// Copied from https://cs.opensource.google/go/x/exp/+/24438e51023af3bfc1db8aed43c1342817e8cfcd:rand/rand.go // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package rand implements pseudo-random number generators. // // Random numbers are generated by a Source. Top-level functions, such as // Float64 and Int, use a default shared Source that produces a deterministic // sequence of values each time a program is run. Use the Seed function to // initialize the default Source if different behavior is required for each run. // The default Source, a LockedSource, is safe for concurrent use by multiple // goroutines, but Sources created by NewSource are not. However, Sources are small // and it is reasonable to have a separate Source for each goroutine, seeded // differently, to avoid locking. // // For random numbers suitable for security-sensitive work, see the crypto/rand // package. package rand import "sync" // A Source represents a source of uniformly-distributed // pseudo-random int64 values in the range [0, 1<<64). type Source interface { Uint64() uint64 Seed(seed uint64) } // NewSource returns a new pseudo-random Source seeded with the given value. func NewSource(seed uint64) Source { var rng PCGSource rng.Seed(seed) return &rng } // A Rand is a source of random numbers. type Rand struct { src Source // readVal contains remainder of 64-bit integer used for bytes // generation during most recent Read call. // It is saved so next Read call can start where the previous // one finished. readVal uint64 // readPos indicates the number of low-order bytes of readVal // that are still valid. readPos int8 } // New returns a new Rand that uses random values from src // to generate other random values. func New(src Source) *Rand { return &Rand{src: src} } // Seed uses the provided seed value to initialize the generator to a deterministic state. // Seed should not be called concurrently with any other Rand method. func (r *Rand) Seed(seed uint64) { if lk, ok := r.src.(*LockedSource); ok { lk.seedPos(seed, &r.readPos) return } r.src.Seed(seed) r.readPos = 0 } // Uint64 returns a pseudo-random 64-bit integer as a uint64. func (r *Rand) Uint64() uint64 { return r.src.Uint64() } // Int63 returns a non-negative pseudo-random 63-bit integer as an int64. func (r *Rand) Int63() int64 { return int64(r.src.Uint64() &^ (1 << 63)) } // Uint32 returns a pseudo-random 32-bit value as a uint32. func (r *Rand) Uint32() uint32 { return uint32(r.Uint64() >> 32) } // Int31 returns a non-negative pseudo-random 31-bit integer as an int32. func (r *Rand) Int31() int32 { return int32(r.Uint64() >> 33) } // Int returns a non-negative pseudo-random int. func (r *Rand) Int() int { u := uint(r.Uint64()) return int(u << 1 >> 1) // clear sign bit. } const maxUint64 = (1 << 64) - 1 // Uint64n returns, as a uint64, a pseudo-random number in [0,n). // It is guaranteed more uniform than taking a Source value mod n // for any n that is not a power of 2. func (r *Rand) Uint64n(n uint64) uint64 { if n&(n-1) == 0 { // n is power of two, can mask if n == 0 { panic("invalid argument to Uint64n") } return r.Uint64() & (n - 1) } // If n does not divide v, to avoid bias we must not use // a v that is within maxUint64%n of the top of the range. v := r.Uint64() if v > maxUint64-n { // Fast check. ceiling := maxUint64 - maxUint64%n for v >= ceiling { v = r.Uint64() } } return v % n } // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Int63n(n int64) int64 { if n <= 0 { panic("invalid argument to Int63n") } return int64(r.Uint64n(uint64(n))) } // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Int31n(n int32) int32 { if n <= 0 { panic("invalid argument to Int31n") } // TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines. return int32(r.Uint64n(uint64(n))) } // Intn returns, as an int, a non-negative pseudo-random number in [0,n). // It panics if n <= 0. func (r *Rand) Intn(n int) int { if n <= 0 { panic("invalid argument to Intn") } // TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines. return int(r.Uint64n(uint64(n))) } // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0). func (r *Rand) Float64() float64 { // There is one bug in the value stream: r.Int63() may be so close // to 1<<63 that the division rounds up to 1.0, and we've guaranteed // that the result is always less than 1.0. // // We tried to fix this by mapping 1.0 back to 0.0, but since float64 // values near 0 are much denser than near 1, mapping 1 to 0 caused // a theoretically significant overshoot in the probability of returning 0. // Instead of that, if we round up to 1, just try again. // Getting 1 only happens 1/2⁵³ of the time, so most clients // will not observe it anyway. again: f := float64(r.Uint64n(1<<53)) / (1 << 53) if f == 1.0 { goto again // resample; this branch is taken O(never) } return f } // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0). func (r *Rand) Float32() float32 { // We do not want to return 1.0. // This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64). again: f := float32(r.Float64()) if f == 1 { goto again // resample; this branch is taken O(very rarely) } return f } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n). func (r *Rand) Perm(n int) []int { m := make([]int, n) // In the following loop, the iteration when i=0 always swaps m[0] with m[0]. // A change to remove this useless iteration is to assign 1 to i in the init // statement. But Perm also effects r. Making this change will affect // the final state of r. So this change can't be made for compatibility // reasons for Go 1. for i := 0; i < n; i++ { j := r.Intn(i + 1) m[i] = m[j] m[j] = i } return m } // Shuffle pseudo-randomizes the order of elements. // n is the number of elements. Shuffle panics if n < 0. // swap swaps the elements with indexes i and j. func (r *Rand) Shuffle(n int, swap func(i, j int)) { if n < 0 { panic("invalid argument to Shuffle") } // Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle // Shuffle really ought not be called with n that doesn't fit in 32 bits. // Not only will it take a very long time, but with 2³¹! possible permutations, // there's no way that any PRNG can have a big enough internal state to // generate even a minuscule percentage of the possible permutations. // Nevertheless, the right API signature accepts an int n, so handle it as best we can. i := n - 1 for ; i > 1<<31-1-1; i-- { j := int(r.Int63n(int64(i + 1))) swap(i, j) } for ; i > 0; i-- { j := int(r.Int31n(int32(i + 1))) swap(i, j) } } // Read generates len(p) random bytes and writes them into p. It // always returns len(p) and a nil error. // Read should not be called concurrently with any other Rand method unless // the underlying source is a LockedSource. func (r *Rand) Read(p []byte) (n int, err error) { if lk, ok := r.src.(*LockedSource); ok { return lk.Read(p, &r.readVal, &r.readPos) } return read(p, r.src, &r.readVal, &r.readPos) } func read(p []byte, src Source, readVal *uint64, readPos *int8) (n int, err error) { pos := *readPos val := *readVal rng, _ := src.(*PCGSource) for n = 0; n < len(p); n++ { if pos == 0 { if rng != nil { val = rng.Uint64() } else { val = src.Uint64() } pos = 8 } p[n] = byte(val) val >>= 8 pos-- } *readPos = pos *readVal = val return } /* * Top-level convenience functions */ var globalRand = New(&LockedSource{src: *NewSource(1).(*PCGSource)}) // Type assert that globalRand's source is a LockedSource whose src is a PCGSource. var _ PCGSource = globalRand.src.(*LockedSource).src // Seed uses the provided seed value to initialize the default Source to a // deterministic state. If Seed is not called, the generator behaves as // if seeded by Seed(1). // Seed, unlike the Rand.Seed method, is safe for concurrent use. func Seed(seed uint64) { globalRand.Seed(seed) } // Int63 returns a non-negative pseudo-random 63-bit integer as an int64 // from the default Source. func Int63() int64 { return globalRand.Int63() } // Uint32 returns a pseudo-random 32-bit value as a uint32 // from the default Source. func Uint32() uint32 { return globalRand.Uint32() } // Uint64 returns a pseudo-random 64-bit value as a uint64 // from the default Source. func Uint64() uint64 { return globalRand.Uint64() } // Int31 returns a non-negative pseudo-random 31-bit integer as an int32 // from the default Source. func Int31() int32 { return globalRand.Int31() } // Int returns a non-negative pseudo-random int from the default Source. func Int() int { return globalRand.Int() } // Int63n returns, as an int64, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Int63n(n int64) int64 { return globalRand.Int63n(n) } // Int31n returns, as an int32, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Int31n(n int32) int32 { return globalRand.Int31n(n) } // Intn returns, as an int, a non-negative pseudo-random number in [0,n) // from the default Source. // It panics if n <= 0. func Intn(n int) int { return globalRand.Intn(n) } // Float64 returns, as a float64, a pseudo-random number in [0.0,1.0) // from the default Source. func Float64() float64 { return globalRand.Float64() } // Float32 returns, as a float32, a pseudo-random number in [0.0,1.0) // from the default Source. func Float32() float32 { return globalRand.Float32() } // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n) // from the default Source. func Perm(n int) []int { return globalRand.Perm(n) } // Shuffle pseudo-randomizes the order of elements using the default Source. // n is the number of elements. Shuffle panics if n < 0. // swap swaps the elements with indexes i and j. func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) } // Read generates len(p) random bytes from the default Source and // writes them into p. It always returns len(p) and a nil error. // Read, unlike the Rand.Read method, is safe for concurrent use. func Read(p []byte) (n int, err error) { return globalRand.Read(p) } // NormFloat64 returns a normally distributed float64 in the range // [-math.MaxFloat64, +math.MaxFloat64] with // standard normal distribution (mean = 0, stddev = 1) // from the default Source. // To produce a different normal distribution, callers can // adjust the output using: // // sample = NormFloat64() * desiredStdDev + desiredMean func NormFloat64() float64 { return globalRand.NormFloat64() } // ExpFloat64 returns an exponentially distributed float64 in the range // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. // To produce a distribution with a different rate parameter, // callers can adjust the output using: // // sample = ExpFloat64() / desiredRateParameter func ExpFloat64() float64 { return globalRand.ExpFloat64() } // LockedSource is an implementation of Source that is concurrency-safe. // A Rand using a LockedSource is safe for concurrent use. // // The zero value of LockedSource is valid, but should be seeded before use. type LockedSource struct { lk sync.Mutex src PCGSource } func (s *LockedSource) Uint64() (n uint64) { s.lk.Lock() n = s.src.Uint64() s.lk.Unlock() return } func (s *LockedSource) Seed(seed uint64) { s.lk.Lock() s.src.Seed(seed) s.lk.Unlock() } // seedPos implements Seed for a LockedSource without a race condiiton. func (s *LockedSource) seedPos(seed uint64, readPos *int8) { s.lk.Lock() s.src.Seed(seed) *readPos = 0 s.lk.Unlock() } // Read implements Read for a LockedSource. func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error) { s.lk.Lock() n, err = read(p, &s.src, readVal, readPos) s.lk.Unlock() return }