ALIGN_MAX Aggregation_Aligner = 11 // Align the time series by returning the mean value in each alignment // period. This aligner is valid for `GAUGE` and `DELTA` metrics with // numeric values. The `value_type` of the aligned result is `DOUBLE`. Aggregation_ALIGN_MEAN Aggregation_Aligner = 12 // Align the time series by returning the number of values in each alignment // period. This aligner is valid for `GAUGE` and `DELTA` metrics with // numeric or Boolean values. The `value_type` of the aligned result is // `INT64`. Aggregation_ALIGN_COUNT Aggregation_Aligner = 13 // Align the time series by returning the sum of the values in each // alignment period. This aligner is valid for `GAUGE` and `DELTA` // metrics with numeric and distribution values. The `value_type` of the // aligned result is the same as the `value_type` of the input. Aggregation_ALIGN_SUM Aggregation_Aligner = 14 // Align the time series by returning the standard deviation of the values // in each alignment period. This aligner is valid for `GAUGE` and // `DELTA` metrics with numeric values. The `value_type` of the output is // `DOUBLE`. Aggregation_ALIGN_STDDEV Aggregation_Aligner = 15 // Align the time series by returning the number of `True` values in // each alignment period. This aligner is valid for `GAUGE` metrics with // Boolean values. The `value_type` of the output is `INT64`. Aggregation_ALIGN_COUNT_TRUE Aggregation_Aligner = 16 // Align the time series by returning the number of `False` values in // each alignment period. This aligner is valid for `GAUGE` metrics with // Boolean values. The `value_type` of the output is `INT64`. Aggregation_ALIGN_COUNT_FALSE Aggregation_Aligner = 24 // Align the time series by returning the ratio of the number of `True` // values to the total number of values in each alignment period. This // aligner is valid for `GAUGE` metrics with Boolean values. The output // value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`. Aggregation_ALIGN_FRACTION_TRUE Aggregation_Aligner = 17 // Align the time series by using [percentile // aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting // data point in each alignment period is the 99th percentile of all data // points in the period. This aligner is valid for `GAUGE` and `DELTA` // metrics with distribution values. The output is a `GAUGE` metric with // `value_type` `DOUBLE`. Aggregation_ALIGN_PERCENTILE_99 Aggregation_Aligner = 18 // Align the time series by using [percentile // aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting // data point in each alignment period is the 95th percentile of all data // points in the period. This aligner is valid for `GAUGE` and `DELTA` // metrics with distribution values. The output is a `GAUGE` metric with // `value_type` `DOUBLE`. Aggregation_ALIGN_PERCENTILE_95 Aggregation_Aligner = 19 // Align the time series by using [percentile // aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting // data point in each alignment period is the 50th percentile of all data // points in the period. This aligner is valid for `GAUGE` and `DELTA` // metrics with distribution values. The output is a `GAUGE` metric with // `value_type` `DOUBLE`. Aggregation_ALIGN_PERCENTILE_50 Aggregation_Aligner = 20 // Align the time series by using [percentile // aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting // data point in each alignment period is the 5th percentile of all data // points in the period. This aligner is valid for `GAUGE` and `DELTA` // metrics with distribution values. The output is a `GAUGE` metric with // `value_type` `DOUBLE`. Aggregation_ALIGN_PERCENTILE_05 Aggregation_Aligner = 21 // Align and convert to a percentage change. This aligner is valid for // `GAUGE` and `DELTA` metrics with numeric values. This alignment returns // `((current - previous)/previous) * 100`, where the value of `previous` is // determined based on the `alignment_period`. // // If the values of `current` and `previous` are both 0, then the returned // value is 0. If only `previous` is 0, the returned value is infinity. // // A 10-minute moving mean is computed at each point of the alignment period // prior to the above calculation to smooth the metric and prevent false // positives from very short-lived spikes. The moving mean is only // applicable for data whose values are `>= 0`. Any values `< 0` are // treated as a missing datapoint, and are ignored. While `DELTA` // metrics are accepted by this alignment, special care should be taken that // the values for the metric will always be positive. The output is a // `GAUGE` metric with `value_type` `DOUBLE`. Aggregation_ALIGN_PERCENT_CHANGE Aggregation_Aligner = 23 ) // Enum value maps for Aggregation_Aligner. var ( Aggregation_Aligner_name = map[int32]string{ 0: "ALIGN_NONE", 1: "ALIGN_DELTA", 2: "ALIGN_RATE", 3: "ALIGN_INTERPOLATE", 4: "ALIGN_NEXT_OLDER", 10: "ALIGN_MIN", 11: "ALIGN_MAX", 12: "ALIGN_MEAN", 13: "ALIGN_COUNT", 14: "ALIGN_SUM", 15: "ALIGN_STDDEV", 16: "ALIGN_COUNT_TRUE", 24: "ALIGN_COUNT_FALSE", 17: "ALIGN_FRACTION_TRUE", 18: "ALIGN_PERCENTILE_99", 19: "ALIGN_PERCENTILE_95", 20: "ALIGN_PERCENTILE_50", 21: "ALIGN_PERCENTILE_05", 23: "ALIGN_PERCENT_CHANGE", } Aggregation_Aligner_value = map[string]int32{ "ALIGN_NONE": 0, "ALIGN_DELTA": 1, "ALIGN_RATE": 2, "ALIGN_INTERPOLATE": 3, "ALIGN_NEXT_OLDER": 4, "ALIGN_MIN": 10, "ALIGN_MAX": 11, "ALIGN_MEAN": 12, "ALIGN_COUNT": 13, "ALIGN_SUM": 14, "ALIGN_STDDEV": 15, "ALIGN_COUNT_TRUE": 16, "ALIGN_COUNT_FALSE": 24, "ALIGN_FRACTION_TRUE": 17, "ALIGN_PERCENTILE_99": 18, "ALIGN_PERCENTILE_95": 19, "ALIGN_PERCENTILE_50": 20, "ALIGN_PERCENTILE_05": 21, "ALIGN_PERCENT_CHANGE": 23, } ) func (x Aggregation_Aligner) Enum() *Aggregation_Aligner { p := new(Aggregation_Aligner) *p = x return p } func (x Aggregation_Aligner) String() string { return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x)) } func (Aggregation_Aligner) Descriptor() protoreflect.EnumDescriptor { return file_google_monitoring_dashboard_v1_common_proto_enumTypes[0].Descriptor() } func (Aggregation_Aligner) Type() protoreflect.EnumType { return &file_google_monitoring_dashboard_v1_common_proto_enumTypes[0] } func (x Aggregation_Aligner) Number() protoreflect.EnumNumber { return protoreflect.EnumNumber(x) } // Deprecated: Use Aggregation_Aligner.Descriptor instead. func (Aggregation_Aligner) EnumDescriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{0, 0} } // A Reducer operation describes how to aggregate data points from multiple // time series into a single time series, where the value of each data point // in the resulting series is a function of all the already aligned values in // the input time series. type Aggregation_Reducer int32 const ( // No cross-time series reduction. The output of the `Aligner` is // returned. Aggregation_REDUCE_NONE Aggregation_Reducer = 0 // Reduce by computing the mean value across time series for each // alignment period. This reducer is valid for // [DELTA][google.api.MetricDescriptor.MetricKind.DELTA] and // [GAUGE][google.api.MetricDescriptor.MetricKind.GAUGE] metrics with // numeric or distribution values. The `value_type` of the output is // [DOUBLE][google.api.MetricDescriptor.ValueType.DOUBLE]. Aggregation_REDUCE_MEAN Aggregation_Reducer = 1 // Reduce by computing the minimum value across time series for each // alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics // with numeric values. The `value_type` of the output is the same as the // `value_type` of the input. Aggregation_REDUCE_MIN Aggregation_Reducer = 2 // Reduce by computing the maximum value across time series for each // alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics // with numeric values. The `value_type` of the output is the same as the // `value_type` of the input. Aggregation_REDUCE_MAX Aggregation_Reducer = 3 // Reduce by computing the sum across time series for each // alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics // with numeric and distribution values. The `value_type` of the output is // the same as the `value_type` of the input. Aggregation_REDUCE_SUM Aggregation_Reducer = 4 // Reduce by computing the standard deviation across time series // for each alignment period. This reducer is valid for `DELTA` and // `GAUGE` metrics with numeric or distribution values. The `value_type` // of the output is `DOUBLE`. Aggregation_REDUCE_STDDEV Aggregation_Reducer = 5 // Reduce by computing the number of data points across time series // for each alignment period. This reducer is valid for `DELTA` and // `GAUGE` metrics of numeric, Boolean, distribution, and string // `value_type`. The `value_type` of the output is `INT64`. Aggregation_REDUCE_COUNT Aggregation_Reducer = 6 // Reduce by computing the number of `True`-valued data points across time // series for each alignment period. This reducer is valid for `DELTA` and // `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output // is `INT64`. Aggregation_REDUCE_COUNT_TRUE Aggregation_Reducer = 7 // Reduce by computing the number of `False`-valued data points across time // series for each alignment period. This reducer is valid for `DELTA` and // `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output // is `INT64`. Aggregation_REDUCE_COUNT_FALSE Aggregation_Reducer = 15 // Reduce by computing the ratio of the number of `True`-valued data points // to the total number of data points for each alignment period. This // reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`. // The output value is in the range [0.0, 1.0] and has `value_type` // `DOUBLE`. Aggregation_REDUCE_FRACTION_TRUE Aggregation_Reducer = 8 // Reduce by computing the [99th // percentile](https://en.wikipedia.org/wiki/Percentile) of data points // across time series for each alignment period. This reducer is valid for // `GAUGE` and `DELTA` metrics of numeric and distribution type. The value // of the output is `DOUBLE`. Aggregation_REDUCE_PERCENTILE_99 Aggregation_Reducer = 9 // Reduce by computing the [95th // percentile](https://en.wikipedia.org/wiki/Percentile) of data points // across time series for each alignment period. This reducer is valid for // `GAUGE` and `DELTA` metrics of numeric and distribution type. The value // of the output is `DOUBLE`. Aggregation_REDUCE_PERCENTILE_95 Aggregation_Reducer = 10 // Reduce by computing the [50th // percentile](https://en.wikipedia.org/wiki/Percentile) of data points // across time series for each alignment period. This reducer is valid for // `GAUGE` and `DELTA` metrics of numeric and distribution type. The value // of the output is `DOUBLE`. Aggregation_REDUCE_PERCENTILE_50 Aggregation_Reducer = 11 // Reduce by computing the [5th // percentile](https://en.wikipedia.org/wiki/Percentile) of data points // across time series for each alignment period. This reducer is valid for // `GAUGE` and `DELTA` metrics of numeric and distribution type. The value // of the output is `DOUBLE`. Aggregation_REDUCE_PERCENTILE_05 Aggregation_Reducer = 12 ) // Enum value maps for Aggregation_Reducer. var ( Aggregation_Reducer_name = map[int32]string{ 0: "REDUCE_NONE", 1: "REDUCE_MEAN", 2: "REDUCE_MIN", 3: "REDUCE_MAX", 4: "REDUCE_SUM", 5: "REDUCE_STDDEV", 6: "REDUCE_COUNT", 7: "REDUCE_COUNT_TRUE", 15: "REDUCE_COUNT_FALSE", 8: "REDUCE_FRACTION_TRUE", 9: "REDUCE_PERCENTILE_99", 10: "REDUCE_PERCENTILE_95", 11: "REDUCE_PERCENTILE_50", 12: "REDUCE_PERCENTILE_05", } Aggregation_Reducer_value = map[string]int32{ "REDUCE_NONE": 0, "REDUCE_MEAN": 1, "REDUCE_MIN": 2, "REDUCE_MAX": 3, "REDUCE_SUM": 4, "REDUCE_STDDEV": 5, "REDUCE_COUNT": 6, "REDUCE_COUNT_TRUE": 7, "REDUCE_COUNT_FALSE": 15, "REDUCE_FRACTION_TRUE": 8, "REDUCE_PERCENTILE_99": 9, "REDUCE_PERCENTILE_95": 10, "REDUCE_PERCENTILE_50": 11, "REDUCE_PERCENTILE_05": 12, } ) func (x Aggregation_Reducer) Enum() *Aggregation_Reducer { p := new(Aggregation_Reducer) *p = x return p } func (x Aggregation_Reducer) String() string { return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x)) } func (Aggregation_Reducer) Descriptor() protoreflect.EnumDescriptor { return file_google_monitoring_dashboard_v1_common_proto_enumTypes[1].Descriptor() } func (Aggregation_Reducer) Type() protoreflect.EnumType { return &file_google_monitoring_dashboard_v1_common_proto_enumTypes[1] } func (x Aggregation_Reducer) Number() protoreflect.EnumNumber { return protoreflect.EnumNumber(x) } // Deprecated: Use Aggregation_Reducer.Descriptor instead. func (Aggregation_Reducer) EnumDescriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{0, 1} } // The value reducers that can be applied to a `PickTimeSeriesFilter`. type PickTimeSeriesFilter_Method int32 const ( // Not allowed. You must specify a different `Method` if you specify a // `PickTimeSeriesFilter`. PickTimeSeriesFilter_METHOD_UNSPECIFIED PickTimeSeriesFilter_Method = 0 // Select the mean of all values. PickTimeSeriesFilter_METHOD_MEAN PickTimeSeriesFilter_Method = 1 // Select the maximum value. PickTimeSeriesFilter_METHOD_MAX PickTimeSeriesFilter_Method = 2 // Select the minimum value. PickTimeSeriesFilter_METHOD_MIN PickTimeSeriesFilter_Method = 3 // Compute the sum of all values. PickTimeSeriesFilter_METHOD_SUM PickTimeSeriesFilter_Method = 4 // Select the most recent value. PickTimeSeriesFilter_METHOD_LATEST PickTimeSeriesFilter_Method = 5 ) // Enum value maps for PickTimeSeriesFilter_Method. var ( PickTimeSeriesFilter_Method_name = map[int32]string{ 0: "METHOD_UNSPECIFIED", 1: "METHOD_MEAN", 2: "METHOD_MAX", 3: "METHOD_MIN", 4: "METHOD_SUM", 5: "METHOD_LATEST", } PickTimeSeriesFilter_Method_value = map[string]int32{ "METHOD_UNSPECIFIED": 0, "METHOD_MEAN": 1, "METHOD_MAX": 2, "METHOD_MIN": 3, "METHOD_SUM": 4, "METHOD_LATEST": 5, } ) func (x PickTimeSeriesFilter_Method) Enum() *PickTimeSeriesFilter_Method { p := new(PickTimeSeriesFilter_Method) *p = x return p } func (x PickTimeSeriesFilter_Method) String() string { return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x)) } func (PickTimeSeriesFilter_Method) Descriptor() protoreflect.EnumDescriptor { return file_google_monitoring_dashboard_v1_common_proto_enumTypes[2].Descriptor() } func (PickTimeSeriesFilter_Method) Type() protoreflect.EnumType { return &file_google_monitoring_dashboard_v1_common_proto_enumTypes[2] } func (x PickTimeSeriesFilter_Method) Number() protoreflect.EnumNumber { return protoreflect.EnumNumber(x) } // Deprecated: Use PickTimeSeriesFilter_Method.Descriptor instead. func (PickTimeSeriesFilter_Method) EnumDescriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{1, 0} } // Describes the ranking directions. type PickTimeSeriesFilter_Direction int32 const ( // Not allowed. You must specify a different `Direction` if you specify a // `PickTimeSeriesFilter`. PickTimeSeriesFilter_DIRECTION_UNSPECIFIED PickTimeSeriesFilter_Direction = 0 // Pass the highest `num_time_series` ranking inputs. PickTimeSeriesFilter_TOP PickTimeSeriesFilter_Direction = 1 // Pass the lowest `num_time_series` ranking inputs. PickTimeSeriesFilter_BOTTOM PickTimeSeriesFilter_Direction = 2 ) // Enum value maps for PickTimeSeriesFilter_Direction. var ( PickTimeSeriesFilter_Direction_name = map[int32]string{ 0: "DIRECTION_UNSPECIFIED", 1: "TOP", 2: "BOTTOM", } PickTimeSeriesFilter_Direction_value = map[string]int32{ "DIRECTION_UNSPECIFIED": 0, "TOP": 1, "BOTTOM": 2, } ) func (x PickTimeSeriesFilter_Direction) Enum() *PickTimeSeriesFilter_Direction { p := new(PickTimeSeriesFilter_Direction) *p = x return p } func (x PickTimeSeriesFilter_Direction) String() string { return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x)) } func (PickTimeSeriesFilter_Direction) Descriptor() protoreflect.EnumDescriptor { return file_google_monitoring_dashboard_v1_common_proto_enumTypes[3].Descriptor() } func (PickTimeSeriesFilter_Direction) Type() protoreflect.EnumType { return &file_google_monitoring_dashboard_v1_common_proto_enumTypes[3] } func (x PickTimeSeriesFilter_Direction) Number() protoreflect.EnumNumber { return protoreflect.EnumNumber(x) } // Deprecated: Use PickTimeSeriesFilter_Direction.Descriptor instead. func (PickTimeSeriesFilter_Direction) EnumDescriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{1, 1} } // The filter methods that can be applied to a stream. type StatisticalTimeSeriesFilter_Method int32 const ( // Not allowed in well-formed requests. StatisticalTimeSeriesFilter_METHOD_UNSPECIFIED StatisticalTimeSeriesFilter_Method = 0 // Compute the outlier score of each stream. StatisticalTimeSeriesFilter_METHOD_CLUSTER_OUTLIER StatisticalTimeSeriesFilter_Method = 1 ) // Enum value maps for StatisticalTimeSeriesFilter_Method. var ( StatisticalTimeSeriesFilter_Method_name = map[int32]string{ 0: "METHOD_UNSPECIFIED", 1: "METHOD_CLUSTER_OUTLIER", } StatisticalTimeSeriesFilter_Method_value = map[string]int32{ "METHOD_UNSPECIFIED": 0, "METHOD_CLUSTER_OUTLIER": 1, } ) func (x StatisticalTimeSeriesFilter_Method) Enum() *StatisticalTimeSeriesFilter_Method { p := new(StatisticalTimeSeriesFilter_Method) *p = x return p } func (x StatisticalTimeSeriesFilter_Method) String() string { return protoimpl.X.EnumStringOf(x.Descriptor(), protoreflect.EnumNumber(x)) } func (StatisticalTimeSeriesFilter_Method) Descriptor() protoreflect.EnumDescriptor { return file_google_monitoring_dashboard_v1_common_proto_enumTypes[4].Descriptor() } func (StatisticalTimeSeriesFilter_Method) Type() protoreflect.EnumType { return &file_google_monitoring_dashboard_v1_common_proto_enumTypes[4] } func (x StatisticalTimeSeriesFilter_Method) Number() protoreflect.EnumNumber { return protoreflect.EnumNumber(x) } // Deprecated: Use StatisticalTimeSeriesFilter_Method.Descriptor instead. func (StatisticalTimeSeriesFilter_Method) EnumDescriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{2, 0} } // Describes how to combine multiple time series to provide a different view of // the data. Aggregation of time series is done in two steps. First, each time // series in the set is _aligned_ to the same time interval boundaries, then the // set of time series is optionally _reduced_ in number. // // Alignment consists of applying the `per_series_aligner` operation // to each time series after its data has been divided into regular // `alignment_period` time intervals. This process takes _all_ of the data // points in an alignment period, applies a mathematical transformation such as // averaging, minimum, maximum, delta, etc., and converts them into a single // data point per period. // // Reduction is when the aligned and transformed time series can optionally be // combined, reducing the number of time series through similar mathematical // transformations. Reduction involves applying a `cross_series_reducer` to // all the time series, optionally sorting the time series into subsets with // `group_by_fields`, and applying the reducer to each subset. // // The raw time series data can contain a huge amount of information from // multiple sources. Alignment and reduction transforms this mass of data into // a more manageable and representative collection of data, for example "the // 95% latency across the average of all tasks in a cluster". This // representative data can be more easily graphed and comprehended, and the // individual time series data is still available for later drilldown. For more // details, see [Filtering and // aggregation](https://cloud.google.com/monitoring/api/v3/aggregation). type Aggregation struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // The `alignment_period` specifies a time interval, in seconds, that is used // to divide the data in all the // [time series][google.monitoring.v3.TimeSeries] into consistent blocks of // time. This will be done before the per-series aligner can be applied to // the data. // // The value must be at least 60 seconds. If a per-series aligner other than // `ALIGN_NONE` is specified, this field is required or an error is returned. // If no per-series aligner is specified, or the aligner `ALIGN_NONE` is // specified, then this field is ignored. // // The maximum value of the `alignment_period` is 2 years, or 104 weeks. AlignmentPeriod *durationpb.Duration `protobuf:"bytes,1,opt,name=alignment_period,json=alignmentPeriod,proto3" json:"alignment_period,omitempty"` // An `Aligner` describes how to bring the data points in a single // time series into temporal alignment. Except for `ALIGN_NONE`, all // alignments cause all the data points in an `alignment_period` to be // mathematically grouped together, resulting in a single data point for // each `alignment_period` with end timestamp at the end of the period. // // Not all alignment operations may be applied to all time series. The valid // choices depend on the `metric_kind` and `value_type` of the original time // series. Alignment can change the `metric_kind` or the `value_type` of // the time series. // // Time series data must be aligned in order to perform cross-time // series reduction. If `cross_series_reducer` is specified, then // `per_series_aligner` must be specified and not equal to `ALIGN_NONE` // and `alignment_period` must be specified; otherwise, an error is // returned. PerSeriesAligner Aggregation_Aligner `protobuf:"varint,2,opt,name=per_series_aligner,json=perSeriesAligner,proto3,enum=google.monitoring.dashboard.v1.Aggregation_Aligner" json:"per_series_aligner,omitempty"` // The reduction operation to be used to combine time series into a single // time series, where the value of each data point in the resulting series is // a function of all the already aligned values in the input time series. // // Not all reducer operations can be applied to all time series. The valid // choices depend on the `metric_kind` and the `value_type` of the original // time series. Reduction can yield a time series with a different // `metric_kind` or `value_type` than the input time series. // // Time series data must first be aligned (see `per_series_aligner`) in order // to perform cross-time series reduction. If `cross_series_reducer` is // specified, then `per_series_aligner` must be specified, and must not be // `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an // error is returned. CrossSeriesReducer Aggregation_Reducer `protobuf:"varint,4,opt,name=cross_series_reducer,json=crossSeriesReducer,proto3,enum=google.monitoring.dashboard.v1.Aggregation_Reducer" json:"cross_series_reducer,omitempty"` // The set of fields to preserve when `cross_series_reducer` is // specified. The `group_by_fields` determine how the time series are // partitioned into subsets prior to applying the aggregation // operation. Each subset contains time series that have the same // value for each of the grouping fields. Each individual time // series is a member of exactly one subset. The // `cross_series_reducer` is applied to each subset of time series. // It is not possible to reduce across different resource types, so // this field implicitly contains `resource.type`. Fields not // specified in `group_by_fields` are aggregated away. If // `group_by_fields` is not specified and all the time series have // the same resource type, then the time series are aggregated into // a single output time series. If `cross_series_reducer` is not // defined, this field is ignored. GroupByFields []string `protobuf:"bytes,5,rep,name=group_by_fields,json=groupByFields,proto3" json:"group_by_fields,omitempty"` } func (x *Aggregation) Reset() { *x = Aggregation{} if protoimpl.UnsafeEnabled { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[0] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *Aggregation) String() string { return protoimpl.X.MessageStringOf(x) } func (*Aggregation) ProtoMessage() {} func (x *Aggregation) ProtoReflect() protoreflect.Message { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[0] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } // Deprecated: Use Aggregation.ProtoReflect.Descriptor instead. func (*Aggregation) Descriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{0} } func (x *Aggregation) GetAlignmentPeriod() *durationpb.Duration { if x != nil { return x.AlignmentPeriod } return nil } func (x *Aggregation) GetPerSeriesAligner() Aggregation_Aligner { if x != nil { return x.PerSeriesAligner } return Aggregation_ALIGN_NONE } func (x *Aggregation) GetCrossSeriesReducer() Aggregation_Reducer { if x != nil { return x.CrossSeriesReducer } return Aggregation_REDUCE_NONE } func (x *Aggregation) GetGroupByFields() []string { if x != nil { return x.GroupByFields } return nil } // Describes a ranking-based time series filter. Each input time series is // ranked with an aligner. The filter will allow up to `num_time_series` time // series to pass through it, selecting them based on the relative ranking. // // For example, if `ranking_method` is `METHOD_MEAN`,`direction` is `BOTTOM`, // and `num_time_series` is 3, then the 3 times series with the lowest mean // values will pass through the filter. type PickTimeSeriesFilter struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // `ranking_method` is applied to each time series independently to produce // the value which will be used to compare the time series to other time // series. RankingMethod PickTimeSeriesFilter_Method `protobuf:"varint,1,opt,name=ranking_method,json=rankingMethod,proto3,enum=google.monitoring.dashboard.v1.PickTimeSeriesFilter_Method" json:"ranking_method,omitempty"` // How many time series to allow to pass through the filter. NumTimeSeries int32 `protobuf:"varint,2,opt,name=num_time_series,json=numTimeSeries,proto3" json:"num_time_series,omitempty"` // How to use the ranking to select time series that pass through the filter. Direction PickTimeSeriesFilter_Direction `protobuf:"varint,3,opt,name=direction,proto3,enum=google.monitoring.dashboard.v1.PickTimeSeriesFilter_Direction" json:"direction,omitempty"` } func (x *PickTimeSeriesFilter) Reset() { *x = PickTimeSeriesFilter{} if protoimpl.UnsafeEnabled { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[1] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *PickTimeSeriesFilter) String() string { return protoimpl.X.MessageStringOf(x) } func (*PickTimeSeriesFilter) ProtoMessage() {} func (x *PickTimeSeriesFilter) ProtoReflect() protoreflect.Message { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[1] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } // Deprecated: Use PickTimeSeriesFilter.ProtoReflect.Descriptor instead. func (*PickTimeSeriesFilter) Descriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{1} } func (x *PickTimeSeriesFilter) GetRankingMethod() PickTimeSeriesFilter_Method { if x != nil { return x.RankingMethod } return PickTimeSeriesFilter_METHOD_UNSPECIFIED } func (x *PickTimeSeriesFilter) GetNumTimeSeries() int32 { if x != nil { return x.NumTimeSeries } return 0 } func (x *PickTimeSeriesFilter) GetDirection() PickTimeSeriesFilter_Direction { if x != nil { return x.Direction } return PickTimeSeriesFilter_DIRECTION_UNSPECIFIED } // A filter that ranks streams based on their statistical relation to other // streams in a request. // Note: This field is deprecated and completely ignored by the API. type StatisticalTimeSeriesFilter struct { state protoimpl.MessageState sizeCache protoimpl.SizeCache unknownFields protoimpl.UnknownFields // `rankingMethod` is applied to a set of time series, and then the produced // value for each individual time series is used to compare a given time // series to others. // These are methods that cannot be applied stream-by-stream, but rather // require the full context of a request to evaluate time series. RankingMethod StatisticalTimeSeriesFilter_Method `protobuf:"varint,1,opt,name=ranking_method,json=rankingMethod,proto3,enum=google.monitoring.dashboard.v1.StatisticalTimeSeriesFilter_Method" json:"ranking_method,omitempty"` // How many time series to output. NumTimeSeries int32 `protobuf:"varint,2,opt,name=num_time_series,json=numTimeSeries,proto3" json:"num_time_series,omitempty"` } func (x *StatisticalTimeSeriesFilter) Reset() { *x = StatisticalTimeSeriesFilter{} if protoimpl.UnsafeEnabled { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[2] ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) ms.StoreMessageInfo(mi) } } func (x *StatisticalTimeSeriesFilter) String() string { return protoimpl.X.MessageStringOf(x) } func (*StatisticalTimeSeriesFilter) ProtoMessage() {} func (x *StatisticalTimeSeriesFilter) ProtoReflect() protoreflect.Message { mi := &file_google_monitoring_dashboard_v1_common_proto_msgTypes[2] if protoimpl.UnsafeEnabled && x != nil { ms := protoimpl.X.MessageStateOf(protoimpl.Pointer(x)) if ms.LoadMessageInfo() == nil { ms.StoreMessageInfo(mi) } return ms } return mi.MessageOf(x) } // Deprecated: Use StatisticalTimeSeriesFilter.ProtoReflect.Descriptor instead. func (*StatisticalTimeSeriesFilter) Descriptor() ([]byte, []int) { return file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP(), []int{2} } func (x *StatisticalTimeSeriesFilter) GetRankingMethod() StatisticalTimeSeriesFilter_Method { if x != nil { return x.RankingMethod } return StatisticalTimeSeriesFilter_METHOD_UNSPECIFIED } func (x *StatisticalTimeSeriesFilter) GetNumTimeSeries() int32 { if x != nil { return x.NumTimeSeries } return 0 } var File_google_monitoring_dashboard_v1_common_proto protoreflect.FileDescriptor var file_google_monitoring_dashboard_v1_common_proto_rawDesc = []byte{ 0x0a, 0x2b, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2f, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2f, 0x76, 0x31, 0x2f, 0x63, 0x6f, 0x6d, 0x6d, 0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x12, 0x1e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x1a, 0x1d, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x61, 0x70, 0x69, 0x2f, 0x64, 0x69, 0x73, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x1a, 0x1e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2f, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2f, 0x64, 0x75, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x22, 0x87, 0x08, 0x0a, 0x0b, 0x41, 0x67, 0x67, 0x72, 0x65, 0x67, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x44, 0x0a, 0x10, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x6d, 0x65, 0x6e, 0x74, 0x5f, 0x70, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0b, 0x32, 0x19, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x62, 0x75, 0x66, 0x2e, 0x44, 0x75, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x52, 0x0f, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x6d, 0x65, 0x6e, 0x74, 0x50, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x12, 0x61, 0x0a, 0x12, 0x70, 0x65, 0x72, 0x5f, 0x73, 0x65, 0x72, 0x69, 0x65, 0x73, 0x5f, 0x61, 0x6c, 0x69, 0x67, 0x6e, 0x65, 0x72, 0x18, 0x02, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x33, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x2e, 0x41, 0x67, 0x67, 0x72, 0x65, 0x67, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x41, 0x6c, 0x69, 0x67, 0x6e, 0x65, 0x72, 0x52, 0x10, 0x70, 0x65, 0x72, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x41, 0x6c, 0x69, 0x67, 0x6e, 0x65, 0x72, 0x12, 0x65, 0x0a, 0x14, 0x63, 0x72, 0x6f, 0x73, 0x73, 0x5f, 0x73, 0x65, 0x72, 0x69, 0x65, 0x73, 0x5f, 0x72, 0x65, 0x64, 0x75, 0x63, 0x65, 0x72, 0x18, 0x04, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x33, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x2e, 0x41, 0x67, 0x67, 0x72, 0x65, 0x67, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x52, 0x65, 0x64, 0x75, 0x63, 0x65, 0x72, 0x52, 0x12, 0x63, 0x72, 0x6f, 0x73, 0x73, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x52, 0x65, 0x64, 0x75, 0x63, 0x65, 0x72, 0x12, 0x26, 0x0a, 0x0f, 0x67, 0x72, 0x6f, 0x75, 0x70, 0x5f, 0x62, 0x79, 0x5f, 0x66, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x18, 0x05, 0x20, 0x03, 0x28, 0x09, 0x52, 0x0d, 0x67, 0x72, 0x6f, 0x75, 0x70, 0x42, 0x79, 0x46, 0x69, 0x65, 0x6c, 0x64, 0x73, 0x22, 0x8b, 0x03, 0x0a, 0x07, 0x41, 0x6c, 0x69, 0x67, 0x6e, 0x65, 0x72, 0x12, 0x0e, 0x0a, 0x0a, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x4e, 0x4f, 0x4e, 0x45, 0x10, 0x00, 0x12, 0x0f, 0x0a, 0x0b, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x44, 0x45, 0x4c, 0x54, 0x41, 0x10, 0x01, 0x12, 0x0e, 0x0a, 0x0a, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x52, 0x41, 0x54, 0x45, 0x10, 0x02, 0x12, 0x15, 0x0a, 0x11, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x49, 0x4e, 0x54, 0x45, 0x52, 0x50, 0x4f, 0x4c, 0x41, 0x54, 0x45, 0x10, 0x03, 0x12, 0x14, 0x0a, 0x10, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x4e, 0x45, 0x58, 0x54, 0x5f, 0x4f, 0x4c, 0x44, 0x45, 0x52, 0x10, 0x04, 0x12, 0x0d, 0x0a, 0x09, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x4d, 0x49, 0x4e, 0x10, 0x0a, 0x12, 0x0d, 0x0a, 0x09, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x4d, 0x41, 0x58, 0x10, 0x0b, 0x12, 0x0e, 0x0a, 0x0a, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x4d, 0x45, 0x41, 0x4e, 0x10, 0x0c, 0x12, 0x0f, 0x0a, 0x0b, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x10, 0x0d, 0x12, 0x0d, 0x0a, 0x09, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x53, 0x55, 0x4d, 0x10, 0x0e, 0x12, 0x10, 0x0a, 0x0c, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x53, 0x54, 0x44, 0x44, 0x45, 0x56, 0x10, 0x0f, 0x12, 0x14, 0x0a, 0x10, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x5f, 0x54, 0x52, 0x55, 0x45, 0x10, 0x10, 0x12, 0x15, 0x0a, 0x11, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x5f, 0x46, 0x41, 0x4c, 0x53, 0x45, 0x10, 0x18, 0x12, 0x17, 0x0a, 0x13, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x46, 0x52, 0x41, 0x43, 0x54, 0x49, 0x4f, 0x4e, 0x5f, 0x54, 0x52, 0x55, 0x45, 0x10, 0x11, 0x12, 0x17, 0x0a, 0x13, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x39, 0x39, 0x10, 0x12, 0x12, 0x17, 0x0a, 0x13, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x39, 0x35, 0x10, 0x13, 0x12, 0x17, 0x0a, 0x13, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x35, 0x30, 0x10, 0x14, 0x12, 0x17, 0x0a, 0x13, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x30, 0x35, 0x10, 0x15, 0x12, 0x18, 0x0a, 0x14, 0x41, 0x4c, 0x49, 0x47, 0x4e, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x5f, 0x43, 0x48, 0x41, 0x4e, 0x47, 0x45, 0x10, 0x17, 0x22, 0xb1, 0x02, 0x0a, 0x07, 0x52, 0x65, 0x64, 0x75, 0x63, 0x65, 0x72, 0x12, 0x0f, 0x0a, 0x0b, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x4e, 0x4f, 0x4e, 0x45, 0x10, 0x00, 0x12, 0x0f, 0x0a, 0x0b, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x4d, 0x45, 0x41, 0x4e, 0x10, 0x01, 0x12, 0x0e, 0x0a, 0x0a, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x4d, 0x49, 0x4e, 0x10, 0x02, 0x12, 0x0e, 0x0a, 0x0a, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x4d, 0x41, 0x58, 0x10, 0x03, 0x12, 0x0e, 0x0a, 0x0a, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x53, 0x55, 0x4d, 0x10, 0x04, 0x12, 0x11, 0x0a, 0x0d, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x53, 0x54, 0x44, 0x44, 0x45, 0x56, 0x10, 0x05, 0x12, 0x10, 0x0a, 0x0c, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x10, 0x06, 0x12, 0x15, 0x0a, 0x11, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x5f, 0x54, 0x52, 0x55, 0x45, 0x10, 0x07, 0x12, 0x16, 0x0a, 0x12, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x43, 0x4f, 0x55, 0x4e, 0x54, 0x5f, 0x46, 0x41, 0x4c, 0x53, 0x45, 0x10, 0x0f, 0x12, 0x18, 0x0a, 0x14, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x46, 0x52, 0x41, 0x43, 0x54, 0x49, 0x4f, 0x4e, 0x5f, 0x54, 0x52, 0x55, 0x45, 0x10, 0x08, 0x12, 0x18, 0x0a, 0x14, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x39, 0x39, 0x10, 0x09, 0x12, 0x18, 0x0a, 0x14, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x39, 0x35, 0x10, 0x0a, 0x12, 0x18, 0x0a, 0x14, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x35, 0x30, 0x10, 0x0b, 0x12, 0x18, 0x0a, 0x14, 0x52, 0x45, 0x44, 0x55, 0x43, 0x45, 0x5f, 0x50, 0x45, 0x52, 0x43, 0x45, 0x4e, 0x54, 0x49, 0x4c, 0x45, 0x5f, 0x30, 0x35, 0x10, 0x0c, 0x22, 0xb3, 0x03, 0x0a, 0x14, 0x50, 0x69, 0x63, 0x6b, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x46, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x12, 0x62, 0x0a, 0x0e, 0x72, 0x61, 0x6e, 0x6b, 0x69, 0x6e, 0x67, 0x5f, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x3b, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x2e, 0x50, 0x69, 0x63, 0x6b, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x46, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x2e, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x52, 0x0d, 0x72, 0x61, 0x6e, 0x6b, 0x69, 0x6e, 0x67, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x12, 0x26, 0x0a, 0x0f, 0x6e, 0x75, 0x6d, 0x5f, 0x74, 0x69, 0x6d, 0x65, 0x5f, 0x73, 0x65, 0x72, 0x69, 0x65, 0x73, 0x18, 0x02, 0x20, 0x01, 0x28, 0x05, 0x52, 0x0d, 0x6e, 0x75, 0x6d, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x12, 0x5c, 0x0a, 0x09, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x18, 0x03, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x3e, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x2e, 0x50, 0x69, 0x63, 0x6b, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x46, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x2e, 0x44, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x52, 0x09, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x74, 0x0a, 0x06, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x12, 0x16, 0x0a, 0x12, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x55, 0x4e, 0x53, 0x50, 0x45, 0x43, 0x49, 0x46, 0x49, 0x45, 0x44, 0x10, 0x00, 0x12, 0x0f, 0x0a, 0x0b, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x4d, 0x45, 0x41, 0x4e, 0x10, 0x01, 0x12, 0x0e, 0x0a, 0x0a, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x4d, 0x41, 0x58, 0x10, 0x02, 0x12, 0x0e, 0x0a, 0x0a, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x4d, 0x49, 0x4e, 0x10, 0x03, 0x12, 0x0e, 0x0a, 0x0a, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x53, 0x55, 0x4d, 0x10, 0x04, 0x12, 0x11, 0x0a, 0x0d, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x4c, 0x41, 0x54, 0x45, 0x53, 0x54, 0x10, 0x05, 0x22, 0x3b, 0x0a, 0x09, 0x44, 0x69, 0x72, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x12, 0x19, 0x0a, 0x15, 0x44, 0x49, 0x52, 0x45, 0x43, 0x54, 0x49, 0x4f, 0x4e, 0x5f, 0x55, 0x4e, 0x53, 0x50, 0x45, 0x43, 0x49, 0x46, 0x49, 0x45, 0x44, 0x10, 0x00, 0x12, 0x07, 0x0a, 0x03, 0x54, 0x4f, 0x50, 0x10, 0x01, 0x12, 0x0a, 0x0a, 0x06, 0x42, 0x4f, 0x54, 0x54, 0x4f, 0x4d, 0x10, 0x02, 0x22, 0xee, 0x01, 0x0a, 0x1b, 0x53, 0x74, 0x61, 0x74, 0x69, 0x73, 0x74, 0x69, 0x63, 0x61, 0x6c, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x46, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x12, 0x69, 0x0a, 0x0e, 0x72, 0x61, 0x6e, 0x6b, 0x69, 0x6e, 0x67, 0x5f, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x18, 0x01, 0x20, 0x01, 0x28, 0x0e, 0x32, 0x42, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x2e, 0x53, 0x74, 0x61, 0x74, 0x69, 0x73, 0x74, 0x69, 0x63, 0x61, 0x6c, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x46, 0x69, 0x6c, 0x74, 0x65, 0x72, 0x2e, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x52, 0x0d, 0x72, 0x61, 0x6e, 0x6b, 0x69, 0x6e, 0x67, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x12, 0x26, 0x0a, 0x0f, 0x6e, 0x75, 0x6d, 0x5f, 0x74, 0x69, 0x6d, 0x65, 0x5f, 0x73, 0x65, 0x72, 0x69, 0x65, 0x73, 0x18, 0x02, 0x20, 0x01, 0x28, 0x05, 0x52, 0x0d, 0x6e, 0x75, 0x6d, 0x54, 0x69, 0x6d, 0x65, 0x53, 0x65, 0x72, 0x69, 0x65, 0x73, 0x22, 0x3c, 0x0a, 0x06, 0x4d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x12, 0x16, 0x0a, 0x12, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x55, 0x4e, 0x53, 0x50, 0x45, 0x43, 0x49, 0x46, 0x49, 0x45, 0x44, 0x10, 0x00, 0x12, 0x1a, 0x0a, 0x16, 0x4d, 0x45, 0x54, 0x48, 0x4f, 0x44, 0x5f, 0x43, 0x4c, 0x55, 0x53, 0x54, 0x45, 0x52, 0x5f, 0x4f, 0x55, 0x54, 0x4c, 0x49, 0x45, 0x52, 0x10, 0x01, 0x42, 0xce, 0x01, 0x0a, 0x22, 0x63, 0x6f, 0x6d, 0x2e, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2e, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2e, 0x76, 0x31, 0x42, 0x0b, 0x43, 0x6f, 0x6d, 0x6d, 0x6f, 0x6e, 0x50, 0x72, 0x6f, 0x74, 0x6f, 0x50, 0x01, 0x5a, 0x47, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x2e, 0x67, 0x6f, 0x6c, 0x61, 0x6e, 0x67, 0x2e, 0x6f, 0x72, 0x67, 0x2f, 0x67, 0x65, 0x6e, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x2f, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x61, 0x70, 0x69, 0x73, 0x2f, 0x6d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x2f, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x2f, 0x76, 0x31, 0x3b, 0x64, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0xca, 0x02, 0x24, 0x47, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x5c, 0x43, 0x6c, 0x6f, 0x75, 0x64, 0x5c, 0x4d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x5c, 0x44, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x5c, 0x56, 0x31, 0xea, 0x02, 0x28, 0x47, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x3a, 0x3a, 0x43, 0x6c, 0x6f, 0x75, 0x64, 0x3a, 0x3a, 0x4d, 0x6f, 0x6e, 0x69, 0x74, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x3a, 0x3a, 0x44, 0x61, 0x73, 0x68, 0x62, 0x6f, 0x61, 0x72, 0x64, 0x3a, 0x3a, 0x56, 0x31, 0x62, 0x06, 0x70, 0x72, 0x6f, 0x74, 0x6f, 0x33, } var ( file_google_monitoring_dashboard_v1_common_proto_rawDescOnce sync.Once file_google_monitoring_dashboard_v1_common_proto_rawDescData = file_google_monitoring_dashboard_v1_common_proto_rawDesc ) func file_google_monitoring_dashboard_v1_common_proto_rawDescGZIP() []byte { file_google_monitoring_dashboard_v1_common_proto_rawDescOnce.Do(func() { file_google_monitoring_dashboard_v1_common_proto_rawDescData = protoimpl.X.CompressGZIP(file_google_monitoring_dashboard_v1_common_proto_rawDescData) }) return file_google_monitoring_dashboard_v1_common_proto_rawDescData } var file_google_monitoring_dashboard_v1_common_proto_enumTypes = make([]protoimpl.EnumInfo, 5) var file_google_monitoring_dashboard_v1_common_proto_msgTypes = make([]protoimpl.MessageInfo, 3) var file_google_monitoring_dashboard_v1_common_proto_goTypes = []interface{}{ (Aggregation_Aligner)(0), // 0: google.monitoring.dashboard.v1.Aggregation.Aligner (Aggregation_Reducer)(0), // 1: google.monitoring.dashboard.v1.Aggregation.Reducer (PickTimeSeriesFilter_Method)(0), // 2: google.monitoring.dashboard.v1.PickTimeSeriesFilter.Method (PickTimeSeriesFilter_Direction)(0), // 3: google.monitoring.dashboard.v1.PickTimeSeriesFilter.Direction (StatisticalTimeSeriesFilter_Method)(0), // 4: google.monitoring.dashboard.v1.StatisticalTimeSeriesFilter.Method (*Aggregation)(nil), // 5: google.monitoring.dashboard.v1.Aggregation (*PickTimeSeriesFilter)(nil), // 6: google.monitoring.dashboard.v1.PickTimeSeriesFilter (*StatisticalTimeSeriesFilter)(nil), // 7: google.monitoring.dashboard.v1.StatisticalTimeSeriesFilter (*durationpb.Duration)(nil), // 8: google.protobuf.Duration } var file_google_monitoring_dashboard_v1_common_proto_depIdxs = []int32{ 8, // 0: google.monitoring.dashboard.v1.Aggregation.alignment_period:type_name -> google.protobuf.Duration 0, // 1: google.monitoring.dashboard.v1.Aggregation.per_series_aligner:type_name -> google.monitoring.dashboard.v1.Aggregation.Aligner 1, // 2: google.monitoring.dashboard.v1.Aggregation.cross_series_reducer:type_name -> google.monitoring.dashboard.v1.Aggregation.Reducer 2, // 3: google.monitoring.dashboard.v1.PickTimeSeriesFilter.ranking_method:type_name -> google.monitoring.dashboard.v1.PickTimeSeriesFilter.Method 3, // 4: google.monitoring.dashboard.v1.PickTimeSeriesFilter.direction:type_name -> google.monitoring.dashboard.v1.PickTimeSeriesFilter.Direction 4, // 5: google.monitoring.dashboard.v1.StatisticalTimeSeriesFilter.ranking_method:type_name -> google.monitoring.dashboard.v1.StatisticalTimeSeriesFilter.Method 6, // [6:6] is the sub-list for method output_type 6, // [6:6] is the sub-list for method input_type 6, // [6:6] is the sub-list for extension type_name 6, // [6:6] is the sub-list for extension extendee 0, // [0:6] is the sub-list for field type_name } func init() { file_google_monitoring_dashboard_v1_common_proto_init() } func file_google_monitoring_dashboard_v1_common_proto_init() { if File_google_monitoring_dashboard_v1_common_proto != nil { return } if !protoimpl.UnsafeEnabled { file_google_monitoring_dashboard_v1_common_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*Aggregation); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } file_google_monitoring_dashboard_v1_common_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*PickTimeSeriesFilter); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } file_google_monitoring_dashboard_v1_common_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} { switch v := v.(*StatisticalTimeSeriesFilter); i { case 0: return &v.state case 1: return &v.sizeCache case 2: return &v.unknownFields default: return nil } } } type x struct{} out := protoimpl.TypeBuilder{ File: protoimpl.DescBuilder{ GoPackagePath: reflect.TypeOf(x{}).PkgPath(), RawDescriptor: file_google_monitoring_dashboard_v1_common_proto_rawDesc, NumEnums: 5, NumMessages: 3, NumExtensions: 0, NumServices: 0, }, GoTypes: file_google_monitoring_dashboard_v1_common_proto_goTypes, DependencyIndexes: file_google_monitoring_dashboard_v1_common_proto_depIdxs, EnumInfos: file_google_monitoring_dashboard_v1_common_proto_enumTypes, MessageInfos: file_google_monitoring_dashboard_v1_common_proto_msgTypes, }.Build() File_google_monitoring_dashboard_v1_common_proto = out.File file_google_monitoring_dashboard_v1_common_proto_rawDesc = nil file_google_monitoring_dashboard_v1_common_proto_goTypes = nil file_google_monitoring_dashboard_v1_common_proto_depIdxs = nil }