// Copyright 2016 The Snappy-Go Authors. All rights reserved. // Copyright (c) 2019 Klaus Post. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package s2 import ( "bytes" "math/bits" ) func load32(b []byte, i int) uint32 { b = b[i:] b = b[:4] return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 } func load64(b []byte, i int) uint64 { b = b[i:] b = b[:8] return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 } // emitLiteral writes a literal chunk and returns the number of bytes written. // // It assumes that: // dst is long enough to hold the encoded bytes // 0 <= len(lit) && len(lit) <= math.MaxUint32 func emitLiteral(dst, lit []byte) int { if len(lit) == 0 { return 0 } i, n := 0, uint(len(lit)-1) switch { case n < 60: dst[0] = uint8(n)<<2 | tagLiteral i = 1 case n < 1<<8: dst[1] = uint8(n) dst[0] = 60<<2 | tagLiteral i = 2 case n < 1<<16: dst[2] = uint8(n >> 8) dst[1] = uint8(n) dst[0] = 61<<2 | tagLiteral i = 3 case n < 1<<24: dst[3] = uint8(n >> 16) dst[2] = uint8(n >> 8) dst[1] = uint8(n) dst[0] = 62<<2 | tagLiteral i = 4 default: dst[4] = uint8(n >> 24) dst[3] = uint8(n >> 16) dst[2] = uint8(n >> 8) dst[1] = uint8(n) dst[0] = 63<<2 | tagLiteral i = 5 } return i + copy(dst[i:], lit) } // emitCopy writes a copy chunk and returns the number of bytes written. // // It assumes that: // dst is long enough to hold the encoded bytes // 1 <= offset && offset <= 65535 // 4 <= length && length <= 65535 func emitCopy(dst []byte, offset, length int) int { // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The // threshold for this loop is a little higher (at 68 = 64 + 4), and the // length emitted down below is is a little lower (at 60 = 64 - 4), because // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1. if offset >= 65536 { i := 0 if length > 64 { // Emit a length 64 copy, encoded as 5 bytes. dst[4] = uint8(offset >> 24) dst[3] = uint8(offset >> 16) dst[2] = uint8(offset >> 8) dst[1] = uint8(offset) dst[0] = 63<<2 | tagCopy4 length -= 64 if length >= 4 { // Emit remaining as repeats return 5 + emitRepeat(dst[5:], offset, length) } i = 5 } if length == 0 { return i } // Emit a copy, offset encoded as 4 bytes. dst[i+0] = uint8(length-1)<<2 | tagCopy4 dst[i+1] = uint8(offset) dst[i+2] = uint8(offset >> 8) dst[i+3] = uint8(offset >> 16) dst[i+4] = uint8(offset >> 24) return i + 5 } // Offset no more than 2 bytes. if length > 64 { // Emit a length 60 copy, encoded as 3 bytes. // Emit remaining as repeat value (minimum 4 bytes). dst[2] = uint8(offset >> 8) dst[1] = uint8(offset) dst[0] = 59<<2 | tagCopy2 length -= 60 // Emit remaining as repeats, at least 4 bytes remain. return 3 + emitRepeat(dst[3:], offset, length) } if length >= 12 || offset >= 2048 { // Emit the remaining copy, encoded as 3 bytes. dst[2] = uint8(offset >> 8) dst[1] = uint8(offset) dst[0] = uint8(length-1)<<2 | tagCopy2 return 3 } // Emit the remaining copy, encoded as 2 bytes. dst[1] = uint8(offset) dst[0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1 return 2 } // emitRepeat writes a copy chunk and returns the number of bytes written. func emitRepeat(dst []byte, offset, length int) int { // Repeat offset, make length cheaper length -= 4 if length <= 4 { dst[0] = uint8(length)<<2 | tagCopy1 dst[1] = 0 return 2 } if length < 8 && offset < 2048 { // Encode WITH offset dst[1] = uint8(offset) dst[0] = uint8(offset>>8)<<5 | uint8(length)<<2 | tagCopy1 return 2 } if length < (1<<8)+4 { length -= 4 dst[2] = uint8(length) dst[1] = 0 dst[0] = 5<<2 | tagCopy1 return 3 } if length < (1<<16)+(1<<8) { length -= 1 << 8 dst[3] = uint8(length >> 8) dst[2] = uint8(length >> 0) dst[1] = 0 dst[0] = 6<<2 | tagCopy1 return 4 } const maxRepeat = (1 << 24) - 1 length -= 1 << 16 left := 0 if length > maxRepeat { left = length - maxRepeat + 4 length = maxRepeat - 4 } dst[4] = uint8(length >> 16) dst[3] = uint8(length >> 8) dst[2] = uint8(length >> 0) dst[1] = 0 dst[0] = 7<<2 | tagCopy1 if left > 0 { return 5 + emitRepeat(dst[5:], offset, left) } return 5 } // hash6 returns the hash of the lowest 6 bytes of u to fit in a hash table with h bits. // Preferably h should be a constant and should always be <64. func hash6(u uint64, h uint8) uint32 { const prime6bytes = 227718039650203 return uint32(((u << (64 - 48)) * prime6bytes) >> ((64 - h) & 63)) } // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It // assumes that the varint-encoded length of the decompressed bytes has already // been written. // // It also assumes that: // len(dst) >= MaxEncodedLen(len(src)) && // minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize func encodeBlock(dst, src []byte) (d int) { // Initialize the hash table. const ( tableBits = 14 maxTableSize = 1 << tableBits ) // In Go, all array elements are zero-initialized, so there is no advantage // to a smaller tableSize per se. However, it matches the C++ algorithm, // and in the asm versions of this code, we can get away with zeroing only // the first tableSize elements. var table [maxTableSize]uint32 // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := len(src) - inputMargin // Bail if we can't compress to at least this. dstLimit := len(src) - len(src)>>5 - 5 // nextEmit is where in src the next emitLiteral should start from. nextEmit := 0 // The encoded form must start with a literal, as there are no previous // bytes to copy, so we start looking for hash matches at s == 1. s := 1 cv := load64(src, s) // We search for a repeat at -1, but don't output repeats when nextEmit == 0 repeat := 1 for { candidate := 0 for { // Next src position to check nextS := s + (s-nextEmit)>>6 + 4 if nextS > sLimit { goto emitRemainder } hash0 := hash6(cv, tableBits) hash1 := hash6(cv>>8, tableBits) candidate = int(table[hash0]) candidate2 := int(table[hash1]) table[hash0] = uint32(s) table[hash1] = uint32(s + 1) hash2 := hash6(cv>>16, tableBits) // Check repeat at offset checkRep. const checkRep = 1 if uint32(cv>>(checkRep*8)) == load32(src, s-repeat+checkRep) { base := s + checkRep // Extend back for i := base - repeat; base > nextEmit && i > 0 && src[i-1] == src[base-1]; { i-- base-- } d += emitLiteral(dst[d:], src[nextEmit:base]) // Extend forward candidate := s - repeat + 4 + checkRep s += 4 + checkRep for s <= sLimit { if diff := load64(src, s) ^ load64(src, candidate); diff != 0 { s += bits.TrailingZeros64(diff) >> 3 break } s += 8 candidate += 8 } if nextEmit > 0 { // same as `add := emitCopy(dst[d:], repeat, s-base)` but skips storing offset. d += emitRepeat(dst[d:], repeat, s-base) } else { // First match, cannot be repeat. d += emitCopy(dst[d:], repeat, s-base) } nextEmit = s if s >= sLimit { goto emitRemainder } cv = load64(src, s) continue } if uint32(cv) == load32(src, candidate) { break } candidate = int(table[hash2]) if uint32(cv>>8) == load32(src, candidate2) { table[hash2] = uint32(s + 2) candidate = candidate2 s++ break } table[hash2] = uint32(s + 2) if uint32(cv>>16) == load32(src, candidate) { s += 2 break } cv = load64(src, nextS) s = nextS } // Extend backwards for candidate > 0 && s > nextEmit && src[candidate-1] == src[s-1] { candidate-- s-- } // Bail if we exceed the maximum size. if d+(s-nextEmit) > dstLimit { return 0 } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. d += emitLiteral(dst[d:], src[nextEmit:s]) // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. base := s repeat = base - candidate // Extend the 4-byte match as long as possible. s += 4 candidate += 4 for s <= len(src)-8 { if diff := load64(src, s) ^ load64(src, candidate); diff != 0 { s += bits.TrailingZeros64(diff) >> 3 break } s += 8 candidate += 8 } d += emitCopy(dst[d:], repeat, s-base) if false { // Validate match. a := src[base:s] b := src[base-repeat : base-repeat+(s-base)] if !bytes.Equal(a, b) { panic("mismatch") } } nextEmit = s if s >= sLimit { goto emitRemainder } if d > dstLimit { // Do we have space for more, if not bail. return 0 } // Check for an immediate match, otherwise start search at s+1 x := load64(src, s-2) m2Hash := hash6(x, tableBits) currHash := hash6(x>>16, tableBits) candidate = int(table[currHash]) table[m2Hash] = uint32(s - 2) table[currHash] = uint32(s) if uint32(x>>16) != load32(src, candidate) { cv = load64(src, s+1) s++ break } } } emitRemainder: if nextEmit < len(src) { // Bail if we exceed the maximum size. if d+len(src)-nextEmit > dstLimit { return 0 } d += emitLiteral(dst[d:], src[nextEmit:]) } return d }