// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package chacha20 import ( "bytes" "encoding/hex" "fmt" "math/rand" "testing" ) func _() { // Assert that bufSize is a multiple of blockSize. var b [1]byte _ = b[bufSize%blockSize] } func hexDecode(s string) []byte { ss, err := hex.DecodeString(s) if err != nil { panic(fmt.Sprintf("cannot decode input %#v: %v", s, err)) } return ss } // Run the test cases with the input and output in different buffers. func TestNoOverlap(t *testing.T) { for _, c := range testVectors { s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce)) input := hexDecode(c.input) output := make([]byte, len(input)) s.XORKeyStream(output, input) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", len(input), got, c.output) } } } // Run the test cases with the input and output overlapping entirely. func TestOverlap(t *testing.T) { for _, c := range testVectors { s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce)) data := hexDecode(c.input) s.XORKeyStream(data, data) got := hex.EncodeToString(data) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", len(data), got, c.output) } } } // Run the test cases with various source and destination offsets. func TestUnaligned(t *testing.T) { const max = 8 // max offset (+1) to test for _, c := range testVectors { data := hexDecode(c.input) input := make([]byte, len(data)+max) output := make([]byte, len(data)+max) for i := 0; i < max; i++ { // input offsets for j := 0; j < max; j++ { // output offsets s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce)) input := input[i : i+len(data)] output := output[j : j+len(data)] copy(input, data) s.XORKeyStream(output, input) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", len(data), got, c.output) } } } } } // Run the test cases by calling XORKeyStream multiple times. func TestStep(t *testing.T) { // wide range of step sizes to try and hit edge cases steps := [...]int{1, 3, 4, 7, 8, 17, 24, 30, 64, 256} rnd := rand.New(rand.NewSource(123)) for _, c := range testVectors { s, _ := NewUnauthenticatedCipher(hexDecode(c.key), hexDecode(c.nonce)) input := hexDecode(c.input) output := make([]byte, len(input)) // step through the buffers i, step := 0, steps[rnd.Intn(len(steps))] for i+step < len(input) { s.XORKeyStream(output[i:i+step], input[i:i+step]) if i+step < len(input) && output[i+step] != 0 { t.Errorf("length=%v, i=%v, step=%v: output overwritten", len(input), i, step) } i += step step = steps[rnd.Intn(len(steps))] } // finish the encryption s.XORKeyStream(output[i:], input[i:]) // ensure we tolerate a call with an empty input s.XORKeyStream(output[len(output):], input[len(input):]) got := hex.EncodeToString(output) if got != c.output { t.Errorf("length=%v: got %#v, want %#v", len(input), got, c.output) } } } func TestSetCounter(t *testing.T) { newCipher := func() *Cipher { s, _ := NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize)) return s } s := newCipher() src := bytes.Repeat([]byte("test"), 32) // two 64-byte blocks dst1 := make([]byte, len(src)) s.XORKeyStream(dst1, src) // advance counter to 1 and xor second block s = newCipher() s.SetCounter(1) dst2 := make([]byte, len(src)) s.XORKeyStream(dst2[64:], src[64:]) if !bytes.Equal(dst1[64:], dst2[64:]) { t.Error("failed to produce identical output using SetCounter") } // test again with unaligned blocks; SetCounter should reset the buffer s = newCipher() s.XORKeyStream(dst1[:70], src[:70]) s = newCipher() s.XORKeyStream([]byte{0}, []byte{0}) s.SetCounter(1) s.XORKeyStream(dst2[64:70], src[64:70]) if !bytes.Equal(dst1[64:70], dst2[64:70]) { t.Error("SetCounter did not reset buffer") } // advancing to a lower counter value should cause a panic panics := func(fn func()) (p bool) { defer func() { p = recover() != nil }() fn() return } if !panics(func() { s.SetCounter(0) }) { t.Error("counter decreasing should trigger a panic") } } func TestLastBlock(t *testing.T) { panics := func(fn func()) (p bool) { defer func() { p = recover() != nil }() fn() return } checkLastBlock := func(b []byte) { t.Helper() // Hardcoded result to check all implementations generate the same output. lastBlock := "ace4cd09e294d1912d4ad205d06f95d9c2f2bfcf453e8753f128765b62215f4d" + "92c74f2f626c6a640c0b1284d839ec81f1696281dafc3e684593937023b58b1d" if got := hex.EncodeToString(b); got != lastBlock { t.Errorf("wrong output for the last block, got %q, want %q", got, lastBlock) } } // setting the counter to 0xffffffff and crypting multiple blocks should // trigger a panic s, _ := NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize)) s.SetCounter(0xffffffff) blocks := make([]byte, blockSize*2) if !panics(func() { s.XORKeyStream(blocks, blocks) }) { t.Error("crypting multiple blocks should trigger a panic") } // setting the counter to 0xffffffff - 1 and crypting two blocks should not // trigger a panic s, _ = NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize)) s.SetCounter(0xffffffff - 1) if panics(func() { s.XORKeyStream(blocks, blocks) }) { t.Error("crypting the last blocks should not trigger a panic") } checkLastBlock(blocks[blockSize:]) // once all the keystream is spent, setting the counter should panic if !panics(func() { s.SetCounter(0xffffffff) }) { t.Error("setting the counter after overflow should trigger a panic") } // crypting a subsequent block *should* panic block := make([]byte, blockSize) if !panics(func() { s.XORKeyStream(block, block) }) { t.Error("crypting after overflow should trigger a panic") } // if we crypt less than a full block, we should be able to crypt the rest // in a subsequent call without panicking s, _ = NewUnauthenticatedCipher(make([]byte, KeySize), make([]byte, NonceSize)) s.SetCounter(0xffffffff) if panics(func() { s.XORKeyStream(block[:7], block[:7]) }) { t.Error("crypting part of the last block should not trigger a panic") } if panics(func() { s.XORKeyStream(block[7:], block[7:]) }) { t.Error("crypting part of the last block should not trigger a panic") } checkLastBlock(block) // as before, a third call should trigger a panic because all keystream is spent if !panics(func() { s.XORKeyStream(block[:1], block[:1]) }) { t.Error("crypting after overflow should trigger a panic") } } func benchmarkChaCha20(b *testing.B, step, count int) { tot := step * count src := make([]byte, tot) dst := make([]byte, tot) key := make([]byte, KeySize) nonce := make([]byte, NonceSize) b.SetBytes(int64(tot)) b.ResetTimer() for i := 0; i < b.N; i++ { c, _ := NewUnauthenticatedCipher(key, nonce) for i := 0; i < tot; i += step { c.XORKeyStream(dst[i:], src[i:i+step]) } } } func BenchmarkChaCha20(b *testing.B) { b.Run("64", func(b *testing.B) { benchmarkChaCha20(b, 64, 1) }) b.Run("256", func(b *testing.B) { benchmarkChaCha20(b, 256, 1) }) b.Run("10x25", func(b *testing.B) { benchmarkChaCha20(b, 10, 25) }) b.Run("4096", func(b *testing.B) { benchmarkChaCha20(b, 4096, 1) }) b.Run("100x40", func(b *testing.B) { benchmarkChaCha20(b, 100, 40) }) b.Run("65536", func(b *testing.B) { benchmarkChaCha20(b, 65536, 1) }) b.Run("1000x65", func(b *testing.B) { benchmarkChaCha20(b, 1000, 65) }) } func TestHChaCha20(t *testing.T) { // See draft-irtf-cfrg-xchacha-00, Section 2.2.1. key := []byte{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f} nonce := []byte{0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x4a, 0x00, 0x00, 0x00, 0x00, 0x31, 0x41, 0x59, 0x27} expected := []byte{0x82, 0x41, 0x3b, 0x42, 0x27, 0xb2, 0x7b, 0xfe, 0xd3, 0x0e, 0x42, 0x50, 0x8a, 0x87, 0x7d, 0x73, 0xa0, 0xf9, 0xe4, 0xd5, 0x8a, 0x74, 0xa8, 0x53, 0xc1, 0x2e, 0xc4, 0x13, 0x26, 0xd3, 0xec, 0xdc, } result, err := HChaCha20(key[:], nonce[:]) if err != nil { t.Fatal(err) } if !bytes.Equal(expected, result) { t.Errorf("want %x, got %x", expected, result) } }