package flate import ( "encoding/binary" "fmt" "math/bits" ) // fastGen maintains the table for matches, // and the previous byte block for level 2. // This is the generic implementation. type fastEncL1 struct { fastGen table [tableSize]tableEntry } // EncodeL1 uses a similar algorithm to level 1 func (e *fastEncL1) Encode(dst *tokens, src []byte) { const ( inputMargin = 12 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin hashBytes = 5 ) if debugDeflate && e.cur < 0 { panic(fmt.Sprint("e.cur < 0: ", e.cur)) } // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } e.cur = maxMatchOffset break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - maxMatchOffset for i := range e.table[:] { v := e.table[i].offset if v <= minOff { v = 0 } else { v = v - e.cur + maxMatchOffset } e.table[i].offset = v } e.cur = maxMatchOffset } s := e.addBlock(src) // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) return } // Override src src = e.hist nextEmit := s // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := int32(len(src) - inputMargin) // nextEmit is where in src the next emitLiteral should start from. cv := load6432(src, s) for { const skipLog = 5 const doEvery = 2 nextS := s var candidate tableEntry for { nextHash := hashLen(cv, tableBits, hashBytes) candidate = e.table[nextHash] nextS = s + doEvery + (s-nextEmit)>>skipLog if nextS > sLimit { goto emitRemainder } now := load6432(src, nextS) e.table[nextHash] = tableEntry{offset: s + e.cur} nextHash = hashLen(now, tableBits, hashBytes) offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) { e.table[nextHash] = tableEntry{offset: nextS + e.cur} break } // Do one right away... cv = now s = nextS nextS++ candidate = e.table[nextHash] now >>= 8 e.table[nextHash] = tableEntry{offset: s + e.cur} offset = s - (candidate.offset - e.cur) if offset < maxMatchOffset && uint32(cv) == load3232(src, candidate.offset-e.cur) { e.table[nextHash] = tableEntry{offset: nextS + e.cur} break } cv = now s = nextS } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. // Extend the 4-byte match as long as possible. t := candidate.offset - e.cur var l = int32(4) if false { l = e.matchlenLong(s+4, t+4, src) + 4 } else { // inlined: a := src[s+4:] b := src[t+4:] for len(a) >= 8 { if diff := binary.LittleEndian.Uint64(a) ^ binary.LittleEndian.Uint64(b); diff != 0 { l += int32(bits.TrailingZeros64(diff) >> 3) break } l += 8 a = a[8:] b = b[8:] } if len(a) < 8 { b = b[:len(a)] for i := range a { if a[i] != b[i] { break } l++ } } } // Extend backwards for t > 0 && s > nextEmit && src[t-1] == src[s-1] { s-- t-- l++ } if nextEmit < s { if false { emitLiteral(dst, src[nextEmit:s]) } else { for _, v := range src[nextEmit:s] { dst.tokens[dst.n] = token(v) dst.litHist[v]++ dst.n++ } } } // Save the match found if false { dst.AddMatchLong(l, uint32(s-t-baseMatchOffset)) } else { // Inlined... xoffset := uint32(s - t - baseMatchOffset) xlength := l oc := offsetCode(xoffset) xoffset |= oc << 16 for xlength > 0 { xl := xlength if xl > 258 { if xl > 258+baseMatchLength { xl = 258 } else { xl = 258 - baseMatchLength } } xlength -= xl xl -= baseMatchLength dst.extraHist[lengthCodes1[uint8(xl)]]++ dst.offHist[oc]++ dst.tokens[dst.n] = token(matchType | uint32(xl)<= s { s = nextS + 1 } if s >= sLimit { // Index first pair after match end. if int(s+l+8) < len(src) { cv := load6432(src, s) e.table[hashLen(cv, tableBits, hashBytes)] = tableEntry{offset: s + e.cur} } goto emitRemainder } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-2 and at s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load6432(src, s-2) o := e.cur + s - 2 prevHash := hashLen(x, tableBits, hashBytes) e.table[prevHash] = tableEntry{offset: o} x >>= 16 currHash := hashLen(x, tableBits, hashBytes) candidate = e.table[currHash] e.table[currHash] = tableEntry{offset: o + 2} offset := s - (candidate.offset - e.cur) if offset > maxMatchOffset || uint32(x) != load3232(src, candidate.offset-e.cur) { cv = x >> 8 s++ break } } } emitRemainder: if int(nextEmit) < len(src) { // If nothing was added, don't encode literals. if dst.n == 0 { return } emitLiteral(dst, src[nextEmit:]) } }