package Math::BigInt;
#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similar)
# sign : +,-,NaN,+inf,-inf
# _a : accuracy
# _p : precision
# _f : flags, used by MBF to flag parts of a float as untouchable
# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!
my $class = "Math::BigInt";
use 5.006002;
$VERSION = '1.9993';
@ISA = qw(Exporter);
@EXPORT_OK = qw(objectify bgcd blcm);
# _trap_inf and _trap_nan are internal and should never be accessed from the
# outside
use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode
$upgrade $downgrade $_trap_nan $_trap_inf/;
use strict;
# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third parameter is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.
# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.
# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.
# We register ops that are not registerable yet, so suppress warnings
{ no warnings;
use overload
'=' => sub { $_[0]->copy(); },
# some shortcuts for speed (assumes that reversed order of arguments is routed
# to normal '+' and we thus can always modify first arg. If this is changed,
# this breaks and must be adjusted.)
'+=' => sub { $_[0]->badd($_[1]); },
'-=' => sub { $_[0]->bsub($_[1]); },
'*=' => sub { $_[0]->bmul($_[1]); },
'/=' => sub { scalar $_[0]->bdiv($_[1]); },
'%=' => sub { $_[0]->bmod($_[1]); },
'^=' => sub { $_[0]->bxor($_[1]); },
'&=' => sub { $_[0]->band($_[1]); },
'|=' => sub { $_[0]->bior($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
'<<=' => sub { $_[0]->blsft($_[1]); },
'>>=' => sub { $_[0]->brsft($_[1]); },
# not supported by Perl yet
'..' => \&_pointpoint,
'<=>' => sub { my $rc = $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
$_[0]->bcmp($_[1]);
$rc = 1 unless defined $rc;
$rc <=> 0;
},
# we need '>=' to get things like "1 >= NaN" right:
'>=' => sub { my $rc = $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
$_[0]->bcmp($_[1]);
# if there was a NaN involved, return false
return '' unless defined $rc;
$rc >= 0;
},
'cmp' => sub {
$_[2] ?
"$_[1]" cmp $_[0]->bstr() :
$_[0]->bstr() cmp "$_[1]" },
'cos' => sub { $_[0]->copy->bcos(); },
'sin' => sub { $_[0]->copy->bsin(); },
'atan2' => sub { $_[2] ?
ref($_[0])->new($_[1])->batan2($_[0]) :
$_[0]->copy()->batan2($_[1]) },
# are not yet overloadable
#'hex' => sub { print "hex"; $_[0]; },
#'oct' => sub { print "oct"; $_[0]; },
# log(N) is log(N, e), where e is Euler's number
'log' => sub { $_[0]->copy()->blog($_[1], undef); },
'exp' => sub { $_[0]->copy()->bexp($_[1]); },
'int' => sub { $_[0]->copy(); },
'neg' => sub { $_[0]->copy()->bneg(); },
'abs' => sub { $_[0]->copy()->babs(); },
'sqrt' => sub { $_[0]->copy()->bsqrt(); },
'~' => sub { $_[0]->copy()->bnot(); },
# for subtract it's a bit tricky to not modify b: b-a => -a+b
'-' => sub { my $c = $_[0]->copy; $_[2] ?
$c->bneg()->badd( $_[1]) :
$c->bsub( $_[1]) },
'+' => sub { $_[0]->copy()->badd($_[1]); },
'*' => sub { $_[0]->copy()->bmul($_[1]); },
'/' => sub {
$_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
},
'%' => sub {
$_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
},
'**' => sub {
$_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
},
'<<' => sub {
$_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
},
'>>' => sub {
$_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
},
'&' => sub {
$_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
},
'|' => sub {
$_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
},
'^' => sub {
$_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
},
# can modify arg of ++ and --, so avoid a copy() for speed, but don't
# use $_[0]->bone(), it would modify $_[0] to be 1!
'++' => sub { $_[0]->binc() },
'--' => sub { $_[0]->bdec() },
# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
'bool' => sub {
# this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
# v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-(
my $t = undef;
$t = 1 if !$_[0]->is_zero();
$t;
},
# the original qw() does not work with the TIESCALAR below, why?
# Order of arguments insignificant
'""' => sub { $_[0]->bstr(); },
'0+' => sub { $_[0]->numify(); }
;
} # no warnings scope
##############################################################################
# global constants, flags and accessory
# These vars are public, but their direct usage is not recommended, use the
# accessor methods instead
$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
$accuracy = undef;
$precision = undef;
$div_scale = 40;
$upgrade = undef; # default is no upgrade
$downgrade = undef; # default is no downgrade
# These are internally, and not to be used from the outside at all
$_trap_nan = 0; # are NaNs ok? set w/ config()
$_trap_inf = 0; # are infs ok? set w/ config()
my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do the low level math
# default is Calc.pm
my $IMPORT = 0; # was import() called yet?
# used to make require work
my %WARN; # warn only once for low-level libs
my %CAN; # cache for $CALC->can(...)
my %CALLBACKS; # callbacks to notify on lib loads
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
$rnd_mode = 'even';
sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
sub FETCH { return $round_mode; }
sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
BEGIN
{
# tie to enable $rnd_mode to work transparently
tie $rnd_mode, 'Math::BigInt';
# set up some handy alias names
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
##############################################################################
sub round_mode
{
no strict 'refs';
# make Class->round_mode() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
my $m = shift;
if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$m'");
}
return ${"${class}::round_mode"} = $m;
}
${"${class}::round_mode"};
}
sub upgrade
{
no strict 'refs';
# make Class->upgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
return ${"${class}::upgrade"} = $_[0];
}
${"${class}::upgrade"};
}
sub downgrade
{
no strict 'refs';
# make Class->downgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
return ${"${class}::downgrade"} = $_[0];
}
${"${class}::downgrade"};
}
sub div_scale
{
no strict 'refs';
# make Class->div_scale() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
if ($_[0] < 0)
{
require Carp; Carp::croak ('div_scale must be greater than zero');
}
${"${class}::div_scale"} = $_[0];
}
${"${class}::div_scale"};
}
sub accuracy
{
# $x->accuracy($a); ref($x) $a
# $x->accuracy(); ref($x)
# Class->accuracy(); class
# Class->accuracy($a); class $a
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
# need to set new value?
if (@_ > 0)
{
my $a = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$a = $a->numify() if ref($a) && $a->can('numify');
if (defined $a)
{
# also croak on non-numerical
if (!$a || $a <= 0)
{
require Carp;
Carp::croak ('Argument to accuracy must be greater than zero');
}
if (int($a) != $a)
{
require Carp;
Carp::croak ('Argument to accuracy must be an integer');
}
}
if (ref($x))
{
# $object->accuracy() or fallback to global
$x->bround($a) if $a; # not for undef, 0
$x->{_a} = $a; # set/overwrite, even if not rounded
delete $x->{_p}; # clear P
$a = ${"${class}::accuracy"} unless defined $a; # proper return value
}
else
{
${"${class}::accuracy"} = $a; # set global A
${"${class}::precision"} = undef; # clear global P
}
return $a; # shortcut
}
my $a;
# $object->accuracy() or fallback to global
$a = $x->{_a} if ref($x);
# but don't return global undef, when $x's accuracy is 0!
$a = ${"${class}::accuracy"} if !defined $a;
$a;
}
sub precision
{
# $x->precision($p); ref($x) $p
# $x->precision(); ref($x)
# Class->precision(); class
# Class->precision($p); class $p
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
if (@_ > 0)
{
my $p = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$p = $p->numify() if ref($p) && $p->can('numify');
if ((defined $p) && (int($p) != $p))
{
require Carp; Carp::croak ('Argument to precision must be an integer');
}
if (ref($x))
{
# $object->precision() or fallback to global
$x->bfround($p) if $p; # not for undef, 0
$x->{_p} = $p; # set/overwrite, even if not rounded
delete $x->{_a}; # clear A
$p = ${"${class}::precision"} unless defined $p; # proper return value
}
else
{
${"${class}::precision"} = $p; # set global P
${"${class}::accuracy"} = undef; # clear global A
}
return $p; # shortcut
}
my $p;
# $object->precision() or fallback to global
$p = $x->{_p} if ref($x);
# but don't return global undef, when $x's precision is 0!
$p = ${"${class}::precision"} if !defined $p;
$p;
}
sub config
{
# return (or set) configuration data as hash ref
my $class = shift || 'Math::BigInt';
no strict 'refs';
if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH')))
{
# try to set given options as arguments from hash
my $args = $_[0];
if (ref($args) ne 'HASH')
{
$args = { @_ };
}
# these values can be "set"
my $set_args = {};
foreach my $key (
qw/trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale/
)
{
$set_args->{$key} = $args->{$key} if exists $args->{$key};
delete $args->{$key};
}
if (keys %$args > 0)
{
require Carp;
Carp::croak ("Illegal key(s) '",
join("','",keys %$args),"' passed to $class\->config()");
}
foreach my $key (keys %$set_args)
{
if ($key =~ /^trap_(inf|nan)\z/)
{
${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
next;
}
# use a call instead of just setting the $variable to check argument
$class->$key($set_args->{$key});
}
}
# now return actual configuration
my $cfg = {
lib => $CALC,
lib_version => ${"${CALC}::VERSION"},
class => $class,
trap_nan => ${"${class}::_trap_nan"},
trap_inf => ${"${class}::_trap_inf"},
version => ${"${class}::VERSION"},
};
foreach my $key (qw/
upgrade downgrade precision accuracy round_mode div_scale
/)
{
$cfg->{$key} = ${"${class}::$key"};
};
if (@_ == 1 && (ref($_[0]) ne 'HASH'))
{
# calls of the style config('lib') return just this value
return $cfg->{$_[0]};
}
$cfg;
}
sub _scale_a
{
# select accuracy parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$scale,$mode) = @_;
$scale = $x->{_a} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::accuracy' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale)
{
$scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
$scale = int($scale);
}
($scale,$mode);
}
sub _scale_p
{
# select precision parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$scale,$mode) = @_;
$scale = $x->{_p} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::precision' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale)
{
$scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
$scale = int($scale);
}
($scale,$mode);
}
##############################################################################
# constructors
sub copy
{
# if two arguments, the first one is the class to "swallow" subclasses
if (@_ > 1)
{
my $self = bless {
sign => $_[1]->{sign},
value => $CALC->_copy($_[1]->{value}),
}, $_[0] if @_ > 1;
$self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
$self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
return $self;
}
my $self = bless {
sign => $_[0]->{sign},
value => $CALC->_copy($_[0]->{value}),
}, ref($_[0]);
$self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
$self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
$self;
}
sub new
{
# create a new BigInt object from a string or another BigInt object.
# see hash keys documented at top
# the argument could be an object, so avoid ||, && etc on it, this would
# cause costly overloaded code to be called. The only allowed ops are
# ref() and defined.
my ($class,$wanted,$a,$p,$r) = @_;
# avoid numify-calls by not using || on $wanted!
return $class->bzero($a,$p) if !defined $wanted; # default to 0
return $class->copy($wanted,$a,$p,$r)
if ref($wanted) && $wanted->isa($class); # MBI or subclass
$class->import() if $IMPORT == 0; # make require work
my $self = bless {}, $class;
# shortcut for "normal" numbers
if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
{
$self->{sign} = $1 || '+';
if ($wanted =~ /^[+-]/)
{
# remove sign without touching wanted to make it work with constants
my $t = $wanted; $t =~ s/^[+-]//;
$self->{value} = $CALC->_new($t);
}
else
{
$self->{value} = $CALC->_new($wanted);
}
no strict 'refs';
if ( (defined $a) || (defined $p)
|| (defined ${"${class}::precision"})
|| (defined ${"${class}::accuracy"})
)
{
$self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
}
return $self;
}
# handle '+inf', '-inf' first
if ($wanted =~ /^[+-]?inf\z/)
{
$self->{sign} = $wanted; # set a default sign for bstr()
return $self->binf($wanted);
}
# split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
if (!ref $mis)
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted is not a number in $class");
}
$self->{value} = $CALC->_zero();
$self->{sign} = $nan;
return $self;
}
if (!ref $miv)
{
# _from_hex or _from_bin
$self->{value} = $mis->{value};
$self->{sign} = $mis->{sign};
return $self; # throw away $mis
}
# make integer from mantissa by adjusting exp, then convert to bigint
$self->{sign} = $$mis; # store sign
$self->{value} = $CALC->_zero(); # for all the NaN cases
my $e = int("$$es$$ev"); # exponent (avoid recursion)
if ($e > 0)
{
my $diff = $e - CORE::length($$mfv);
if ($diff < 0) # Not integer
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 1\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
else # diff >= 0
{
# adjust fraction and add it to value
#print "diff > 0 $$miv\n";
$$miv = $$miv . ($$mfv . '0' x $diff);
}
}
else
{
if ($$mfv ne '') # e <= 0
{
# fraction and negative/zero E => NOI
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 2 \$\$mfv '$$mfv'\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
elsif ($e < 0)
{
# xE-y, and empty mfv
#print "xE-y\n";
$e = abs($e);
if ($$miv !~ s/0{$e}$//) # can strip so many zero's?
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 3\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
}
}
$self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
$self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
# if any of the globals is set, use them to round and store them inside $self
# do not round for new($x,undef,undef) since that is used by MBF to signal
# no rounding
$self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
$self;
}
sub bnan
{
# create a bigint 'NaN', if given a BigInt, set it to 'NaN'
my $self = shift;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_nan"})
{
require Carp;
Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bnan');
if ($self->can('_bnan'))
{
# use subclass to initialize
$self->_bnan();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = $nan;
delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly
$self;
}
sub binf
{
# create a bigint '+-inf', if given a BigInt, set it to '+-inf'
# the sign is either '+', or if given, used from there
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_inf"})
{
require Carp;
Carp::croak ("Tried to set $self to +-inf in $class\::binf()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('binf');
if ($self->can('_binf'))
{
# use subclass to initialize
$self->_binf();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf
$self->{sign} = $sign;
($self->{_a},$self->{_p}) = @_; # take over requested rounding
$self;
}
sub bzero
{
# create a bigint '+0', if given a BigInt, set it to 0
my $self = shift;
$self = __PACKAGE__ if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bzero');
if ($self->can('_bzero'))
{
# use subclass to initialize
$self->_bzero();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = '+';
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bzero($a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
sub bone
{
# create a bigint '+1' (or -1 if given sign '-'),
# if given a BigInt, set it to +1 or -1, respectively
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bone');
if ($self->can('_bone'))
{
# use subclass to initialize
$self->_bone();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_one();
}
$self->{sign} = $sign;
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bone($sign,$a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
# call like: $x->bone($sign,$a,$p,$r);
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
##############################################################################
# string conversion
sub bsstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to scientific string format.
# internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($m,$e) = $x->parts();
#$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt
# 'e+' because E can only be positive in BigInt
$m->bstr() . 'e+' . $CALC->_str($e->{value});
}
sub bstr
{
# make a string from bigint object
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
$es.$CALC->_str($x->{value});
}
sub numify
{
# Make a "normal" scalar from a BigInt object
my $x = shift; $x = $class->new($x) unless ref $x;
return $x->bstr() if $x->{sign} !~ /^[+-]$/;
my $num = $CALC->_num($x->{value});
return -$num if $x->{sign} eq '-';
$num;
}
##############################################################################
# public stuff (usually prefixed with "b")
sub sign
{
# return the sign of the number: +/-/-inf/+inf/NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign};
}
sub _find_round_parameters
{
# After any operation or when calling round(), the result is rounded by
# regarding the A & P from arguments, local parameters, or globals.
# !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
# This procedure finds the round parameters, but it is for speed reasons
# duplicated in round. Otherwise, it is tested by the testsuite and used
# by fdiv().
# returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
# were requested/defined (locally or globally or both)
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# convert to normal scalar for speed and correctness in inner parts
$a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
$p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return ($self) unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return ($self->bnan()) if defined $a && defined $p; # error
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
$a = int($a) if defined $a;
$p = int($p) if defined $p;
($self,$a,$p,$r);
}
sub round
{
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
# for speed reasons, _find_round_parameters is embedded here:
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return $self unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return $self->bnan() if defined $a && defined $p;
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
# now round, by calling either fround or ffround:
if (defined $a)
{
$self->bround(int($a),$r) if !defined $self->{_a} || $self->{_a} >= $a;
}
else # both can't be undefined due to early out
{
$self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p;
}
# bround() or bfround() already called bnorm() if nec.
$self;
}
sub bnorm
{
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x;
}
sub babs
{
# (BINT or num_str) return BINT
# make number absolute, or return absolute BINT from string
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->modify('babs');
# post-normalized abs for internal use (does nothing for NaN)
$x->{sign} =~ s/^-/+/;
$x;
}
sub bsgn {
# Signum function.
my $self = shift;
return $self if $self->modify('bsgn');
return $self -> bone("+") if $self -> is_pos();
return $self -> bone("-") if $self -> is_neg();
return $self; # zero or NaN
}
sub bneg
{
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->modify('bneg');
# for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
$x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
$x;
}
sub bcmp
{
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT or num_str, BINT or num_str) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bcmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# have same sign, so compare absolute values. Don't make tests for zero here
# because it's actually slower than testing in Calc (especially w/ Pari et al)
# post-normalized compare for internal use (honors signs)
if ($x->{sign} eq '+')
{
# $x and $y both > 0
return $CALC->_acmp($x->{value},$y->{value});
}
# $x && $y both < 0
$CALC->_acmp($y->{value},$x->{value}); # swapped acmp (lib returns 0,1,-1)
}
sub bacmp
{
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT, BINT) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bacmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
$CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1
}
sub badd
{
# add second arg (BINT or string) to first (BINT) (modifies first)
# return result as BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('badd');
return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
$r[3] = $y; # no push!
# inf and NaN handling
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
if ($sx eq $sy)
{
$x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add
}
else
{
my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare
if ($a > 0)
{
$x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
$x->{sign} = $sy;
}
elsif ($a == 0)
{
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
}
else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
}
}
$x->round(@r);
}
sub bsub
{
# (BINT or num_str, BINT or num_str) return BINT
# subtract second arg from first, modify first
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bsub');
return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
return $x->round(@r) if $y->is_zero();
# To correctly handle the lone special case $x->bsub($x), we note the sign
# of $x, then flip the sign from $y, and if the sign of $x did change, too,
# then we caught the special case:
my $xsign = $x->{sign};
$y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
if ($xsign ne $x->{sign})
{
# special case of $x->bsub($x) results in 0
return $x->bzero(@r) if $xsign =~ /^[+-]$/;
return $x->bnan(); # NaN, -inf, +inf
}
$x->badd($y,@r); # badd does not leave internal zeros
$y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no round nec.
}
sub binc
{
# increment arg by one
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('binc');
if ($x->{sign} eq '+')
{
$x->{value} = $CALC->_inc($x->{value});
return $x->round($a,$p,$r);
}
elsif ($x->{sign} eq '-')
{
$x->{value} = $CALC->_dec($x->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
return $x->round($a,$p,$r);
}
# inf, nan handling etc
$x->badd($self->bone(),$a,$p,$r); # badd does round
}
sub bdec
{
# decrement arg by one
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bdec');
if ($x->{sign} eq '-')
{
# x already < 0
$x->{value} = $CALC->_inc($x->{value});
}
else
{
return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf or NaN
# >= 0
if ($CALC->_is_zero($x->{value}))
{
# == 0
$x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1
}
else
{
# > 0
$x->{value} = $CALC->_dec($x->{value});
}
}
$x->round(@r);
}
sub blog
{
# calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
# $base of $x)
# set up parameters
my ($self,$x,$base,@r) = (undef,@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$base,@r) = objectify(2,@_);
}
return $x if $x->modify('blog');
$base = $self->new($base) if defined $base && !ref $base;
# inf, -inf, NaN, <0 => NaN
return $x->bnan()
if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
return $upgrade->blog($upgrade->new($x),$base,@r) if
defined $upgrade;
# fix for bug #24969:
# the default base is e (Euler's number) which is not an integer
if (!defined $base)
{
require Math::BigFloat;
my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->{sign} = $u->{sign};
return $x;
}
my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
return $x->bnan() unless defined $rc; # not possible to take log?
$x->{value} = $rc;
$x->round(@r);
}
sub bnok
{
# Calculate n over k (binomial coefficient or "choose" function) as integer.
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bnok');
return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
return $x->binf() if $x->{sign} eq '+inf';
# k > n or k < 0 => 0
my $cmp = $x->bacmp($y);
return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/;
# k == n => 1
return $x->bone(@r) if $cmp == 0;
if ($CALC->can('_nok'))
{
$x->{value} = $CALC->_nok($x->{value},$y->{value});
}
else
{
# ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7
# ( - ) = --------- = --------------- = --------- = 5 * - * -
# ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3
if (!$y->is_zero())
{
my $z = $x - $y;
$z->binc();
my $r = $z->copy(); $z->binc();
my $d = $self->new(2);
while ($z->bacmp($x) <= 0) # f <= x ?
{
$r->bmul($z); $r->bdiv($d);
$z->binc(); $d->binc();
}
$x->{value} = $r->{value}; $x->{sign} = '+';
}
else { $x->bone(); }
}
$x->round(@r);
}
sub bexp
{
# Calculate e ** $x (Euler's number to the power of X), truncated to
# an integer value.
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bexp');
# inf, -inf, NaN, <0 => NaN
return $x->bnan() if $x->{sign} eq 'NaN';
return $x->bone() if $x->is_zero();
return $x if $x->{sign} eq '+inf';
return $x->bzero() if $x->{sign} eq '-inf';
my $u;
{
# run through Math::BigFloat unless told otherwise
require Math::BigFloat unless defined $upgrade;
local $upgrade = 'Math::BigFloat' unless defined $upgrade;
# calculate result, truncate it to integer
$u = $upgrade->bexp($upgrade->new($x),@r);
}
if (!defined $upgrade)
{
$u = $u->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->round(@r);
}
else { $x = $u; }
}
sub blcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# Lowest Common Multiple
my $y = shift; my ($x);
if (ref($y))
{
$x = $y->copy();
}
else
{
$x = $class->new($y);
}
my $self = ref($x);
while (@_)
{
my $y = shift; $y = $self->new($y) if !ref ($y);
$x = __lcm($x,$y);
}
$x;
}
sub bgcd
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)
my $y = shift;
$y = $class->new($y) if !ref($y);
my $self = ref($y);
my $x = $y->copy()->babs(); # keep arguments
return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@_)
{
$y = shift; $y = $self->new($y) if !ref($y);
return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
$x->{value} = $CALC->_gcd($x->{value},$y->{value});
last if $CALC->_is_one($x->{value});
}
$x;
}
sub bnot
{
# (num_str or BINT) return BINT
# represent ~x as twos-complement number
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bnot');
$x->binc()->bneg(); # binc already does round
}
##############################################################################
# is_foo test routines
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
sub is_zero
{
# return true if arg (BINT or num_str) is zero (array '+', '0')
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
$CALC->_is_zero($x->{value});
}
sub is_nan
{
# return true if arg (BINT or num_str) is NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} eq $nan ? 1 : 0;
}
sub is_inf
{
# return true if arg (BINT or num_str) is +-inf
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
if (defined $sign)
{
$sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
$sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
return $x->{sign} =~ /^$sign$/ ? 1 : 0;
}
$x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
}
sub is_one
{
# return true if arg (BINT or num_str) is +1, or -1 if sign is given
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$sign = '+' if !defined $sign || $sign ne '-';
return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
$CALC->_is_one($x->{value});
}
sub is_odd
{
# return true when arg (BINT or num_str) is odd, false for even
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_odd($x->{value});
}
sub is_even
{
# return true when arg (BINT or num_str) is even, false for odd
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_even($x->{value});
}
sub is_positive
{
# return true when arg (BINT or num_str) is positive (> 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if $x->{sign} eq '+inf'; # +inf is positive
# 0+ is neither positive nor negative
($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
}
sub is_negative
{
# return true when arg (BINT or num_str) is negative (< 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not
}
sub is_int
{
# return true when arg (BINT or num_str) is an integer
# always true for BigInt, but different for BigFloats
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
}
###############################################################################
sub bmul
{
# multiply the first number by the second number
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmul');
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
return $upgrade->bmul($x,$upgrade->new($y),@r)
if defined $upgrade && !$y->isa($self);
$r[3] = $y; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
$x->round(@r);
}
sub bmuladd
{
# multiply two numbers and then add the third to the result
# (BINT or num_str, BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,$z,@r) = objectify(3,@_);
return $x if $x->modify('bmuladd');
return $x->bnan() if ($x->{sign} eq $nan) ||
($y->{sign} eq $nan) ||
($z->{sign} eq $nan);
# inf handling of x and y
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# inf handling x*y and z
if (($z->{sign} =~ /^[+-]inf$/))
{
# something +-inf => +-inf
$x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
}
return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r)
if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self));
# TODO: what if $y and $z have A or P set?
$r[3] = $z; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs
if ($sx eq $sz)
{
$x->{value} = $CALC->_add($x->{value},$z->{value}); # same sign, abs add
}
else
{
my $a = $CALC->_acmp ($z->{value},$x->{value}); # absolute compare
if ($a > 0)
{
$x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap
$x->{sign} = $sz;
}
elsif ($a == 0)
{
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
}
else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
}
}
$x->round(@r);
}
sub _div_inf
{
# helper function that handles +-inf cases for bdiv()/bmod() to reuse code
my ($self,$x,$y) = @_;
# NaN if x == NaN or y == NaN or x==y==0
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
if (($x->is_nan() || $y->is_nan()) ||
($x->is_zero() && $y->is_zero()));
# +-inf / +-inf == NaN, remainder also NaN
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
}
# x / +-inf => 0, remainder x (works even if x == 0)
if ($y->{sign} =~ /^[+-]inf$/)
{
my $t = $x->copy(); # bzero clobbers up $x
return wantarray ? ($x->bzero(),$t) : $x->bzero()
}
# 5 / 0 => +inf, -6 / 0 => -inf
# +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf
# exception: -8 / 0 has remainder -8, not 8
# exception: -inf / 0 has remainder -inf, not inf
if ($y->is_zero())
{
# +-inf / 0 => special case for -inf
return wantarray ? ($x,$x->copy()) : $x if $x->is_inf();
if (!$x->is_zero() && !$x->is_inf())
{
my $t = $x->copy(); # binf clobbers up $x
return wantarray ?
($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
}
}
# last case: +-inf / ordinary number
my $sign = '+inf';
$sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
$x->{sign} = $sign;
return wantarray ? ($x,$self->bzero()) : $x;
}
sub bdiv
{
# (dividend: BINT or num_str, divisor: BINT or num_str) return
# (BINT,BINT) (quo,rem) or BINT (only rem)
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bdiv');
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
if defined $upgrade;
$r[3] = $y; # no push!
# calc new sign and in case $y == +/- 1, return $x
my $xsign = $x->{sign}; # keep
$x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+');
if (wantarray)
{
my $rem = $self->bzero();
($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$rem->{_a} = $x->{_a};
$rem->{_p} = $x->{_p};
$x->round(@r);
if (! $CALC->_is_zero($rem->{value}))
{
$rem->{sign} = $y->{sign};
$rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
}
else
{
$rem->{sign} = '+'; # do not leave -0
}
$rem->round(@r);
return ($x,$rem);
}
$x->{value} = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$x->round(@r);
}
###############################################################################
# modulus functions
sub bmod
{
# modulus (or remainder)
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmod');
$r[3] = $y; # no push!
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
{
my ($d,$r) = $self->_div_inf($x,$y);
$x->{sign} = $r->{sign};
$x->{value} = $r->{value};
return $x->round(@r);
}
# calc new sign and in case $y == +/- 1, return $x
$x->{value} = $CALC->_mod($x->{value},$y->{value});
if (!$CALC->_is_zero($x->{value}))
{
$x->{value} = $CALC->_sub($y->{value},$x->{value},1) # $y-$x
if ($x->{sign} ne $y->{sign});
$x->{sign} = $y->{sign};
}
else
{
$x->{sign} = '+'; # do not leave -0
}
$x->round(@r);
}
sub bmodinv
{
# Return modular multiplicative inverse: z is the modular inverse of x (mod
# y) if and only if x*z (mod y) = 1 (mod y). If the modulus y is larger than
# one, x and z are relative primes (i.e., their greatest common divisor is
# one).
#
# If no modular multiplicative inverse exists, NaN is returned.
# set up parameters
my ($self,$x,$y,@r) = (undef,@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmodinv');
# Return NaN if one or both arguments is +inf, -inf, or nan.
return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
$x->{sign} !~ /^[+-]$/);
# Return NaN if $y is zero; 1 % 0 makes no sense.
return $x->bnan() if $y->is_zero();
# Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
# integers $x.
return $x->bzero() if ($y->is_one() ||
$y->is_one('-'));
# Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
# $x = 0 is when $y = 1 or $y = -1, but that was covered above.
#
# Note that computing $x modulo $y here affects the value we'll feed to
# $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
# 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
# $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
# The value if $x is affected only when $x and $y have opposite signs.
$x->bmod($y);
return $x->bnan() if $x->is_zero();
# Compute the modular multiplicative inverse of the absolute values. We'll
# correct for the signs of $x and $y later. Return NaN if no GCD is found.
($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
return $x->bnan() if !defined $x->{value};
# Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions
# <= 1.32 return undef rather than a "+" for the sign.
$x->{sign} = '+' unless defined $x->{sign};
# When one or both arguments are negative, we have the following
# relations. If x and y are positive:
#
# modinv(-x, -y) = -modinv(x, y)
# modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y)
# modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y)
# We must swap the sign of the result if the original $x is negative.
# However, we must compensate for ignoring the signs when computing the
# inverse modulo. The net effect is that we must swap the sign of the
# result if $y is negative.
$x -> bneg() if $y->{sign} eq '-';
# Compute $x modulo $y again after correcting the sign.
$x -> bmod($y) if $x->{sign} ne $y->{sign};
return $x;
}
sub bmodpow
{
# Modular exponentiation. Raises a very large number to a very large exponent
# in a given very large modulus quickly, thanks to binary exponentiation.
# Supports negative exponents.
my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
return $num if $num->modify('bmodpow');
# When the exponent 'e' is negative, use the following relation, which is
# based on finding the multiplicative inverse 'd' of 'b' modulo 'm':
#
# b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m)
$num->bmodinv($mod) if ($exp->{sign} eq '-');
# Check for valid input. All operands must be finite, and the modulus must be
# non-zero.
return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->is_zero());
# Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting
# value is zero, the output is also zero, regardless of the signs on 'a' and
# 'm'.
my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value});
my $sign = '+';
# If the resulting value is non-zero, we have four special cases, depending
# on the signs on 'a' and 'm'.
unless ($CALC->_is_zero($value)) {
# There is a negative sign on 'a' (= $num**$exp) only if the number we
# are exponentiating ($num) is negative and the exponent ($exp) is odd.
if ($num->{sign} eq '-' && $exp->is_odd()) {
# When both the number 'a' and the modulus 'm' have a negative sign,
# use this relation:
#
# -a (mod -m) = -(a (mod m))
if ($mod->{sign} eq '-') {
$sign = '-';
}
# When only the number 'a' has a negative sign, use this relation:
#
# -a (mod m) = m - (a (mod m))
else {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '+';
}
} else {
# When only the modulus 'm' has a negative sign, use this relation:
#
# a (mod -m) = (a (mod m)) - m
# = -(m - (a (mod m)))
if ($mod->{sign} eq '-') {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '-';
}
# When neither the number 'a' nor the modulus 'm' have a negative
# sign, directly return the already computed value.
#
# (a (mod m))
}
}
$num->{value} = $value;
$num->{sign} = $sign;
return $num;
}
###############################################################################
sub bfac
{
# (BINT or num_str, BINT or num_str) return BINT
# compute factorial number from $x, modify $x in place
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
$x->{value} = $CALC->_fac($x->{value});
$x->round(@r);
}
sub bpow
{
# (BINT or num_str, BINT or num_str) return BINT
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
# modifies first argument
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bpow');
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +-inf ** +-inf
return $x->bnan();
}
# +-inf ** Y
if ($x->{sign} =~ /^[+-]inf/)
{
# +inf ** 0 => NaN
return $x->bnan() if $y->is_zero();
# -inf ** -1 => 1/inf => 0
return $x->bzero() if $y->is_one('-') && $x->is_negative();
# +inf ** Y => inf
return $x if $x->{sign} eq '+inf';
# -inf ** Y => -inf if Y is odd
return $x if $y->is_odd();
return $x->babs();
}
# X ** +-inf
# 1 ** +inf => 1
return $x if $x->is_one();
# 0 ** inf => 0
return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
# 0 ** -inf => inf
return $x->binf() if $x->is_zero();
# -1 ** -inf => NaN
return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
# -X ** -inf => 0
return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
# -1 ** inf => NaN
return $x->bnan() if $x->{sign} eq '-';
# X ** inf => inf
return $x->binf() if $y->{sign} =~ /^[+]/;
# X ** -inf => 0
return $x->bzero();
}
return $upgrade->bpow($upgrade->new($x),$y,@r)
if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-');
$r[3] = $y; # no push!
# cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
return $x->binf()
if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
$x->{value} = $CALC->_pow($x->{value},$y->{value});
$x->{sign} = $new_sign;
$x->{sign} = '+' if $CALC->_is_zero($y->{value});
$x->round(@r);
}
sub blsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('blsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
$x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub brsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('brsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
return $x->bzero(@r) if $x->is_zero(); # 0 => 0
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
# this only works for negative numbers when shifting in base 2
if (($x->{sign} eq '-') && ($n == 2))
{
return $x->round(@r) if $x->is_one('-'); # -1 => -1
if (!$y->is_one())
{
# although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
# but perhaps there is a better emulation for two's complement shift...
# if $y != 1, we must simulate it by doing:
# convert to bin, flip all bits, shift, and be done
$x->binc(); # -3 => -2
my $bin = $x->as_bin();
$bin =~ s/^-0b//; # strip '-0b' prefix
$bin =~ tr/10/01/; # flip bits
# now shift
if ($y >= CORE::length($bin))
{
$bin = '0'; # shifting to far right creates -1
# 0, because later increment makes
# that 1, attached '-' makes it '-1'
# because -1 >> x == -1 !
}
else
{
$bin =~ s/.{$y}$//; # cut off at the right side
$bin = '1' . $bin; # extend left side by one dummy '1'
$bin =~ tr/10/01/; # flip bits back
}
my $res = $self->new('0b'.$bin); # add prefix and convert back
$res->binc(); # remember to increment
$x->{value} = $res->{value}; # take over value
return $x->round(@r); # we are done now, magic, isn't?
}
# x < 0, n == 2, y == 1
$x->bdec(); # n == 2, but $y == 1: this fixes it
}
$x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub band
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x & y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('band');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_and($x->{value},$y->{value});
return $x->round(@r);
}
if ($CAN{signed_and})
{
$x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_band($self,$x,$y,$sx,$sy,@r);
}
sub bior
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x | y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bior');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_or($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_or})
{
$x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bior($self,$x,$y,$sx,$sy,@r);
}
sub bxor
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x ^ y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bxor');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_xor($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_xor})
{
$x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bxor($self,$x,$y,$sx,$sy,@r);
}
sub length
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
my $e = $CALC->_len($x->{value});
wantarray ? ($e,0) : $e;
}
sub digit
{
# return the nth decimal digit, negative values count backward, 0 is right
my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$n = $n->numify() if ref($n);
$CALC->_digit($x->{value},$n||0);
}
sub _trailing_zeros
{
# return the amount of trailing zeros in $x (as scalar)
my $x = shift;
$x = $class->new($x) unless ref $x;
return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
$CALC->_zeros($x->{value}); # must handle odd values, 0 etc
}
sub bsqrt
{
# calculate square root of $x
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bsqrt');
return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
return $upgrade->bsqrt($x,@r) if defined $upgrade;
$x->{value} = $CALC->_sqrt($x->{value});
$x->round(@r);
}
sub broot
{
# calculate $y'th root of $x
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
$y = $self->new(2) unless defined $y;
# objectify is costly, so avoid it
if ((!ref($x)) || (ref($x) ne ref($y)))
{
($self,$x,$y,@r) = objectify(2,$self || $class,@_);
}
return $x if $x->modify('broot');
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x->round(@r)
if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
$x->{value} = $CALC->_root($x->{value},$y->{value});
$x->round(@r);
}
sub exponent
{
# return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf
return $self->new($s);
}
return $self->bone() if $x->is_zero();
# 12300 => 2 trailing zeros => exponent is 2
$self->new( $CALC->_zeros($x->{value}) );
}
sub mantissa
{
# return the mantissa (compatible to Math::BigFloat, e.g. reduced)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
# for NaN, +inf, -inf: keep the sign
return $self->new($x->{sign});
}
my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
# that's a bit inefficient:
my $zeros = $CALC->_zeros($m->{value});
$m->brsft($zeros,10) if $zeros != 0;
$m;
}
sub parts
{
# return a copy of both the exponent and the mantissa
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
($x->mantissa(),$x->exponent());
}
##############################################################################
# rounding functions
sub bfround
{
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 || $n == 1 => round to integer
my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_p(@_);
return $x if !defined $scale || $x->modify('bfround'); # no-op
# no-op for BigInts if $n <= 0
$x->bround( $x->length()-$scale, $mode) if $scale > 0;
delete $x->{_a}; # delete to save memory
$x->{_p} = $scale; # store new _p
$x;
}
sub _scan_for_nonzero
{
# internal, used by bround() to scan for non-zeros after a '5'
my ($x,$pad,$xs,$len) = @_;
return 0 if $len == 1; # "5" is trailed by invisible zeros
my $follow = $pad - 1;
return 0 if $follow > $len || $follow < 1;
# use the string form to check whether only '0's follow or not
substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
}
sub fround
{
# Exists to make life easier for switch between MBF and MBI (should we
# autoload fxxx() like MBF does for bxxx()?)
my $x = shift; $x = $class->new($x) unless ref $x;
$x->bround(@_);
}
sub bround
{
# accuracy: +$n preserve $n digits from left,
# -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
# no-op for $n == 0
# and overwrite the rest with 0's, return normalized number
# do not return $x->bnorm(), but $x
my $x = shift; $x = $class->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_a(@_);
return $x if !defined $scale || $x->modify('bround'); # no-op
if ($x->is_zero() || $scale == 0)
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
# we have fewer digits than we want to scale to
my $len = $x->length();
# convert $scale to a scalar in case it is an object (put's a limit on the
# number length, but this would already limited by memory constraints), makes
# it faster
$scale = $scale->numify() if ref ($scale);
# scale < 0, but > -len (not >=!)
if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
# count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
my ($pad,$digit_round,$digit_after);
$pad = $len - $scale;
$pad = abs($scale-1) if $scale < 0;
# do not use digit(), it is very costly for binary => decimal
# getting the entire string is also costly, but we need to do it only once
my $xs = $CALC->_str($x->{value});
my $pl = -$pad-1;
# pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
# pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
$digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
$pl++; $pl ++ if $pad >= $len;
$digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
# in case of 01234 we round down, for 6789 up, and only in case 5 we look
# closer at the remaining digits of the original $x, remember decision
my $round_up = 1; # default round up
$round_up -- if
($mode eq 'trunc') || # trunc by round down
($digit_after =~ /[01234]/) || # round down anyway,
# 6789 => round up
($digit_after eq '5') && # not 5000...0000
($x->_scan_for_nonzero($pad,$xs,$len) == 0) &&
(
($mode eq 'even') && ($digit_round =~ /[24680]/) ||
($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
($mode eq '+inf') && ($x->{sign} eq '-') ||
($mode eq '-inf') && ($x->{sign} eq '+') ||
($mode eq 'zero') # round down if zero, sign adjusted below
);
my $put_back = 0; # not yet modified
if (($pad > 0) && ($pad <= $len))
{
substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...'
$put_back = 1; # need to put back
}
elsif ($pad > $len)
{
$x->bzero(); # round to '0'
}
if ($round_up) # what gave test above?
{
$put_back = 1; # need to put back
$pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
# we modify directly the string variant instead of creating a number and
# adding it, since that is faster (we already have the string)
my $c = 0; $pad ++; # for $pad == $len case
while ($pad <= $len)
{
$c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
substr($xs,-$pad,1) = $c; $pad++;
last if $c != 0; # no overflow => early out
}
$xs = '1'.$xs if $c == 0;
}
$x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
$x->{_a} = $scale if $scale >= 0;
if ($scale < 0)
{
$x->{_a} = $len+$scale;
$x->{_a} = 0 if $scale < -$len;
}
$x;
}
sub bfloor
{
# round towards minus infinity; no-op since it's already integer
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub bceil
{
# round towards plus infinity; no-op since it's already int
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub bint {
# round towards zero; no-op since it's already integer
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub as_number
{
# An object might be asked to return itself as bigint on certain overloaded
# operations. This does exactly this, so that sub classes can simple inherit
# it or override with their own integer conversion routine.
$_[0]->copy();
}
sub as_hex
{
# return as hex string, with prefixed 0x
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = '';
$s = $x->{sign} if $x->{sign} eq '-';
$s . $CALC->_as_hex($x->{value});
}
sub as_bin
{
# return as binary string, with prefixed 0b
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
return $s . $CALC->_as_bin($x->{value});
}
sub as_oct
{
# return as octal string, with prefixed 0
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
return $s . $CALC->_as_oct($x->{value});
}
##############################################################################
# private stuff (internal use only)
sub objectify {
# Convert strings and "foreign objects" to the objects we want.
# The first argument, $count, is the number of following arguments that
# objectify() looks at and converts to objects. The first is a classname.
# If the given count is 0, all arguments will be used.
# After the count is read, objectify obtains the name of the class to which
# the following arguments are converted. If the second argument is a
# reference, use the reference type as the class name. Otherwise, if it is
# a string that looks like a class name, use that. Otherwise, use $class.
# Caller: Gives us:
#
# $x->badd(1); => ref x, scalar y
# Class->badd(1,2); => classname x (scalar), scalar x, scalar y
# Class->badd(Class->(1),2); => classname x (scalar), ref x, scalar y
# Math::BigInt::badd(1,2); => scalar x, scalar y
# A shortcut for the common case $x->unary_op():
return (ref($_[1]), $_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
# Check the context.
unless (wantarray) {
require Carp;
Carp::croak ("${class}::objectify() needs list context");
}
# Get the number of arguments to objectify.
my $count = shift;
$count ||= @_;
# Initialize the output array.
my @a = @_;
# If the first argument is a reference, use that reference type as our
# class name. Otherwise, if the first argument looks like a class name,
# then use that as our class name. Otherwise, use the default class name.
{
if (ref($a[0])) { # reference?
unshift @a, ref($a[0]);
last;
}
if ($a[0] =~ /^[A-Z].*::/) { # string with class name?
last;
}
unshift @a, $class; # default class name
}
no strict 'refs';
# What we upgrade to, if anything.
my $up = ${"$a[0]::upgrade"};
# Disable downgrading, because Math::BigFloat -> foo('1.0','2.0') needs
# floats.
my $down;
if (defined ${"$a[0]::downgrade"}) {
$down = ${"$a[0]::downgrade"};
${"$a[0]::downgrade"} = undef;
}
for my $i (1 .. $count) {
my $ref = ref $a[$i];
# If it is an object of the right class, all is fine.
if ($ref eq $a[0]) {
next;
}
# Don't do anything with undefs.
unless (defined($a[$i])) {
next;
}
# Perl scalars are fed to the appropriate constructor.
unless ($ref) {
$a[$i] = $a[0] -> new($a[$i]);
next;
}
# Upgrading is OK, so skip further tests if the argument is upgraded.
if (defined $up && $ref eq $up) {
next;
}
# If we want a Math::BigInt, see if the object can become one.
# Support the old misnomer as_number().
if ($a[0] eq 'Math::BigInt') {
if ($a[$i] -> can('as_int')) {
$a[$i] = $a[$i] -> as_int();
next;
}
if ($a[$i] -> can('as_number')) {
$a[$i] = $a[$i] -> as_number();
next;
}
}
# If we want a Math::BigFloat, see if the object can become one.
if ($a[0] eq 'Math::BigFloat') {
if ($a[$i] -> can('as_float')) {
$a[$i] = $a[$i] -> as_float();
next;
}
}
# Last resort.
$a[$i] = $a[0] -> new($a[$i]);
}
# Reset the downgrading.
${"$a[0]::downgrade"} = $down;
return @a;
}
sub _register_callback
{
my ($class,$callback) = @_;
if (ref($callback) ne 'CODE')
{
require Carp;
Carp::croak ("$callback is not a coderef");
}
$CALLBACKS{$class} = $callback;
}
sub import
{
my $self = shift;
$IMPORT++; # remember we did import()
my @a; my $l = scalar @_;
my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die
for ( my $i = 0; $i < $l ; $i++ )
{
if ($_[$i] eq ':constant')
{
# this causes overlord er load to step in
overload::constant
integer => sub { $self->new(shift) },
binary => sub { $self->new(shift) };
}
elsif ($_[$i] eq 'upgrade')
{
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] =~ /^(lib|try|only)\z/)
{
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
# lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
$warn_or_die = 1 if $_[$i] eq 'lib';
$warn_or_die = 2 if $_[$i] eq 'only';
$i++;
}
else
{
push @a, $_[$i];
}
}
# any non :constant stuff is handled by our parent, Exporter
if (@a > 0)
{
require Exporter;
$self->SUPER::import(@a); # need it for subclasses
$self->export_to_level(1,$self,@a); # need it for MBF
}
# try to load core math lib
my @c = split /\s*,\s*/,$CALC;
foreach (@c)
{
$_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
}
push @c, \'Calc' # if all fail, try these
if $warn_or_die < 2; # but not for "only"
$CALC = ''; # signal error
foreach my $l (@c)
{
# fallback libraries are "marked" as \'string', extract string if nec.
my $lib = $l; $lib = $$l if ref($l);
next if ($lib || '') eq '';
$lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
$lib =~ s/\.pm$//;
if ($] < 5.006)
{
# Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
# used in the same script, or eval("") inside import().
my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm
require File::Spec;
$file = File::Spec->catfile (@parts, $file);
eval { require "$file"; $lib->import( @c ); }
}
else
{
eval "use $lib qw/@c/;";
}
if ($@ eq '')
{
my $ok = 1;
# loaded it ok, see if the api_version() is high enough
if ($lib->can('api_version') && $lib->api_version() >= 1.0)
{
$ok = 0;
# api_version matches, check if it really provides anything we need
for my $method (qw/
one two ten
str num
add mul div sub dec inc
acmp len digit is_one is_zero is_even is_odd
is_two is_ten
zeros new copy check
from_hex from_oct from_bin as_hex as_bin as_oct
rsft lsft xor and or
mod sqrt root fac pow modinv modpow log_int gcd
/)
{
if (!$lib->can("_$method"))
{
if (($WARN{$lib}||0) < 2)
{
require Carp;
Carp::carp ("$lib is missing method '_$method'");
$WARN{$lib} = 1; # still warn about the lib
}
$ok++; last;
}
}
}
if ($ok == 0)
{
$CALC = $lib;
if ($warn_or_die > 0 && ref($l))
{
require Carp;
my $msg = "Math::BigInt: couldn't load specified math lib(s), fallback to $lib";
Carp::carp ($msg) if $warn_or_die == 1;
Carp::croak ($msg) if $warn_or_die == 2;
}
last; # found a usable one, break
}
else
{
if (($WARN{$lib}||0) < 2)
{
my $ver = eval "\$$lib\::VERSION" || 'unknown';
require Carp;
Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
$WARN{$lib} = 2; # never warn again
}
}
}
}
if ($CALC eq '')
{
require Carp;
if ($warn_or_die == 2)
{
Carp::croak ("Couldn't load specified math lib(s) and fallback disallowed");
}
else
{
Carp::croak ("Couldn't load any math lib(s), not even fallback to Calc.pm");
}
}
# notify callbacks
foreach my $class (keys %CALLBACKS)
{
&{$CALLBACKS{$class}}($CALC);
}
# Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
# functions
%CAN = ();
for my $method (qw/ signed_and signed_or signed_xor /)
{
$CAN{$method} = $CALC->can("_$method") ? 1 : 0;
}
# import done
}
sub from_hex {
# Create a bigint from a hexadecimal string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(0?x)?
(
[0-9a-fA-F]*
( _ [0-9a-fA-F]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_hex('0x' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# CORE::hex() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
sub from_oct {
# Create a bigint from an octal string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(
[0-7]*
( _ [0-7]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_oct('0' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# CORE::oct() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
sub from_bin {
# Create a bigint from a binary string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(0?b)?
(
[01]*
( _ [01]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_bin('0b' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# For consistency with from_hex() and from_oct(), we return NaN when the
# input is invalid.
return $self->bnan();
}
sub _split
{
# input: num_str; output: undef for invalid or
# (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value)
# Internal, take apart a string and return the pieces.
# Strip leading/trailing whitespace, leading zeros, underscore and reject
# invalid input.
my $x = shift;
# strip white space at front, also extraneous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
# shortcut, if nothing to split, return early
if ($x =~ /^[+-]?[0-9]+\z/)
{
$x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
return (\$sign, \$x, \'', \'', \0);
}
# invalid starting char?
return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string
return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string
# strip underscores between digits
$x =~ s/([0-9])_([0-9])/$1$2/g;
$x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3
# some possible inputs:
# 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
# .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
my ($m,$e,$last) = split /[Ee]/,$x;
return if defined $last; # last defined => 1e2E3 or others
$e = '0' if !defined $e || $e eq "";
# sign,value for exponent,mantint,mantfrac
my ($es,$ev,$mis,$miv,$mfv);
# valid exponent?
if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$es = $1; $ev = $2;
# valid mantissa?
return if $m eq '.' || $m eq '';
my ($mi,$mf,$lastf) = split /\./,$m;
return if defined $lastf; # lastf defined => 1.2.3 or others
$mi = '0' if !defined $mi;
$mi .= '0' if $mi =~ /^[\-\+]?$/;
$mf = '0' if !defined $mf || $mf eq '';
if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$mis = $1||'+'; $miv = $2;
return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros
$mfv = $1;
# handle the 0e999 case here
$ev = 0 if $miv eq '0' && $mfv eq '';
return (\$mis,\$miv,\$mfv,\$es,\$ev);
}
}
return; # NaN, not a number
}
##############################################################################
# internal calculation routines (others are in Math::BigInt::Calc etc)
sub __lcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does modify first argument
# LCM
my ($x,$ty) = @_;
return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
my $method = ref($x) . '::bgcd';
no strict 'refs';
$x * $ty / &$method($x,$ty);
}
###############################################################################
# trigonometric functions
sub bpi
{
# Calculate PI to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer, that is, always returns '3'.
my ($self,$n) = @_;
if (@_ == 1)
{
# called like Math::BigInt::bpi(10);
$n = $self; $self = $class;
}
$self = ref($self) if ref($self);
return $upgrade->new($n) if defined $upgrade;
# hard-wired to "3"
$self->new(3);
}
sub bcos
{
# Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bcos');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bcos(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub bsin
{
# Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bsin');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bsin(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub batan2
{
# calculate arcus tangens of ($y/$x)
# set up parameters
my ($self,$y,$x,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$y,$x,@r) = objectify(2,@_);
}
return $y if $y->modify('batan2');
return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
# Y X
# != 0 -inf result is +- pi
if ($x->is_inf() || $y->is_inf())
{
# upgrade to BigFloat etc.
return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
if ($y->is_inf())
{
if ($x->{sign} eq '-inf')
{
# calculate 3 pi/4 => 2.3.. => 2
$y->bone( substr($y->{sign},0,1) );
$y->bmul($self->new(2));
}
elsif ($x->{sign} eq '+inf')
{
# calculate pi/4 => 0.7 => 0
$y->bzero();
}
else
{
# calculate pi/2 => 1.5 => 1
$y->bone( substr($y->{sign},0,1) );
}
}
else
{
if ($x->{sign} eq '+inf')
{
# calculate pi/4 => 0.7 => 0
$y->bzero();
}
else
{
# PI => 3.1415.. => 3
$y->bone( substr($y->{sign},0,1) );
$y->bmul($self->new(3));
}
}
return $y;
}
return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
require Math::BigFloat;
my $r = Math::BigFloat->new($y)->batan2(Math::BigFloat->new($x),@r)->as_int();
$x->{value} = $r->{value};
$x->{sign} = $r->{sign};
$x;
}
sub batan
{
# Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('batan');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->batan(@r) if defined $upgrade;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->batan(@r);
$x->{value} = $CALC->_new( $x->as_int()->bstr() );
$x->round(@r);
}
###############################################################################
# this method returns 0 if the object can be modified, or 1 if not.
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)
sub modify () { 0; }
1;
__END__
=pod
=head1 NAME
Math::BigInt - Arbitrary size integer/float math package
=head1 SYNOPSIS
use Math::BigInt;
# or make it faster with huge numbers: install (optional)
# Math::BigInt::GMP and always use (it will fall back to
# pure Perl if the GMP library is not installed):
# (See also the L for more information.
For more benchmark results see L.
=head1 SUBCLASSING
=head2 Subclassing Math::BigInt
The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:
=over
=item *
The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The
reason for this is that Math::BigInt is optimized to call the object methods
directly.
=item *
The private object hash keys like C<< $x->{sign} >> may not be changed, but
additional keys can be added, like C<< $x->{_custom} >>.
=item *
Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it
to support different storage methods.
=back
More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that
needs to merely change the output only needs to overload C.
All other object methods and overloaded functions can be directly inherited
from the parent class.
At the very minimum, any subclass will need to provide its own C and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:
# Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = 'even';
$div_scale = 40;
Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:
$upgrade = undef;
$downgrade = undef;
This allows Math::BigInt to correctly retrieve package globals from the
subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.
Don't forget to
use overload;
in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.
=head1 UPGRADING
When used like this:
use Math::BigInt upgrade => 'Foo::Bar';
certain operations will 'upgrade' their calculation and thus the result to
the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
use Math::BigInt upgrade => 'Math::BigFloat';
As a shortcut, you can use the module L:
use bignum;
Also good for one-liners:
perl -Mbignum -le 'print 2 ** 255'
This makes it possible to mix arguments of different classes (as in 2.5 + 2)
as well es preserve accuracy (as in sqrt(3)).
Beware: This feature is not fully implemented yet.
=head2 Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade
is in effect, they will always hand up their work:
=over
=item bsqrt()
=item div()
=item blog()
=item bexp()
=back
Beware: This list is not complete.
All other methods upgrade themselves only when one (or all) of their
arguments are of the class mentioned in $upgrade (This might change in later
versions to a more sophisticated scheme):
=head1 EXPORTS
C exports nothing by default, but can export the following methods:
bgcd
blcm
=head1 CAVEATS
Some things might not work as you expect them. Below is documented what is
known to be troublesome:
=over
=item bstr(), bsstr() and 'cmp'
Both C and C as well as automated stringify via overload now
drop the leading '+'. The old code would return '+3', the new returns '3'.
This is to be consistent with Perl and to make C (especially with
overloading) to work as you expect. It also solves problems with C,
because its C uses 'eq' internally.
Mark Biggar said, when asked about to drop the '+' altogether, or make only
C work:
I agree (with the first alternative), don't add the '+' on positive
numbers. It's not as important anymore with the new internal
form for numbers. It made doing things like abs and neg easier,
but those have to be done differently now anyway.
So, the following examples will now work all as expected:
use Test;
BEGIN { plan tests => 1 }
use Math::BigInt;
my $x = new Math::BigInt 3*3;
my $y = new Math::BigInt 3*3;
ok ($x,3*3);
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq '9';
print "$x eq 9" if $x eq 3*3;
Additionally, the following still works:
print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;
There is now a C method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparison, but Perl will represent some numbers as 100 and others
as 1e+308. If in doubt, convert both arguments to Math::BigInt before
comparing them as strings:
use Test;
BEGIN { plan tests => 3 }
use Math::BigInt;
$x = Math::BigInt->new('1e56'); $y = 1e56;
ok ($x,$y); # will fail
ok ($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
ok ($x,$y); # okay
Alternatively, simply use C<< <=> >> for comparisons, this will get it
always right. There is not yet a way to get a number automatically represented
as a string that matches exactly the way Perl represents it.
See also the section about L for problems in
comparing NaNs.
=item int()
C will return (at least for Perl v5.7.1 and up) another BigInt, not a
Perl scalar:
$x = Math::BigInt->new(123);
$y = int($x); # BigInt 123
$x = Math::BigFloat->new(123.45);
$y = int($x); # BigInt 123
In all Perl versions you can use C or C for the same
effect:
$x = Math::BigFloat->new(123.45);
$y = $x->as_number(); # BigInt 123
$y = $x->as_int(); # ditto
This also works for other subclasses, like Math::String.
If you want a real Perl scalar, use C:
$y = $x->numify(); # 123 as scalar
This is seldom necessary, though, because this is done automatically, like
when you access an array:
$z = $array[$x]; # does work automatically
=item length()
The following will probably not do what you expect:
$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30
It prints both the number of digits in the number and in the fraction part
since print calls C in list context. Use something like:
print scalar $c->length(),"\n"; # prints 3
=item bdiv()
The following will probably not do what you expect:
print $c->bdiv(10000),"\n";
It prints both quotient and remainder since print calls C in list
context. Also, C will modify $c, so be careful. You probably want
to use
print $c / 10000,"\n";
or, if you want to modify $c instead,
print scalar $c->bdiv(10000),"\n";
The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
non-zero) always has the same sign as the second operand; so, for
example,
1 / 4 => ( 0, 1)
1 / -4 => (-1,-3)
-3 / 4 => (-1, 1)
-3 / -4 => ( 0,-3)
-11 / 2 => (-5,1)
11 /-2 => (-5,-1)
As a consequence, the behavior of the operator % agrees with the
behavior of Perl's built-in % operator (as documented in the perlop
manpage), and the equation
$x == ($x / $y) * $y + ($x % $y)
holds true for any $x and $y, which justifies calling the two return
values of bdiv() the quotient and remainder. The only exception to this rule
are when $y == 0 and $x is negative, then the remainder will also be
negative. See below under "infinity handling" for the reasoning behind this.
Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
not change BigInt's way to do things. This is because under 'use integer' Perl
will do what the underlying C thinks is right and this is different for each
system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)
=item infinity handling
Here are some examples that explain the reasons why certain results occur while
handling infinity:
The following table shows the result of the division and the remainder, so that
the equation above holds true. Some "ordinary" cases are strewn in to show more
clearly the reasoning:
A / B = C, R so that C * B + R = A
=========================================================
5 / 8 = 0, 5 0 * 8 + 5 = 5
0 / 8 = 0, 0 0 * 8 + 0 = 0
0 / inf = 0, 0 0 * inf + 0 = 0
0 /-inf = 0, 0 0 * -inf + 0 = 0
5 / inf = 0, 5 0 * inf + 5 = 5
5 /-inf = 0, 5 0 * -inf + 5 = 5
-5/ inf = 0, -5 0 * inf + -5 = -5
-5/-inf = 0, -5 0 * -inf + -5 = -5
inf/ 5 = inf, 0 inf * 5 + 0 = inf
-inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
-inf/ -5 = inf, 0 inf * -5 + 0 = -inf
5/ 5 = 1, 0 1 * 5 + 0 = 5
-5/ -5 = 1, 0 1 * -5 + 0 = -5
inf/ inf = 1, 0 1 * inf + 0 = inf
-inf/-inf = 1, 0 1 * -inf + 0 = -inf
inf/-inf = -1, 0 -1 * -inf + 0 = inf
-inf/ inf = -1, 0 1 * -inf + 0 = -inf
8/ 0 = inf, 8 inf * 0 + 8 = 8
inf/ 0 = inf, inf inf * 0 + inf = inf
0/ 0 = NaN
These cases below violate the "remainder has the sign of the second of the two
arguments", since they wouldn't match up otherwise.
A / B = C, R so that C * B + R = A
========================================================
-inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
-8/ 0 = -inf, -8 -inf * 0 + 8 = -8
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B object and stores it in $y. Thus anything
that modifies $x (except overloaded operators) will modify $y, and vice versa.
Or in other words, C<=> is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:
$x->bmul(2);
print "$x, $y\n"; # prints '10, 10'
If you want a true copy of $x, use:
$y = $x->copy();
You can also chain the calls like this, this will make first a copy and then
multiply it by 2:
$y = $x->copy()->bmul(2);
See also the documentation for overload.pm regarding C<=>.
=item bpow
C (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C etc. The first three will
modify $x, the last one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone
The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
=item Overloading -$x
The following:
$x = -$x;
is slower than
$x->bneg();
since overload calls C instead of C. The first variant
needs to preserve $x since it does not know that it later will get overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
=item Mixing different object types
In Perl you will get a floating point value if you do one of the following:
$float = 5.0 + 2;
$float = 2 + 5.0;
$float = 5 / 2;
With overloaded math, only the first two variants will result in a BigFloat:
use Math::BigInt;
use Math::BigFloat;
$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInteger->new(5);
$mbi = Math::BigInteger->new(2);
# what actually gets called:
$float = $mbf + $mbi; # $mbf->badd()
$float = $mbf / $mbi; # $mbf->bdiv()
$integer = $mbi + $mbf; # $mbi->badd()
$integer = $mbi2 / $mbi; # $mbi2->bdiv()
$integer = $mbi2 / $mbf; # $mbi2->bdiv()
This is because math with overloaded operators follows the first (dominating)
operand, and the operation of that is called and returns thus the result. So,
Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
the result should be a Math::BigFloat or the second operant is one.
To get a Math::BigFloat you either need to call the operation manually,
make sure the operands are already of the proper type or casted to that type
via Math::BigFloat->new():
$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
Beware of simple "casting" the entire expression, this would only convert
the already computed result:
$float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!
Beware also of the order of more complicated expressions like:
$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.
Scalar values are a bit different, since:
$float = 2 + $mbf;
$float = $mbf + 2;
will both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
One solution to you problem might be autoupgrading|upgrading. See the
pragmas L, L and L for an easy way to do this.
=item bsqrt()
C works only good if the result is a big integer, e.g. the square
root of 144 is 12, but from 12 the square root is 3, regardless of rounding
mode. The reason is that the result is always truncated to an integer.
If you want a better approximation of the square root, then use:
$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode('even');
print $x->copy->bsqrt(),"\n"; # 4
Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
=item brsft()
For negative numbers in base see also L.
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L, L and L as well as
L and L.
The pragmas L, L and L also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
The package at
L contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.
=head1 AUTHORS
Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2006
and still at it in 2007.
Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (incomplete) list. If you miss your name, please drop me a
mail. Thank you!
=cut