#ifndef FIO_STAT_H #define FIO_STAT_H #include "iolog.h" struct group_run_stats { uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT]; uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT]; uint64_t io_kb[DDIR_RWDIR_CNT]; uint64_t agg[DDIR_RWDIR_CNT]; uint32_t kb_base; uint32_t unit_base; uint32_t groupid; uint32_t unified_rw_rep; } __attribute__((packed)); /* * How many depth levels to log */ #define FIO_IO_U_MAP_NR 7 #define FIO_IO_U_LAT_U_NR 10 #define FIO_IO_U_LAT_M_NR 12 /* * Aggregate clat samples to report percentile(s) of them. * * EXECUTIVE SUMMARY * * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the * value of resulting percentiles. The error will be approximately * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value. * * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum * range being tracked for latency samples. The maximum value tracked * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds. * * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory * requirement of storing those aggregate counts. The memory used will * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int) * bytes. * * FIO_IO_U_PLAT_NR is the total number of buckets. * * DETAILS * * Suppose the clat varies from 0 to 999 (usec), the straightforward * method is to keep an array of (999 + 1) buckets, in which a counter * keeps the count of samples which fall in the bucket, e.g., * {[0],[1],...,[999]}. However this consumes a huge amount of space, * and can be avoided if an approximation is acceptable. * * One such method is to let the range of the bucket to be greater * than one. This method has low accuracy when the value is small. For * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and * the represented value of each bucket be the mean of the range. Then * a value 0 has an round-off error of 49.5. To improve on this, we * use buckets with non-uniform ranges, while bounding the error of * each bucket within a ratio of the sample value. A simple example * would be when error_bound = 0.005, buckets are { * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},.., * {[900,909],[910,919]...} }. The total range is partitioned into * groups with different ranges, then buckets with uniform ranges. An * upper bound of the error is (range_of_bucket/2)/value_of_bucket * * For better efficiency, we implement this using base two. We group * samples by their Most Significant Bit (MSB), extract the next M bit * of them as an index within the group, and discard the rest of the * bits. * * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0), * and use M bit for indexing * * | n | M bits | bit (n-M-1) ... bit 0 | * * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off * error * * 2^(n-M)-1 2^(n-M) 1 * e <= --------- <= ------- = --- * 2^n 2^n 2^M * * Furthermore, we use "mean" of the range to represent the bucket, * the error e can be lowered by half to 1 / 2^(M+1). By using M bits * as the index, each group must contains 2^M buckets. * * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%) * * Group MSB #discarded range of #buckets * error_bits value * ---------------------------------------------------------------- * 0* 0~5 0 [0,63] 64 * 1* 6 0 [64,127] 64 * 2 7 1 [128,255] 64 * 3 8 2 [256,511] 64 * 4 9 3 [512,1023] 64 * ... ... ... [...,...] ... * 18 23 17 [8838608,+inf]** 64 * * * Special cases: when n < (M-1) or when n == (M-1), in both cases, * the value cannot be rounded off. Use all bits of the sample as * index. * * ** If a sample's MSB is greater than 23, it will be counted as 23. */ #define FIO_IO_U_PLAT_BITS 6 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS) #define FIO_IO_U_PLAT_GROUP_NR 19 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL) #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified list of percentiles */ #define MAX_PATTERN_SIZE 512 #define FIO_JOBNAME_SIZE 128 #define FIO_JOBDESC_SIZE 256 #define FIO_VERROR_SIZE 128 struct thread_stat { char name[FIO_JOBNAME_SIZE]; char verror[FIO_VERROR_SIZE]; uint32_t error; uint32_t thread_number; uint32_t groupid; uint32_t pid; char description[FIO_JOBDESC_SIZE]; uint32_t members; uint32_t unified_rw_rep; /* * bandwidth and latency stats */ struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */ struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */ struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */ struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */ struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */ /* * fio system usage accounting */ uint64_t usr_time; uint64_t sys_time; uint64_t ctx; uint64_t minf, majf; /* * IO depth and latency stats */ uint64_t clat_percentiles; uint64_t percentile_precision; fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN]; uint32_t io_u_map[FIO_IO_U_MAP_NR]; uint32_t io_u_submit[FIO_IO_U_MAP_NR]; uint32_t io_u_complete[FIO_IO_U_MAP_NR]; uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR]; uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR]; uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR]; uint64_t total_io_u[3]; uint64_t short_io_u[3]; uint64_t total_submit; uint64_t total_complete; uint64_t io_bytes[DDIR_RWDIR_CNT]; uint64_t runtime[DDIR_RWDIR_CNT]; uint64_t total_run_time; /* * IO Error related stats */ uint16_t continue_on_error; uint64_t total_err_count; uint32_t first_error; uint32_t kb_base; uint32_t unit_base; uint32_t latency_depth; uint64_t latency_target; fio_fp64_t latency_percentile; uint64_t latency_window; } __attribute__((packed)); struct jobs_eta { uint32_t nr_running; uint32_t nr_ramp; uint32_t nr_pending; uint32_t nr_setting_up; uint32_t files_open; uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT]; uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT]; uint32_t rate[DDIR_RWDIR_CNT]; uint32_t iops[DDIR_RWDIR_CNT]; uint64_t elapsed_sec; uint64_t eta_sec; uint32_t is_pow2; uint32_t unit_base; /* * Network 'copy' of run_str[] */ uint32_t nr_threads; uint8_t run_str[]; } __attribute__((packed)); extern struct jobs_eta *get_jobs_eta(int force, size_t *size); extern void stat_init(void); extern void stat_exit(void); extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs); extern void show_group_stats(struct group_run_stats *rs); extern int calc_thread_status(struct jobs_eta *je, int force); extern void display_thread_status(struct jobs_eta *je); extern void show_run_stats(void); extern void show_running_run_stats(void); extern void check_for_running_stats(void); extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr); extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src); extern void init_thread_stat(struct thread_stat *ts); extern void init_group_run_stat(struct group_run_stats *gs); extern void eta_to_str(char *str, unsigned long eta_sec); extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev); extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv); extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat); extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat); extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist); extern void reset_io_stats(struct thread_data *); static inline int usec_to_msec(unsigned long *min, unsigned long *max, double *mean, double *dev) { if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) { *min /= 1000; *max /= 1000; *mean /= 1000.0; *dev /= 1000.0; return 0; } return 1; } /* * Worst level condensing would be 1:5, so allow enough room for that */ #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5) #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number) #endif