// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package iconvg import ( "errors" "image/color" "math" "golang.org/x/image/math/f32" ) var ( errCSELUsedAsBothGradientAndStop = errors.New("iconvg: CSEL used as both gradient and stop") errDrawingOpsUsedInStylingMode = errors.New("iconvg: drawing ops used in styling mode") errInvalidSelectorAdjustment = errors.New("iconvg: invalid selector adjustment") errInvalidIncrementingAdjustment = errors.New("iconvg: invalid incrementing adjustment") errStylingOpsUsedInDrawingMode = errors.New("iconvg: styling ops used in drawing mode") errTooManyGradientStops = errors.New("iconvg: too many gradient stops") ) type mode uint8 const ( modeInitial mode = iota modeStyling modeDrawing ) // Encoder is an IconVG encoder. // // The zero value is usable. Calling Reset, which is optional, sets the // Metadata for the subsequent encoded form. If Reset is not called before // other Encoder methods, the default metadata is implied. // // It aims to emit byte-identical Bytes output for the same input, independent // of the platform (and specifically its floating-point hardware). type Encoder struct { // HighResolutionCoordinates is whether the encoder should encode // coordinate numbers for subsequent paths at the best possible resolution // afforded by the underlying graphic format. // // By default (false), the encoder quantizes coordinates to 1/64th of a // unit if possible (the default graphic size is 64 by 64 units, so // 1/4096th of the default width or height). Each such coordinate can // therefore be encoded in either 1 or 2 bytes. If true, some coordinates // will be encoded in 4 bytes, giving greater accuracy but larger file // sizes. On the Material Design icon set, the 950 or so icons take up // around 40% more bytes (172K vs 123K) at high resolution. // // See the package documentation for more details on the coordinate number // encoding format. HighResolutionCoordinates bool // highResolutionCoordinates is a local copy, copied during StartPath, to // avoid having to specify the semantics of modifying the exported field // while drawing. highResolutionCoordinates bool buf buffer altBuf buffer metadata Metadata err error lod0 float32 lod1 float32 cSel uint8 nSel uint8 mode mode drawOp byte drawArgs []float32 scratch [12]byte } // Bytes returns the encoded form. func (e *Encoder) Bytes() ([]byte, error) { if e.err != nil { return nil, e.err } if e.mode == modeInitial { e.appendDefaultMetadata() } return []byte(e.buf), nil } // Reset resets the Encoder for the given Metadata. // // This includes setting e.HighResolutionCoordinates to false. func (e *Encoder) Reset(m Metadata) { *e = Encoder{ buf: append(e.buf[:0], magic...), metadata: m, mode: modeStyling, lod1: positiveInfinity, } nMetadataChunks := 0 mcViewBox := m.ViewBox != DefaultViewBox if mcViewBox { nMetadataChunks++ } mcSuggestedPalette := m.Palette != DefaultPalette if mcSuggestedPalette { nMetadataChunks++ } e.buf.encodeNatural(uint32(nMetadataChunks)) if mcViewBox { e.altBuf = e.altBuf[:0] e.altBuf.encodeNatural(midViewBox) e.altBuf.encodeCoordinate(m.ViewBox.Min[0]) e.altBuf.encodeCoordinate(m.ViewBox.Min[1]) e.altBuf.encodeCoordinate(m.ViewBox.Max[0]) e.altBuf.encodeCoordinate(m.ViewBox.Max[1]) e.buf.encodeNatural(uint32(len(e.altBuf))) e.buf = append(e.buf, e.altBuf...) } if mcSuggestedPalette { n := 63 for ; n >= 0 && m.Palette[n] == (color.RGBA{0x00, 0x00, 0x00, 0xff}); n-- { } // Find the shortest encoding that can represent all of m.Palette's n+1 // explicit colors. enc1, enc2, enc3 := true, true, true for _, c := range m.Palette[:n+1] { if enc1 && (!is1(c.R) || !is1(c.G) || !is1(c.B) || !is1(c.A)) { enc1 = false } if enc2 && (!is2(c.R) || !is2(c.G) || !is2(c.B) || !is2(c.A)) { enc2 = false } if enc3 && (c.A != 0xff) { enc3 = false } } e.altBuf = e.altBuf[:0] e.altBuf.encodeNatural(midSuggestedPalette) if enc1 { e.altBuf = append(e.altBuf, byte(n)|0x00) for _, c := range m.Palette[:n+1] { x, _ := encodeColor1(RGBAColor(c)) e.altBuf = append(e.altBuf, x) } } else if enc2 { e.altBuf = append(e.altBuf, byte(n)|0x40) for _, c := range m.Palette[:n+1] { x, _ := encodeColor2(RGBAColor(c)) e.altBuf = append(e.altBuf, x[0], x[1]) } } else if enc3 { e.altBuf = append(e.altBuf, byte(n)|0x80) for _, c := range m.Palette[:n+1] { e.altBuf = append(e.altBuf, c.R, c.G, c.B) } } else { e.altBuf = append(e.altBuf, byte(n)|0xc0) for _, c := range m.Palette[:n+1] { e.altBuf = append(e.altBuf, c.R, c.G, c.B, c.A) } } e.buf.encodeNatural(uint32(len(e.altBuf))) e.buf = append(e.buf, e.altBuf...) } } func (e *Encoder) appendDefaultMetadata() { e.buf = append(e.buf[:0], magic...) e.buf = append(e.buf, 0x00) // There are zero metadata chunks. e.mode = modeStyling } func (e *Encoder) CSel() uint8 { if e.mode == modeInitial { e.appendDefaultMetadata() } return e.cSel } func (e *Encoder) NSel() uint8 { if e.mode == modeInitial { e.appendDefaultMetadata() } return e.nSel } func (e *Encoder) LOD() (lod0, lod1 float32) { if e.mode == modeInitial { e.appendDefaultMetadata() } return e.lod0, e.lod1 } func (e *Encoder) checkModeStyling() { if e.mode == modeStyling { return } if e.mode == modeInitial { e.appendDefaultMetadata() return } e.err = errStylingOpsUsedInDrawingMode } func (e *Encoder) SetCSel(cSel uint8) { e.checkModeStyling() if e.err != nil { return } e.cSel = cSel & 0x3f e.buf = append(e.buf, e.cSel) } func (e *Encoder) SetNSel(nSel uint8) { e.checkModeStyling() if e.err != nil { return } e.nSel = nSel & 0x3f e.buf = append(e.buf, e.nSel|0x40) } func (e *Encoder) SetCReg(adj uint8, incr bool, c Color) { e.checkModeStyling() if e.err != nil { return } if adj > 6 { e.err = errInvalidSelectorAdjustment return } if incr { if adj != 0 { e.err = errInvalidIncrementingAdjustment } adj = 7 } if x, ok := encodeColor1(c); ok { e.buf = append(e.buf, adj|0x80, x) return } if x, ok := encodeColor2(c); ok { e.buf = append(e.buf, adj|0x88, x[0], x[1]) return } if x, ok := encodeColor3Direct(c); ok { e.buf = append(e.buf, adj|0x90, x[0], x[1], x[2]) return } if x, ok := encodeColor4(c); ok { e.buf = append(e.buf, adj|0x98, x[0], x[1], x[2], x[3]) return } if x, ok := encodeColor3Indirect(c); ok { e.buf = append(e.buf, adj|0xa0, x[0], x[1], x[2]) return } panic("unreachable") } func (e *Encoder) SetNReg(adj uint8, incr bool, f float32) { e.checkModeStyling() if e.err != nil { return } if adj > 6 { e.err = errInvalidSelectorAdjustment return } if incr { if adj != 0 { e.err = errInvalidIncrementingAdjustment } adj = 7 } // Try three different encodings and pick the shortest. b := buffer(e.scratch[0:0]) opcode, iBest, nBest := uint8(0xa8), 0, b.encodeReal(f) b = buffer(e.scratch[4:4]) if n := b.encodeCoordinate(f); n < nBest { opcode, iBest, nBest = 0xb0, 4, n } b = buffer(e.scratch[8:8]) if n := b.encodeZeroToOne(f); n < nBest { opcode, iBest, nBest = 0xb8, 8, n } e.buf = append(e.buf, adj|opcode) e.buf = append(e.buf, e.scratch[iBest:iBest+nBest]...) } func (e *Encoder) SetLOD(lod0, lod1 float32) { e.checkModeStyling() if e.err != nil { return } e.lod0 = lod0 e.lod1 = lod1 e.buf = append(e.buf, 0xc7) e.buf.encodeReal(lod0) e.buf.encodeReal(lod1) } // SetGradient sets CREG[CSEL] to encode the gradient whose colors defined by // spread and stops. Its geometry is either linear or radial, depending on the // radial argument, and the given affine transformation matrix maps from // graphic coordinate space defined by the metadata's viewBox (e.g. from (-32, // -32) to (+32, +32)) to gradient coordinate space. Gradient coordinate space // is where a linear gradient ranges from x=0 to x=1, and a radial gradient has // center (0, 0) and radius 1. // // The colors of the n stops are encoded at CREG[cBase+0], CREG[cBase+1], ..., // CREG[cBase+n-1]. Similarly, the offsets of the n stops are encoded at // NREG[nBase+0], NREG[nBase+1], ..., NREG[nBase+n-1]. Additional parameters // are stored at NREG[nBase-4], NREG[nBase-3], NREG[nBase-2] and NREG[nBase-1]. // // The CSEL and NSEL selector registers maintain the same values after the // method returns as they had when the method was called. // // See the package documentation for more details on the gradient encoding // format and the derivation of common transformation matrices. func (e *Encoder) SetGradient(cBase, nBase uint8, radial bool, transform f32.Aff3, spread GradientSpread, stops []GradientStop) { e.checkModeStyling() if e.err != nil { return } if len(stops) > 64-len(transform) { e.err = errTooManyGradientStops return } if x, y := e.cSel, e.cSel+64; (cBase <= x && x < cBase+uint8(len(stops))) || (cBase <= y && y < cBase+uint8(len(stops))) { e.err = errCSELUsedAsBothGradientAndStop return } oldCSel := e.cSel oldNSel := e.nSel cBase &= 0x3f nBase &= 0x3f bFlags := uint8(0x80) if radial { bFlags = 0xc0 } e.SetCReg(0, false, RGBAColor(color.RGBA{ R: uint8(len(stops)), G: cBase | uint8(spread<<6), B: nBase | bFlags, A: 0x00, })) e.SetCSel(cBase) e.SetNSel(nBase) for i, v := range transform { e.SetNReg(uint8(len(transform)-i), false, v) } for _, s := range stops { r, g, b, a := s.Color.RGBA() e.SetCReg(0, true, RGBAColor(color.RGBA{ R: uint8(r >> 8), G: uint8(g >> 8), B: uint8(b >> 8), A: uint8(a >> 8), })) e.SetNReg(0, true, s.Offset) } e.SetCSel(oldCSel) e.SetNSel(oldNSel) } // SetLinearGradient is like SetGradient with radial=false except that the // transformation matrix is implicitly defined by two boundary points (x1, y1) // and (x2, y2). func (e *Encoder) SetLinearGradient(cBase, nBase uint8, x1, y1, x2, y2 float32, spread GradientSpread, stops []GradientStop) { // See the package documentation's appendix for a derivation of the // transformation matrix. dx, dy := x2-x1, y2-y1 d := dx*dx + dy*dy ma := dx / d mb := dy / d e.SetGradient(cBase, nBase, false, f32.Aff3{ ma, mb, -ma*x1 - mb*y1, 0, 0, 0, }, spread, stops) } // SetCircularGradient is like SetGradient with radial=true except that the // transformation matrix is implicitly defined by a center (cx, cy) and a // radius vector (rx, ry) such that (cx+rx, cy+ry) is on the circle. func (e *Encoder) SetCircularGradient(cBase, nBase uint8, cx, cy, rx, ry float32, spread GradientSpread, stops []GradientStop) { // See the package documentation's appendix for a derivation of the // transformation matrix. invR := float32(1 / math.Sqrt(float64(rx*rx+ry*ry))) e.SetGradient(cBase, nBase, true, f32.Aff3{ invR, 0, -cx * invR, 0, invR, -cy * invR, }, spread, stops) } // SetEllipticalGradient is like SetGradient with radial=true except that the // transformation matrix is implicitly defined by a center (cx, cy) and two // axis vectors (rx, ry) and (sx, sy) such that (cx+rx, cy+ry) and (cx+sx, // cy+sy) are on the ellipse. func (e *Encoder) SetEllipticalGradient(cBase, nBase uint8, cx, cy, rx, ry, sx, sy float32, spread GradientSpread, stops []GradientStop) { // Explicitly disable FMA in the floating-point calculations below // to get consistent results on all platforms, and in turn produce // a byte-identical encoding. // See https://golang.org/ref/spec#Floating_point_operators and issue 43219. // See the package documentation's appendix for a derivation of the // transformation matrix. invRSSR := 1 / (float32(rx*sy) - float32(sx*ry)) ma := +sy * invRSSR mb := -sx * invRSSR mc := -float32(ma*cx) - float32(mb*cy) md := -ry * invRSSR me := +rx * invRSSR mf := -float32(md*cx) - float32(me*cy) e.SetGradient(cBase, nBase, true, f32.Aff3{ ma, mb, mc, md, me, mf, }, spread, stops) } func (e *Encoder) StartPath(adj uint8, x, y float32) { e.checkModeStyling() if e.err != nil { return } if adj > 6 { e.err = errInvalidSelectorAdjustment return } e.highResolutionCoordinates = e.HighResolutionCoordinates e.buf = append(e.buf, uint8(0xc0+adj)) e.buf.encodeCoordinate(e.quantize(x)) e.buf.encodeCoordinate(e.quantize(y)) e.mode = modeDrawing } func (e *Encoder) AbsHLineTo(x float32) { e.draw('H', x, 0, 0, 0, 0, 0) } func (e *Encoder) RelHLineTo(x float32) { e.draw('h', x, 0, 0, 0, 0, 0) } func (e *Encoder) AbsVLineTo(y float32) { e.draw('V', y, 0, 0, 0, 0, 0) } func (e *Encoder) RelVLineTo(y float32) { e.draw('v', y, 0, 0, 0, 0, 0) } func (e *Encoder) AbsLineTo(x, y float32) { e.draw('L', x, y, 0, 0, 0, 0) } func (e *Encoder) RelLineTo(x, y float32) { e.draw('l', x, y, 0, 0, 0, 0) } func (e *Encoder) AbsSmoothQuadTo(x, y float32) { e.draw('T', x, y, 0, 0, 0, 0) } func (e *Encoder) RelSmoothQuadTo(x, y float32) { e.draw('t', x, y, 0, 0, 0, 0) } func (e *Encoder) AbsQuadTo(x1, y1, x, y float32) { e.draw('Q', x1, y1, x, y, 0, 0) } func (e *Encoder) RelQuadTo(x1, y1, x, y float32) { e.draw('q', x1, y1, x, y, 0, 0) } func (e *Encoder) AbsSmoothCubeTo(x2, y2, x, y float32) { e.draw('S', x2, y2, x, y, 0, 0) } func (e *Encoder) RelSmoothCubeTo(x2, y2, x, y float32) { e.draw('s', x2, y2, x, y, 0, 0) } func (e *Encoder) AbsCubeTo(x1, y1, x2, y2, x, y float32) { e.draw('C', x1, y1, x2, y2, x, y) } func (e *Encoder) RelCubeTo(x1, y1, x2, y2, x, y float32) { e.draw('c', x1, y1, x2, y2, x, y) } func (e *Encoder) ClosePathEndPath() { e.draw('Z', 0, 0, 0, 0, 0, 0) } func (e *Encoder) ClosePathAbsMoveTo(x, y float32) { e.draw('Y', x, y, 0, 0, 0, 0) } func (e *Encoder) ClosePathRelMoveTo(x, y float32) { e.draw('y', x, y, 0, 0, 0, 0) } func (e *Encoder) AbsArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) { e.arcTo('A', rx, ry, xAxisRotation, largeArc, sweep, x, y) } func (e *Encoder) RelArcTo(rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) { e.arcTo('a', rx, ry, xAxisRotation, largeArc, sweep, x, y) } func (e *Encoder) arcTo(drawOp byte, rx, ry, xAxisRotation float32, largeArc, sweep bool, x, y float32) { flags := uint32(0) if largeArc { flags |= 0x01 } if sweep { flags |= 0x02 } e.draw(drawOp, rx, ry, xAxisRotation, float32(flags), x, y) } func (e *Encoder) draw(drawOp byte, arg0, arg1, arg2, arg3, arg4, arg5 float32) { if e.err != nil { return } if e.mode != modeDrawing { e.err = errDrawingOpsUsedInStylingMode return } if e.drawOp != drawOp { e.flushDrawOps() } e.drawOp = drawOp switch drawOps[drawOp].nArgs { case 0: // No-op. case 1: e.drawArgs = append(e.drawArgs, arg0) case 2: e.drawArgs = append(e.drawArgs, arg0, arg1) case 4: e.drawArgs = append(e.drawArgs, arg0, arg1, arg2, arg3) case 6: e.drawArgs = append(e.drawArgs, arg0, arg1, arg2, arg3, arg4, arg5) default: panic("unreachable") } switch drawOp { case 'Z': e.mode = modeStyling fallthrough case 'Y', 'y': e.flushDrawOps() } } func (e *Encoder) flushDrawOps() { if e.drawOp == 0x00 { return } if op := drawOps[e.drawOp]; op.nArgs == 0 { e.buf = append(e.buf, op.opcodeBase) } else { n := len(e.drawArgs) / int(op.nArgs) for i := 0; n > 0; { m := n if m > int(op.maxRepCount) { m = int(op.maxRepCount) } e.buf = append(e.buf, op.opcodeBase+uint8(m)-1) switch e.drawOp { default: for j := m * int(op.nArgs); j > 0; j-- { e.buf.encodeCoordinate(e.quantize(e.drawArgs[i])) i++ } case 'A', 'a': for j := m; j > 0; j-- { e.buf.encodeCoordinate(e.quantize(e.drawArgs[i+0])) e.buf.encodeCoordinate(e.quantize(e.drawArgs[i+1])) e.buf.encodeAngle(e.drawArgs[i+2]) e.buf.encodeNatural(uint32(e.drawArgs[i+3])) e.buf.encodeCoordinate(e.quantize(e.drawArgs[i+4])) e.buf.encodeCoordinate(e.quantize(e.drawArgs[i+5])) i += 6 } } n -= m } } e.drawOp = 0x00 e.drawArgs = e.drawArgs[:0] } func (e *Encoder) quantize(coord float32) float32 { if !e.highResolutionCoordinates && (-128 <= coord && coord < 128) { x := math.Floor(float64(coord*64 + 0.5)) return float32(x) / 64 } return coord } var drawOps = [256]struct { opcodeBase byte maxRepCount uint8 nArgs uint8 }{ 'L': {0x00, 32, 2}, 'l': {0x20, 32, 2}, 'T': {0x40, 16, 2}, 't': {0x50, 16, 2}, 'Q': {0x60, 16, 4}, 'q': {0x70, 16, 4}, 'S': {0x80, 16, 4}, 's': {0x90, 16, 4}, 'C': {0xa0, 16, 6}, 'c': {0xb0, 16, 6}, 'A': {0xc0, 16, 6}, 'a': {0xd0, 16, 6}, // Z means close path and then end path. 'Z': {0xe1, 1, 0}, // Y/y means close path and then open a new path (with a MoveTo/moveTo). 'Y': {0xe2, 1, 2}, 'y': {0xe3, 1, 2}, 'H': {0xe6, 1, 1}, 'h': {0xe7, 1, 1}, 'V': {0xe8, 1, 1}, 'v': {0xe9, 1, 1}, }