Functions::PRECISION) && (++$i <= self::MAX_ITERATIONS)) { // Apply Newton-Raphson step $result = self::calculateDistribution($x, $alpha, $beta, true); $error = $result - $probability; if ($error == 0.0) { $dx = 0; } elseif ($error < 0.0) { $xLo = $x; } else { $xHi = $x; } $pdf = self::calculateDistribution($x, $alpha, $beta, false); // Avoid division by zero if ($pdf !== 0.0) { $dx = $error / $pdf; $xNew = $x - $dx; } // If the NR fails to converge (which for example may be the // case if the initial guess is too rough) we apply a bisection // step to determine a more narrow interval around the root. if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { $xNew = ($xLo + $xHi) / 2; $dx = $xNew - $x; } $x = $xNew; } if ($i === self::MAX_ITERATIONS) { return Functions::NA(); } return $x; } // // Implementation of the incomplete Gamma function // public static function incompleteGamma(float $a, float $x): float { static $max = 32; $summer = 0; for ($n = 0; $n <= $max; ++$n) { $divisor = $a; for ($i = 1; $i <= $n; ++$i) { $divisor *= ($a + $i); } $summer += ($x ** $n / $divisor); } return $x ** $a * exp(0 - $x) * $summer; } // // Implementation of the Gamma function // public static function gammaValue(float $value): float { if ($value == 0.0) { return 0; } static $p0 = 1.000000000190015; static $p = [ 1 => 76.18009172947146, 2 => -86.50532032941677, 3 => 24.01409824083091, 4 => -1.231739572450155, 5 => 1.208650973866179e-3, 6 => -5.395239384953e-6, ]; $y = $x = $value; $tmp = $x + 5.5; $tmp -= ($x + 0.5) * log($tmp); $summer = $p0; for ($j = 1; $j <= 6; ++$j) { $summer += ($p[$j] / ++$y); } return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x)); } /** * logGamma function. * * @version 1.1 * * @author Jaco van Kooten * * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. * * The natural logarithm of the gamma function.
* Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz
* Applied Mathematics Division
* Argonne National Laboratory
* Argonne, IL 60439
*

* References: *

    *
  1. W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.
  2. *
  3. K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.
  4. *
  5. Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.
  6. *
*

*

* From the original documentation: *

*

* This routine calculates the LOG(GAMMA) function for a positive real argument X. * Computation is based on an algorithm outlined in references 1 and 2. * The program uses rational functions that theoretically approximate LOG(GAMMA) * to at least 18 significant decimal digits. The approximation for X > 12 is from * reference 3, while approximations for X < 12.0 are similar to those in reference * 1, but are unpublished. The accuracy achieved depends on the arithmetic system, * the compiler, the intrinsic functions, and proper selection of the * machine-dependent constants. *

*

* Error returns:
* The program returns the value XINF for X .LE. 0.0 or when overflow would occur. * The computation is believed to be free of underflow and overflow. *

* * @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 */ // Log Gamma related constants private const LG_D1 = -0.5772156649015328605195174; private const LG_D2 = 0.4227843350984671393993777; private const LG_D4 = 1.791759469228055000094023; private const LG_P1 = [ 4.945235359296727046734888, 201.8112620856775083915565, 2290.838373831346393026739, 11319.67205903380828685045, 28557.24635671635335736389, 38484.96228443793359990269, 26377.48787624195437963534, 7225.813979700288197698961, ]; private const LG_P2 = [ 4.974607845568932035012064, 542.4138599891070494101986, 15506.93864978364947665077, 184793.2904445632425417223, 1088204.76946882876749847, 3338152.967987029735917223, 5106661.678927352456275255, 3074109.054850539556250927, ]; private const LG_P4 = [ 14745.02166059939948905062, 2426813.369486704502836312, 121475557.4045093227939592, 2663432449.630976949898078, 29403789566.34553899906876, 170266573776.5398868392998, 492612579337.743088758812, 560625185622.3951465078242, ]; private const LG_Q1 = [ 67.48212550303777196073036, 1113.332393857199323513008, 7738.757056935398733233834, 27639.87074403340708898585, 54993.10206226157329794414, 61611.22180066002127833352, 36351.27591501940507276287, 8785.536302431013170870835, ]; private const LG_Q2 = [ 183.0328399370592604055942, 7765.049321445005871323047, 133190.3827966074194402448, 1136705.821321969608938755, 5267964.117437946917577538, 13467014.54311101692290052, 17827365.30353274213975932, 9533095.591844353613395747, ]; private const LG_Q4 = [ 2690.530175870899333379843, 639388.5654300092398984238, 41355999.30241388052042842, 1120872109.61614794137657, 14886137286.78813811542398, 101680358627.2438228077304, 341747634550.7377132798597, 446315818741.9713286462081, ]; private const LG_C = [ -0.001910444077728, 8.4171387781295e-4, -5.952379913043012e-4, 7.93650793500350248e-4, -0.002777777777777681622553, 0.08333333333333333331554247, 0.0057083835261, ]; // Rough estimate of the fourth root of logGamma_xBig private const LG_FRTBIG = 2.25e76; private const PNT68 = 0.6796875; // Function cache for logGamma private static $logGammaCacheResult = 0.0; private static $logGammaCacheX = 0.0; public static function logGamma(float $x): float { if ($x == self::$logGammaCacheX) { return self::$logGammaCacheResult; } $y = $x; if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) { if ($y <= self::EPS) { $res = -log($y); } elseif ($y <= 1.5) { $res = self::logGamma1($y); } elseif ($y <= 4.0) { $res = self::logGamma2($y); } elseif ($y <= 12.0) { $res = self::logGamma3($y); } else { $res = self::logGamma4($y); } } else { // -------------------------- // Return for bad arguments // -------------------------- $res = self::MAX_VALUE; } // ------------------------------ // Final adjustments and return // ------------------------------ self::$logGammaCacheX = $x; self::$logGammaCacheResult = $res; return $res; } private static function logGamma1(float $y) { // --------------------- // EPS .LT. X .LE. 1.5 // --------------------- if ($y < self::PNT68) { $corr = -log($y); $xm1 = $y; } else { $corr = 0.0; $xm1 = $y - 1.0; } $xden = 1.0; $xnum = 0.0; if ($y <= 0.5 || $y >= self::PNT68) { for ($i = 0; $i < 8; ++$i) { $xnum = $xnum * $xm1 + self::LG_P1[$i]; $xden = $xden * $xm1 + self::LG_Q1[$i]; } return $corr + $xm1 * (self::LG_D1 + $xm1 * ($xnum / $xden)); } $xm2 = $y - 1.0; for ($i = 0; $i < 8; ++$i) { $xnum = $xnum * $xm2 + self::LG_P2[$i]; $xden = $xden * $xm2 + self::LG_Q2[$i]; } return $corr + $xm2 * (self::LG_D2 + $xm2 * ($xnum / $xden)); } private static function logGamma2(float $y) { // --------------------- // 1.5 .LT. X .LE. 4.0 // --------------------- $xm2 = $y - 2.0; $xden = 1.0; $xnum = 0.0; for ($i = 0; $i < 8; ++$i) { $xnum = $xnum * $xm2 + self::LG_P2[$i]; $xden = $xden * $xm2 + self::LG_Q2[$i]; } return $xm2 * (self::LG_D2 + $xm2 * ($xnum / $xden)); } protected static function logGamma3(float $y) { // ---------------------- // 4.0 .LT. X .LE. 12.0 // ---------------------- $xm4 = $y - 4.0; $xden = -1.0; $xnum = 0.0; for ($i = 0; $i < 8; ++$i) { $xnum = $xnum * $xm4 + self::LG_P4[$i]; $xden = $xden * $xm4 + self::LG_Q4[$i]; } return self::LG_D4 + $xm4 * ($xnum / $xden); } protected static function logGamma4(float $y) { // --------------------------------- // Evaluate for argument .GE. 12.0 // --------------------------------- $res = 0.0; if ($y <= self::LG_FRTBIG) { $res = self::LG_C[6]; $ysq = $y * $y; for ($i = 0; $i < 6; ++$i) { $res = $res / $ysq + self::LG_C[$i]; } $res /= $y; $corr = log($y); $res = $res + log(self::SQRT2PI) - 0.5 * $corr; $res += $y * ($corr - 1.0); } return $res; } }