¢ HIBERNATE

Hibernate2 Reference Documentation

Version: 2.1

Table of Contents

(1=, =0 2SSO PPERPR
1 QuickStart With TOMCALcccoieie i
1.1. Getting started With HIDEINALEcooooiiiiiieie e 1
1.2, First PErSISIENT CIaSSeeeiiiiiiiee et e e e e e aae 3
RS |V o) o 1T a0 1 T o (PRSP 4
1.4, Playing WIth LScooueeiieiiiiiie ettt e et e e e st e e e e e e e e e nnn e e e s anbneeeeaae 5
ST 117 | P URPRRPP 7
2 N o o114 oX (= TSRS
P T O Y YT PSS 8
2.2. Persistent ODJECE IAENLILY ...ccooeiieeie e e e e r e e e e e e nrnaes 10
2.3, IMX INEEGIBIIONeeeieeiiieee ettt e e e e e e e st e e e s e e e e e e nb e e e e e b e e e e s ansne e e e s nnnneee s 10
A O N S o oo 10
3. SessioNFACtOry CONFIQUIBLIONceeiiiiiiee ittt e e et e e e e e e nnees
3.1. ProgrammatiC ConfigUIatioNcccevviiiiiiiiiiiiiie et 11
3.2. ObtaiNiNg & SESSIONFACIONYeeieiiiiiiieiiiie ettt e e s abb e e e s nnnee s 11
3.3. User provided JIDBC CONNECLIONuiiiiieeiiiiiiieiiee e e e e e e et e e e e e e e seteeeeeeeaeeesssnnnneneeeeaeeesaannes 11
3.4. Hibernate provided JDBC CONNECLIONccciiuiiiiiiiiee e e e ettt ee e e e s et e e e e e e e s s s e e e eaeeeeannnes 12
3.5, Other PrOPEITIES ...tk e et e e ek e e e e e e e e e annr e e e e nnees 13
3.5. 1. SQL DIBIECES ..eeieiiieiee ettt ettt et e e e e e et e e e e nnees 15
3.5.2. OULEr JOIN FEICING ..ooiiiiiiieiiiiiee et e e e e nnees 16
3.5.3. BINArY SIFEAMScoeeviiiiieieieeeee e 16
3.5.4. SQL LOgING t0 CONSOIEeveiiiiiiiieeeiiiiee ettt e ee s 16
3.5.5. Custom ConNECLIONPIOVITESueiiiiieeeiiiieei e e e e e e e e e eeeeas 16
3.5.6. COommMON CONNECLION PIrOPEITIES ...vvvveiieeeeiiciiiiiee e e e e s s ettt e e e e e e e r e e e e e s s eanrraereeaeeas 16
3.5.7. CuStomM CaChePrOVIOEYccoiiiieiii e e e e e e e 17
3.5.8. TranSaClioN SITALEQY ...vvvveeeeeeiiiiiiiiiieee e e e e e s ettt e e e e s e srt e e e e e e e s s strbeeeeeeaeessananrerereeaeeas 17
3.5.9. INDI-bouNd SESSIONFECIONYeeiiiiiiiieeiiiiie ettt e e 17
3.5.10. Query Language SUDSHITULIONcoevviiiiiiiiiiieeee e 18
3.6. XML Configuration Fileeiiiiiiiiiiiiiiee et e e e s 18
G AR 1o o o 11 oo USRS 19
S B s | O =TS PSPPSR
4.1, SIMPIEEXAMPIE ...t 20
4.1.1. Declare accessors and mutators for persistent fieldsccceveeeeiiiiiiii e, 21
4.1.2. Implement adefault CONSIMUCTONccoiiiiiiieiiiiiie e 21
4.1.3. Provide anidentifier property (Optional)ccovvvviiiiiiiiiii 21
4.1.4. Prefer non-final classes (OPtioNal)cccoieciiiieiiie e 21
A 1 0= 1 = 1 USRS 21
4.3. Persistent Lifecycle CallbDacksoeevviiiiiii e 22
Y - 1 To - r= o] = SRS 22
4.5, XDOCIEL EXBMPIE ...ttt e e e e e e e e e e e e e e s e bbb e e e e e e e e e e s aaanrrrereeaaeeeaaanes 23
5. BASICO/R MBPPING eeiieiuitiiieeiiiiee ettt e ettt e ettt e e sttt e e e st e e e s be e e e e s sbe e e e e anbb e e e e enbe e e e s anbnneeeennnneee s
5.1, Mapping deClarationcoooeiiiiii i ———————— 25
B L . OO Y P i ———— 25
5.1.2. NIDErNEIE-MEPPING .oeiueteeeeeiiiie ettt e et e e e e e e e s s e e e e s anr e e e e e annreees 25
ST R T o = - PP RPT 26
T30 0 S T o R 28
LIt B0 = 0T = 1 28
5.1.4.2. HI/LO AIGOITRM oo 29
Hibernate 2.1 ii

HIBERNATE - Relational Persistence for |diomatic Java

5.1.4.3. UUID AIQOIItRM .ottt a e e e e e e nnnneae s 30
5.1.4.4. Identity Columns and SEQUENCESccvvviiiiieeeeiiciiiie e e e e e e et e e e e e e 30
5.1.4.5. ASSIGNEd [AENTITIEIS ...oeveiiiiiiieeeieie e 30
5.1.5. COMPOSITEIA ..o 30
5.1.6. diSCIIMINGIOLeiiieieeee et s e e e e e e s e e e e e e e e e e bbb e e e e e e e e s s snsnreaneeaaeeas 31
oI I AV = Yo T (o] o1 o =Y) SO 31
5.1.8. timestamp (OPLIONAI) ...ceeeeieiiiciieee e 32
ST e T o] 0o = 1 YO PP PPPPPPRR 32
oI 00 T 4= 0V 0 0] = SRR 33
5.1 10, ONETO-0NE ...ttt ettt e e e e e e e ettt bbbt e e e e et e e e bbb e e e e e e e e eernb e e aaaaeane 34
5.1.12. component, dynamiC-COMPONENTccoeeeieiiieieie i 35
5,113, SUBCIASS .veiiieieieitee ettt e e e e e e e e e e e e a i arraaaaes 36
5.1.14. JOINEA-SUDCIBSSeeeiiiieeeiiiiiiieiee ettt e e e e et et e e e e e e ettt e e e e e e e s e nnneeneeeaaeess 36
5.1.15. Map, Sat, lISL, DG ..vvveiiiie e 37
ST I L 11 ¢ o AP PP PP PPPPPP PRI 37
I o 1101 40T (=R Y 0 1= TP EPUR PP 37
5.2.1. ENtiIES@NA VAIUESooviieieiiiiiiee ettt ettt e e e e et e e e e e e e s e nnnraaeeeeaeeas 37
5.2.2. BaSICVAIUBTIYPES .. ccoe oo 38
5.2.3. PErSistent UM LYPES ..oveve ettt s e e e e e s et e e e e e e s s e re e e e e e e 39
5.2.4. CUSIOM VAIUB TYPES ...ttt e e s e e e e e e e s eee s 39
5.2.5. ANY tYPE MAPPINGS «.vvveiieeeeeiiiiiiieeee e e e e e e s ettt e e e e e e e s st e e e e e e e s s se b b raeeeaaeeesaaanrereeeeaeeas 40
5.3. SQL QUOLE IJENTITIESeeieiiiiiiee ettt e et e e s e e e s e s 40
5.4. CUStOMIZING TNE DDLU ..ccciiiiiiiiiieee e e e e e e e e e e e e e s e bbb e e e e e e e e e e ennnrenes 41
5.5. Modular MapPing FIIESeeiiiiiiiie it e e e e s 41
L O o | o 1 o] LSS PER
6.1. PerSiStent COIECTIONSceiiiiiiiiieiiiiiie ettt et e e e et e e s sbae e e e s nnnneee s 42
6.2. MaPPING @ COHECHIONeeiiiiiiiiieiee et e s e e e annneee s 42
6.3. Collections of Valuesand Many To Many ASSOCIAtiONSccovvicuviiiiieeeeiicciiiieeee e e e e 44
6.4. ONETO MaNY ASSOCIALTIONSuvveieiiiiiieeeiiee e e sttt e e et e e et r e e s st e e e s sbb e e e e s nbe e e e s anbneeeeannnreeeas 45
6.5. Lazy INITIAliZAHONuveeiiii i e e e e e e a e e e e anraaes 46
6.6. SOMEd COIECLIONSvviiiiiieei i e e e e s e e e e e e e e s e atb e e eeaaeeeeennsnennees 47
6.7. Other Ways TO Sort aCOollECHIONccooeeiiiii e 47
6.8. Garbage COllECHIONeeiiie it e e e e e e e e e s e et e e e e e e e s e e nnnranees 48
6.9. Bidirectional ASSOCISLIONSuveeiiiieeeiiiiiiieieree e e s sesteieeereeee e s s sennrraereeeaesssansereeeeeaaesaaansnennees 48
6.10. TErNary ASSOCIBLIONScceeeiiiiitiiiiiieee e e s s cetitee e e e e e e s e e st re e e e ae e e e s sasar e e e e e e aaeesaantbraeeeeaeessannssrnnnes 49
6.11. HEeterogenoUS ASSOCIBLIONSccuurieeiirreeeeaiieeeeastteeesassbee e e s sttt e e s asse e e e e asbe e e e s annneeeeaannneees 49
6.12. COlleCtioN EXAMPIEccooe e 49
LT T T (o PRSPPI 51
7. COMPONENTS .ot e e e e e e e
7.1, ASDEPENUENT ODJECES ...eiiieiiiiiiiiiiee e e et e e e e e e e e e s s r e e e e e e s e st b e e e e e aeeseennsnranees 52
7.2, INCOHECHIONS ...ttt e e e e e e et e e e e e e s s st e e e e e e e e s santteeeeeeaeeeeannssennes 53
7.3 ASAME@D INUEX ... e e e e e e e r e e e e e e s e et e e e e e e e e e aanraaes 54
7.4, AS COMPOSITE TAENTITIEIS ...eiiiiieiie it e st e e nre e s 54
7.5. DYNamiC COMPONENTSccooiiieiii e 55
8. Manipulating PerSISLENT DALAccciiuuriieiiiiiiee it e et e et e e naneee s
8.1. Creating apersiStent ODJECEeeiiiieeeiiiiiiiiiei e e et e e e e e e e e s et r e e e e e e s s nneaeeeeeaeeeeaannneeeeas 57
LS o= o [oo = g o] o= APPSR 57
8.3, QUENYING .eeeeiieeittie ettt ettt e e h e e e e R et e e e e e e e e e e r e e e a e s 58
B.3.1. SCAlAr UENTES ...t ettt e e e e e e e e e e e e e e e e e st r e e e e e e e e e e aaanrarrraaaeaas 59
8.3.2. The QUENY INTEITACEeiiii et e s 60
LG G TS o (0] 1 =0 L= 1 L= = 1 o o SR 61
8.3.4. Filtering COIECLIONSciiiiiiiiie e 61
Hibernate 2.1 i

HIBERNATE - Relational Persistence for |diomatic Java

8.3.5. CHIEITAQUENTES ...ttt e e e e e e e e e e e e e anneeee s 62
8.3.6. QUENESTINNAIVE SOL ..o 62
8.4. Updating objects saved or [oaded in the CUrrent SESSIONcoovviieeieiiiiiie e 62
8.5. Updating objects saved or loaded iN @ previoUS SESSIONcoooevveeeieiei i 62
8.6. Reassociating objects saved or loaded in @ previouS SESSIONcccvvvvviereeeiiiciiieeee e e e e 64
8.7. Deleting persistent ODJECLSeeeiiiiie e 64
L T 7= To] Y00 o= £ PRSP P 64
8.8.1. LifECYCIEODJECES ..o 65
8.8.2. Persistence by ReaChabilityc..oeviiiiiiiiii e 65
8.9, FIUSNING .ttt e et e e e e n e e s 65
8.10. ENAiNG @ SESSIONcooiie e ——————— 66
8.10.1. FIUShING the SESSIONeeiiiiiiiie ittt e e s 66
8.10.2. Committing the tranSaCtioNcooiii i e e 66
8.10.3. ClOSING tNE SESSION ..eeiiiiieiiiiiiieiet e e e e e e e e e e e s st ra e e e e e e e e s e aanrarereeaeeas 66
8.10.4. EXCEPtiON NANAIINGeviiiiiiiiiiieei e 67
e I I 1 1= 0= o 0 = 68
8.12. Metadata APl ..., 69
9. Parent/Child RE@tionNShipsSccoooeiiiii i
9.1. A NOLE ADOUL COECTIONSeeiiiiiiee ettt et e e e st b e e e e s nnnreee s 70
9.2. BidireCtional ONETO MENYuveiieiiiiiiee et e et e et e et e e e e e s e e e e e e e s anne e e e s annneee s 70
O A 0= o= o SRR 71
9.4. USING CASCAAING UPABEE() +..eeeuvveeeeiiiieieeeiieee e e ettt ettt e et e st et e e s s e e s e e e e e nnnnee s 72
ST @0 11 ' o ST 74
10. Hibernate QUENY LANGUAGEcceiiurrreeiiiieteeaaiteee e ettt e e s sttt e e s assbe e e e e sabee e e s anbe e e e e assbn e e e s annnneeeannneeens
10,1, CBSE SENSILIVILY ..vereiiiiiieeeiiiiee e et e e et e e e s ee e e e et e e e e sssaeeeeessteeeeeanseeeeeaanneeeeeannneeeeeanseeeeeanns 75
10.2. TRETIOM ClBLISEei ittt e e e sttt e e e s b e e e e b e e e s anbaeeeeaae 75
10.3. ASSOCIATIONS AN JOIMNS ...ceiuiieeeeiiiieee et e e e e e s e e e e e e st e e e e s e e e e e asne e e e e e nnn e e e s annneeeeaae 75
10.4. ThE SEIECE ClAUSE ...coiuiieiee ittt e ettt e e e et e e s e nbb e e e e nbe e e e e nnreeeeeann 76
10.5. AQQregate FUNCLIONSooiiiiiiie ettt e e e e e e e e e e e e e s snnnree e e 77
10.6. POIYMOIPRISITI L.t e e e e e e e e s et e e e e e e e e e s s anbrbeeeeeeeeseansnrnens 77
10.7. TREWREIE ClAUSEeeiiiee ettt ettt e e e e e e e e e e e e s et e e e e e e s e s ssntabaeeaeaeeeaannssennees 78
O R T 0= o T 79
10.9. TheOrder DY ClAUSEccci it e e e e e e e et e e e e e e e e e ansraees 81
10.10. The group DY CIAUSEeeiiieiie e e e 81
L10.11. SUDQUENTESeeeiiiieiie e e ettt e e e e e e e e e e e e e e s s ettt aeeaaeeessssntsaeeeeeaeesaanssranns 82
10.12. EXBIMPIES ..ooeiiieiieeiite ettt e e ekt e e e et e e ekttt e e e e b et e e e n b e e e e bn e e e e anrn e e e e e 82
F0.13. TIPS & THICKS i 84
11, A WOrKEd EXAMPIE ...ttt ettt e et e e ettt e e e et e e e e snbn e e e e e nnneee s
100, PErSISENT ClaSSES ...eeiiieieiiiiiiiiei it e e ettt e e e e et ettt e e e e e e e e e et eae e e e e aaeessannnteaeeeaeeeeeaaansneneeas 86
11.2. HIibernate MapPiNgS ...cccciiiiiiiieieeiee e e e ettt e e e e e et e e e e e e s s et e e e e aee s s s ssntaaeeeaaeeesannnssrnnees 87
TG T o 1107 7= (Y e T L= SRR SS 88
12, IMProving PErfOrMANCEuuviiiiie e e e e e e e e e s e et e e e e e e e s s s aatbbereeaaeeeannes
12.1. Proxiesfor Lazy INItialiZaliONcoooueiioiiiiiei o 92
12.2. The Second Level CaChecooiiii it 93
I TV F-= o o] o PP UPPPPRPUPPRP 94
A = o o | SO RPERR 94
R R (== o Y 1 (PP P PPPP TP 94
12.2.4. NONSLICE €A [WITTE .oiiiieieieee et e e e e r e e e e e e s e e e eeaeeeeannnes 95
12.2.5. tranSACIONGIciiiiiiiie ittt e e e e e e nraeeeeaan 95
12.3. Managing the SESSION CACHEuuiiiiiiiiiee e 95
R TN @ U= YA O o = 96
13. Understanding Collection Perfor ManCEeiiiiiiiiie et

Hibernate 2.1

HIBERNATE - Relational Persistence for |diomatic Java

Nt R = (o [0 1Y TP PRSPPI 97
13.2. Lists, maps and sets are the most efficient collectionsto updateccoovveiivieieeeeeiicccinnnee, 97
13.3. Bagsand lists are the most efficient inverse ColleCtionscccvviieiieeee i, 98
13.4. ONE SNOL EIELEeeeiiieeee ettt e e e e e e e ettt e e e e e e e e s s nnbrbeeeeeaeeeeansneeeeas 98
14, Crit€ria QUENTES ..uuveiiiiieeiii ittt e e e e e e ettt e e e e e e e s et a et eeeeesssaattaeeetaaaeesaasssbeaeeeaaeessaasssssnsanaeeesannnes
14.1. Creating @ CriteriaiNSIANCEcciiieieiiiiiiiiiee e e e e e e e e e s et e e e e e e e e s e nnaeaeeeeeaeeeaenneneeeeas 100
14.2. NarrOWIiNG the TESUIT SELuiiiiiiiiie e e e e e e e s r e e e e e e s e annraees 100
14.3. Ordering thE TESUITSocoiiiiiii e e e e e e s e e aae 101
TA.4, ASSOCIALIONSuvvveieeeiieiee e ettt e ettt e e e ettt e e e s te e e e e bt e e e e anbb e e e e e sbe e e e e anteeee e e nabeeeeennbeeeeeanneeeeeanns 101
14.5. Dynamic assOCiation fEICNINGeviiiiiiiie e 101
T T 4o L= o 1T - 102
S @ I O TN = = PRSP PPPRRRR
15.1. Creating @ SQL Daset QUENYooiiieiiiiiiiee et e e e e e e e e e st e e e e e e e e neneneeas 103
15.2. Alias and property FEFEIEINCESciiieiii i e e e e e e e st r e e e e e e e e e ennnraees 103
15.3. NamMEd SQL QUENTESeeeiiiiiiieeiiitie ettt e et e e et e e e st e e e e s e e e e e e nbe e e e s annereeeaae 103
16. INNEtANCE M APPINGS ..cooiiiiiiiee e e e e e e e et e e e e e e s s e ettt r e e e eeeessssesatbbereeaaeeeaanes
16.1. ThE THIEE SIFALEJIESeeiiiiieie ettt e st e e e b e e e et e e e s nntn e e e e e 105
A I 1 1§ = o L3RS 107
17. TransactionS ANA CONCUITEINCY ...ccceiiiieriieieeeeeeese ettt e e e e e e s s aettrereeaeesessssnteaeeaaaeasasantrraseeaeeesannnes
17.1. Configurations, SeSSIONS and FACIONEScoiiiiiiiiiiiiiiii e 109
17.2. ThreadS and CONNECTIONSccoiiuuiiieiiiiiie et e e e ettt e et e e et e e s st e e e s snaeee e e snaeeaesanreeeeeanns 109
17.3. OptimistiC LOCKING / VEISIONINGeeviiiiiiieeiiiieee ettt e e e e eeeaaes 109
17.3.1. Long session With automatic VErSIONINGcoooiciuiiieieeeee et eee e e e ciirree e e e e 110
17.3.2. Many sessions With automatiCc VErSIONINGccoourreeeiiieieeeiieeee e s e s eireee e sineee e 110
17.3.3. Application VErsion ChECKINGccooeieieiiii i 110
17.4. SESSION AISCONNECTIONeiiitiiieeiiieiee ettt e e ettt e e sttt e e et e e e e st e e e e s snbb e e e e e nbb e e e e esbeeeesanbneeeeaan 110
17.5. PESSIMISHIC LOCKINGeeeeeiiiiiie ettt e e e e e e e e e e e 112
18. MaAPPING EXAMPIES ..coii ittt e e e e e e et e e e e e s e e st b ba e e e e eeessssasntbbeeeeaaeeeannes
18.1. EMPIOYEI/EMPIOYEEooiiiiiiie ettt e e s e e e e e e s e e e e aan 113
18.2. AULNOIWWOTK ...ttt et e st e et e e e et e e e e nae e e e e enneeeeeanneeeeeanns 114
18.3. CuStOMEI/Order/PrOUUCEuveieeiieeeiiiiiiiiie e e e e e e e s e e e e e e e e s s et e e e e e e e e s eennnennees 116
S T 0o = S T o = RSP RPRRR
19.1. SChEMA GENEIEIIONveeieiiiiiee ettt e e e ekt e e e sbb e e e e sbb e e e e e bbe e e e s anbeeeeeaan 119
19.1.1. CustomizZiNg the SCNEMALccoiuiiiieeiiei et 119
19.2.2. RUNNINGTNETO0L ..coiiii e e e e e e s e ae e e e e e e e e aaanes 120
1O.1.3. PrOPEITIES ..uieeieeeitee ettt ettt e e et e e e et e e e s e e e e e e e e e e aan 121
S S 1= o A | RS PPRP SRR 121
19.1.5. Incremental SCNEMAUPUELESccoiiiiiiiiiiiiie et 122
19.1.6. Using Ant for incremental SChema updateseeevviiieiiiiiiiiiiei e 122
LS 0o Y €T 1 = 1o o H PP UPPRPORUPRR 122
19.2.1. The config file (OPLIONEL)cocueiieeiiiiee e 123
19.2.2. ThE MELAGIITIDULEceeiiiiiiee it e e e e srn e e e anes 123
19.2.3. BaSICTINAEr QENEIGIOTeeiieiiiieeeeiiie ettt e e e et e e e nnbreeeeanes 125
19.2.4. Velocity based renderer/generatorccooeeiiieieie i 126
19.3. Mapping File GENEIAiONooiiiiiiie ittt e e s sbe e e e aae 126
19.3.1. RUNNING TNETO0I ...coiiiiiieee et e e e e e e e e e e e e e e aennes 127
20. BESE PIACUICES ..ooiiteiiei ittt ettt ekttt e e ettt e e e sttt e e e e bbbt e e e e ab et e e e nbe e e e e anbe e e e e e naneee s

Hibernate 2.1 \Y

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in to-
days enterprise environments. Hibernate is an object/relational mapping tool for Java environments. The term
object/relational mapping (ORM) refers to the technique of mapping a data representation from an object model
to arelational, SQL-based structure.

Hibernate not only takes care of the mapping from Java classes to database tables, but also provides data query
and retrieval facilities and can significantly reduce development time otherwise spent with manual data han-
dling in SQL and JDBC. Hibernates goal is to relieve the developer from 95 percent of common data persis-
tence related programming tasks.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these steps:

1. Read Chapter 1, Quickstart with Tomcat for a 30 minute tutorial, using Tomcat.
2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

3. Havealook at theeg/ directory in the Hibernate distribution, it contains a smple standalone application.
Copy your JDBC driver tothel i b/ directory and edit sr ¢/ hi ber nat e. properti es, Specifying correct val-
ues for your database. From a command prompt in the distribution directory, type ant eg (using Ant), or
under Windows, typebui | d eg.

4. Usethisreference documentation as your primary source of information.
5. FAQsare answered on the Hibernate website.
6. Third party demos, examples and tutorials are linked on the Hibernate website.

7. The Community Area on the Hibernate website is a good source for design patterns and various integra-
tion solutions (Tomcat, JBoss, Spring, Struts, EJB, etc.).

8. Anoffline version of the Hibernate website is distributed with Hibernate in the doc/ subdirectory.

If you have questions, use the user forum linked on the Hibernate website. We also provide a JIRA issue track-
ings system for bug reports and feature requests. If you are interested in the development of Hibernate, join the
developer mailing list.

Hibernate 2.1 Vi

Chapter 1. Quickstart with Tomcat

1.1. Getting started with Hibernate

This tutorial discusses a setup of Hibernate 2.1 with the Apache Tomcat servlet container for a web-based ap-
plication. Hibernate works well in a managed environment with all major J2EE application servers, or in stan-
dalone applications. The database system in this example is PostgreSQL 7.3, but this can be easily changed to
any of the other 16 Hibernate supported databases.

The first step is to copy all required libraries to the Tomcat installation. We use a separate web context (ve-
bapps/ qui ckstart) for this tutorial, so we've to consider both the global library search path (TOMCAT/ com
non/ | i b) and the classloader at the context level in webapps/ qui ckstart/WeB-1 NF/ 1i b (for JAR files) and we-
bapps/ qui ckst art/WEB- | NF/ cl asses. We refer to both classloader levels as the global classpath and the con-
text classpath.

1. First, copy the IDBC driver for the database to the global classpath. Thisis required for the DBCP connec-
tion pool software which comes bundled with Tomcat, For this tutorial, copy the pg73j dbc3. j ar library
(for PostgreSQL 7.3 and JDK 1.4) to the global classloaders path. If you'd want to use a different database,
simply copy its appropriate JDBC driver.

2. Never copy anthing else into the global classloader path in Tomcat, or you will get problems with various
tools, including Log4j, commons-logging and others. Always us the context classpath for each web appli-
cation, that is, copy libraries to Wes- I NF/ | i b and your own builds and configuration/property files to Wes-
| NF/ cl asses. Both directories are in the context level classpath by default.

3. Hibernate is packaged as a JAR library. The hi bernat e2. j ar file isto be placed in the context classpath
together with other classes of the application. Hibernate requires some 3rd party libraries at runtime, these
come bundled with the Hibernate distribution in the I i b/ directory; see Table 1.1. Copy the required 3rd
party librariesto the context classpath.

4. Configure both Tomcat and Hibernate for a database connection. This means Tomcat will provide pooled
JDBC connections, Hibernate requests theses connections through JNDI. Tomcat binds the connection
pool to JNDI.

Table 1.1. Hibernate 3rd party libraries

Library Description
dom4j (required) Hibernate uses dom4j to parse XML configuration and XML mapping
metadata files.
CGLIB (required) Hibernate uses the code generation library to enhance classes at runtime

(in combination with Java reflection).

Commons Beanutils, Commons Hibernate uses the various utility libraries from the Apache Jakarta
Collections, Commons Lang, Commons project.
Commons Logging (required)

ODMGA4 (required) Hibernate provides an optional ODMG compliant persistence manager
interface. It is required if you like to map collections, even if you don't
intend to use the ODMG API. We don't map collections in this tutorial,
but it's a good idea to copy the JAR anyway.

Hibernate 2.1 1

Quickstart with Tomcat

Library Description

Log4j (optional) Hibernate uses the Commons Logging API, which in turn can use Log4j
as the logging mechanism. If the Log4j library is placed in the context
library directory, Commons Logging will use Log4j and its
| og4j . properties in the context classpath. An example properties file
for logdj is delivered with the Hibernate distribution. So, copy logdj.jar
to your context classpath too.

Required or not? Have a look at the file Ii b/ READMVE. t xt in the Hibernate distribution.
This is an up-to-date list of 3rd party libraries distributed with Hiber-
nate. You will find all required and optional libraries listed there.

After al libraries have been copied, a resource declaration for the database JDBC connection pool has to be
added to Tomcats main configuration file, TOVCAT/ conf / server . xni :

<Cont ext pat h="/qui ckstart" docBase="quickstart">
<Resour ce nane="j dbc/ qui ckstart" scope="Shareabl e" type="javax. sql . Dat aSource"/ >
<Resour cePar ans nane="j dbc/ qui ckstart">
<par anet er >
<name>f act or y</ nanme>
<val ue>or g. apache. commons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<l -- DBCP database connection settings -->
<par anet er >
<nane>ur | </ name>
<val ue>j dbc: post gresql : / /| ocal host/ qui ckst art </ val ue>
</ par anet er >
<par anet er >
<name>dri ver O assNane</ nanme><val ue>or g. post gresql . Dri ver </ val ue>
</ par anet er >
<par anet er >
<nane>user nane</ nane>
<val ue>qui ckst art </ val ue>
</ par anet er >
<par anet er >
<nane>passwor d</ nane>
<val ue>secret </ val ue>
</ par anet er >

<l -- DBCP connection pooling options -->

<par anet er >
<nanme>maxWai t </ name>
<val ue>3000</ val ue>

</ par anet er >

<par anet er >
<nane>nex| dl e</ nane>
<val ue>100</ val ue>

</ par anet er >

<par anet er >
<nane>maxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

</ Resour cePar ans>
</ Cont ext >

The context we configure in this example is named qui ckst art , its base is the TOMCAT/ webapp/ qui ckst art di-
rectory. To access any Servlets, call the path http: //1 ocal host : 8080/ qui ckst art inyour browser.

Tomcat uses the DBCP connection pool with this configuration and provides pooled JDBC Connecti ons
through JNDI at j ava: conp/ env/ j dbe/ qui ckst art . If you have trouble getting the connection pool running,
refer to the Tomcat documentation. If you get JDBC driver exception messages, try to setup JDBC connection

Hibernate 2.1 2

Quickstart with Tomcat

pool without Hibernate first. Tomcat & JDBC tutorials are available on the Web.

The next step is to configure Hibernate, using the connections from the JINDI bound pool. We use Hibernates
XML based configuration. The basic approach, using properties, is equivalent in features, but doesn't offer any
advantages. We use the XML configuration because it is usualy more convenient. The XML configuration file
is placed in the context classpath (WeB- | NF/ ¢l asses), aShi bernate. cf g. xn :

<?xm version='"1.0" encodi ng='utf-8 ?>

<! DOCTYPE hi ber nat e-confi gurati on
PUBLI C "-// Hi ber nat e/ Hi bernate Confi guration DTD// EN'
"http://hibernate. sourceforge. net/hi bernate-configuration-2.0.dtd">

<hi ber nat e- confi gurati on>
<session-factory>

<property nane="connecti on. datasource">j ava: conp/ env/j dbc/ qui ckstart </ property>
<property nanme="show sql ">fal se</property>
<property nane="di al ect">net. sf. hi bernate. di al ect. Post greSQ.Di al ect </ property>

<I-- Mapping files -->
<mappi ng resour ce="Cat.hbm xm "/>

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

We turn logging of SQL commands off and tell Hibernate what database SQL dialect is used and where to get
the JDBC connections (by declaring the INDI address where the datasource pool is bound). The didlectisare-
quired setting, databases differ in their interpretation of the SQL "standard". Hibernate will take care of the dif-
ferences and comes bundled with diaects for all major commercia and open source databases.

A Sessi onFact ory IS Hibernates concept of a single datastore, multiple databases can be used by creating mul-
tiple XML configuration files and creating multiple Conf i gur ati on and Sessi onFact ory objectsin your appli-
cation.

The last element of the hi ber nat e. cf g. xm declares Cat . hbm xni as the name of a Hibernate XML mapping
file for the persistent class cat . This file contains the metadata for the mapping of the POJO class to a datbase
table (or multiple tables). We'll come back to that file soon. Let's write the POJO class first and then declare the
mapping metadata for it.

1.2. First persistent class

Hibernate facilitates Plain Old Java Objects (POJOs, sometimes called Plain Ordinary Java Objects) for persis-
tent classes. A POJO is much like a JavaBean, with properties of the class accessible via getter and setter meth-
ods, thus shielding the internal representation from the publicly visible type:

package net. sf. hi bernat e. exanpl es. qui ckstart;
public class Cat {

private String id;

private String nane;

private char sex;

private float weight;

public Cat() {
}

public String getld() {
return id;

Hibernate 2.1 3

Quickstart with Tomcat

}

public void setld(String id) {
this.id =id;

}

public String getNane() {
return nane;
}

public void setName(String nanme) {
this. nane = nane;
}

public char getSex() {
return sex;
}

public void set Sex(char sex) ({
this.sex = sex;
}

public float getWeight() {
return wei ght;
}

public void set Wi ght (float weight) {
this.weight = weight;
}

Hibernate is not restricted in its usage of property types, al Java JDK types and primitives (like Stri ng, char
and f | oat) can be mapped, including classes from the Java collections framework. Y ou can map them as val-
ues, collections of values, or associations to other entities. The i d is a special property that represents the
database identifer (primary key) of that class, it is mandatory for entitieslike a cat .

No specia interface has to be implemented for persistent classes nor do we have to subclass from a special root
persistent class. Hibernate also doesn't use any build time processing, such as byte-code manipulation, it relies
solely on Java reflection and runtime class enhancement (through CGLIB). So, without any dependency in the
POJO class on Hibernate, we can map it to a database table.

1.3. Mapping the cat

The cat . hbm xm mapping file contains the metadata required for the object/relational mapping.

The metadata includes declaration of persistent classes and the mapping of properties (as values or associations
to other entities) to database tables.

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng
PUBLI C "-//Hi ber nat e/ H bernate Mappi ng DTD/ / EN
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>

<cl ass nanme="net . sf. hi ber nat e. exanpl es. qui ckstart. Cat" tabl e="CAT">

<I-- A 32 hex character is our surrogate key. It's automatically
generated by Hibernate with the UU D pattern. -->

<id name="id" type="string" unsaved-val ue="null" >
<col um nane="CAT_I D' sql -type="char(32)" not-null="true"/>

<generator cl ass="uui d. hex"/>

Hibernate 2.1 4

Quickstart with Tomcat

</id>
<I-- A cat has to have a name, but it shouldn' be too long. -->
<property name="nane">

<col umm nane="NAME" sql -type="varchar(16)" not-null="true"/>

</ property>

<property name="sex"/>

<property nane="wei ght"/>
</cl ass>

</ hi ber nat e- mappi ng>

Every persistent class has to have an identifer attribute (actualy, only classes representing first class objects,
not dependent value objects, which are mapped as components of a first class object). This property is used to
distinguish persistent objects: Two cats are equal if cat A. get 1 d() . equal s(cat B. get 1 d()) istrue, this concept
is called database identity. Hibernate comes bundled with various identifer generators for different scenarios
(including native generators for database sequences and hi/lo identifier patterns). We use the UUID generator
and also specify the column CAT_I D of the table CAT for the generated identifier value (as a primary key of the
table).

All other properties of cat are mapped to the same table. In the case of the nane property, we mapped it with an
explicit database column declaration. This is especialy useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with Hibernate's SchemaExport tool. All other
properties are mapped using Hibernate's default settings, which is what you need most of the time. The table
CAT in the database looks like this:

Col um | Type | Modifiers
________ g
cat_id | character(32) | not nul
nanme | character varying(16) | not nul
sex | character(1)

wei ght | real
I ndexes: cat_pkey prinmary key btree (cat_id)

Y ou should now create this table in your database manually, and later read Chapter 19, Toolset Guide if you
want to automate this step with the SchemaExport tool. This tool can create a full SQL DDL, including table
definition, custom column type constraints, unique constraints and indexes.

1.4. Playing with cats

We're now ready to start Hibernate's sessi on. We use it to store and retrieve cat s from the database. But first,
weveto get aSessi on (Hibernate's unit-of-work) from the Sessi onFact ory:

Sessi onFactory sessionFactory =
new Configuration().configure().buil dSessionFactory();

A Sessi onFactory is responsible for one database and may only use one XML configuration file (hi ber -
nate.cfg. xm).

The focus of thistutorial is the setup of Tomcat for INDI bound JDBC connections, and a basic Hibernate con-
figuration. Y ou can write a Servlet containing the following code any way you like, just make sure that a Ses-
si onFact ory isonly created once. This means you should not keep it in an instance variable in your Serviet. A
good choiceisadtatic Sessi onFact ory in ahelper class like this:

Hibernate 2.1 5

Quickstart with Tomcat

i mport net.sf.hibernate.*;
i mport net.sf.hibernate. cfg.*;

public class H bernateUtil {
private static final SessionFactory sessionFactory;

static {

try {
sessi onFactory = new Configuration().configure().buil dSessionFactory();

} catch (Hi bernateException ex) ({
t hrow new Runti neExcepti on("Exception buil di ng Sessi onFactory:

n

}
}

public static final ThreadLocal session = new ThreadLocal ();

public static Session currentSession() throws Hi bernateException {
Session s = (Session) session.get();
/1 Open a new Session, if this Thread has none yet
if (s == null) {
s = sessionFactory. openSessi on();
session. set(s);

}

return s;

}

public static void closeSession() throws Hi bernateException {
Session s = (Session) session.get();
session.set(null);
if (s !=null)
s.cl ose();

This class does not only take care of the Sessi onFact ory with its static attribute, but also has a Thr eadLocal to
hold the sessi on for the current executing thread.

A Sessi on is a non-threadsafe object that represents a single unit-of-work with the database. Sessi ons are
opened by a Sessi onFact ory and are closed when all work is completed:

Sessi on session = Hi bernateUtil.current Session();
Transaction tx= session. begi nTransacti on();

Cat princess = new Cat();
princess. set Name("Pri ncess");
princess. setSex('F');
princess. set Wi ght (7. 4f);

sessi on. save(princess);
tx.commt();

H bernateltil.cl oseSession();

In a Sessi on, every database operation happens inside a transaction, which isolates the operations (even read-
only operations). We use Hibernates Tr ansacti on APl to abstract from the underlying transaction strategy (in
our case, JDBC transactions). This allows our application to be deployed with container managed transactions
(using JTA) without any change in the source code, if so desired. Please note that the example above does not
handle any exceptions.

Also note that you may call Hi bernateltil . current Session(); as many times as you like, you will always
get the current Sessi on of thisthread. Y ou have to make sure the Sessi on is closed after your database transac-
tion(s), either in your Servlet code or in a ServletFilter before the HTTP response is send.

Hibernate 2.1 6

+ ex. get Message(),

ex);

Quickstart with Tomcat

Hibernate has various methods that can be used to retrieve objects from the database. The most flexible way is
using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension

to SQL:
Transacti on tx= session. begi nTransaction();

Query query = session.createQuery("select cat from Cat as cat where cat.sex = :sex");
query. set Character("sex", "F);
for (lterator it = query.iterate(); it.hasNext();) {

Cat cat = (Cat) it.next();

out.println("Female Cat: " + cat.getNane());

}

tx.commt();

Hibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
Hibernate of course uses PreparedSt at ement S and parameter binding for all SQL communication with the
database.

1.5. Finally

We only scratched the surface of Hibernate in this small tutorial. Please note that we don't include any Servlet
specific code in our examples. You have to create a Servlet yourself and insert the Hibernate code as you see
fit.

Keep in mind that Hibernate, as a data access layer, istightly integrated into your application. Usually, all other
layers depent on the persistence mechanism. Make sure you understand the implications of this design.

Hibernate 2.1 7

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

st i

Database

This diagram shows Hibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, Hibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own JDBC connections and manage its own transactions. This approach uses a minimal subset of
Hibernate's APIs:

Transient Objects Application

Persistent
Objects

SessionFactory Session | JDBC| JNDI JTA

Database

The "full cream” architecture abstracts the application away from the underlying JDBC / JTA APls and lets Hi-

Hibernate 2.1 8

Architecture

bernate take care of the details.

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transaction

TransactionFactory ConnectionProvider

JNDI JDBC JTA

Database

Heres some definitions of the objectsin the diagrams:

SessionFactory (net . sf. hi ber nat e. Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings. A factory for Session. A client of Connecti on-
Provi der .

Might hold a cache of datathat is be reusable between transactions.

Session (net . sf. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps a JDBC connection. Factory for Transacti on.

Holds a cache of persistent objects.

Persistent Objects and Collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordi-
nary JavaBeans, the only special thing about them is that they are currently associated with (exactly one)
Sessi on.

Transient Objects and Collections
Instances of persistent classes that are not currently associated with a Sessi on. They may have been instan-
tiated by the application and not (yet) persisted or they may have been instantiated by a closed Sessi on.

Transaction (net . sf . hi ber nat e. Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying JDBC, JTA or CORBA transaction. A Sessi on might span severa
Transacti onS.

Hibernate 2.1 9

Architecture

ConnectionProvider (net . sf . hi ber nat e. connect i on. Connect i onPr ovi der)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from underlying Dat a-
sour ce Or Dri ver Manager . Not exposed to application.

TransactionFactory (net . sf . hi ber nat e. Tr ansact i onFact ory)
(Optional) A factory for Tr ansact i on instances. Not exposed to the application.

Given a "lite" architecture, the application bypasses the Tr ansacti on / Transacti onFact ory and / or Connec-
ti onProvi der APIstotalk to JTA or JDBC directly.

2.2. Persistent Object Identity

The application may concurrently access the same persistent state in two different sessions. However, an in-
stance of a persistent class is never shared between two Sessi on instances. Hence there are two different no-
tions of identity:

Persistent | dentity
foo.getld().equal s(bar.getld())

VM Identity

f oo==bar

Then for objects returned by a particular Sessi on, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different" (JVM identity).

This approach leaves Hibernate and the database to worry about concurrency (the application never needs to
synchronize on any business object, aslong as it sticksto a single thread per Sessi on) or object identity (within
a session the application may safely use == to compare objects).

2.3. JMX Integration

JMX is the J2EE standard for management of Java components. Hibernate may be managed via a IMX stan-
dard MBean but because most application servers do not yet support IMX, Hibernate also affords some non-
standard configuration mechanisms.

Please see the Hibernate website for more information on how to configure Hibernate to run as a JIMX compo-
nent inside JBoss.

2.4. JCA Support

Hibernate may aso be configured as a JCA connector. Please see the website for more details.

Hibernate 2.1 10

Chapter 3. SessionFactory Configuration

Because Hibernate is designed to operate in many different environments, there are a large number of configu-
ration parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example
hi ber nat e. properti es file that shows the various options.

3.1. Programmatic Configuration

Aninstance of net . sf. hi ber nat e. cf g. Confi gur at i on represents an entire set of mappings of an application's
Java types to a relational database. These mappings are compiled from various XML mapping files. Y ou may
obtain a Confi gurati on instance by instantiating it directly. Heres an example of setting up a datastore from
mappings defined in two XML configuration files:

Configuration cfg = new Configuration()
.addFi |l e("Vertex. hbm xm ")
.addFi | e(" Edge. hbm xm ") ;

An aternative (better?) way isto let Hibernate load a mapping file using get Resour ceAsSt rean() .

Configuration cfg = new Configuration()
. addC ass(eg. Vertex. cl ass)
. addCl ass(eg. Edge. cl ass);

Then Hibernate will look for mapping files named / eg/ Vert ex. hbm xni , / eg/ Edge. hbm xni in the classpath.
This approach eliminates any hardcoded filenames.

A Confi guration also specifies various optional properties.

Properties props = new Properties();

Configuration cfg = new Configuration()
.addd ass(eg. Vert ex. cl ass)
. addCl ass(eg. Edge. cl ass)
.setProperties(props);

A Confi gurati on isintended as a configuration-time object, to be discarded once a Sessi onFact ory is built.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the confi gur at i on, the application must obtain a factory for Sessi on
instances. This factory is intended to be shared by all application threads. However, Hibernate does allow your
application to instantiate more than one Sessi onFactory. This is useful if you are using more than one
database.

Sessi onFactory sessions = cfg. buil dSessi onFactory();

3.3. User provided JDBC connection

A Sessi onFact ory may open a Sessi on on a user-provided JDBC connection. This design choice frees the ap-
plication to obtain JDBC connections wherever it pleases. The application must be careful not to open two con-
current sessions on the same connection.

Hibernate 2.1 11

SessionFactory Configuration

java. sql . Connecti on conn = dat asource. get Connection();
Sessi on sess = sessi ons. openSessi on(conn);

[/ start a new transaction
Transaction tx = sess. begi nTransaction();

Thelast line here is optional - the application may choose to manage transactions by directly manipulating JTA
or JDBC transactions. However, if you use a Hibernate Transact i on (i.e., one of Hibernate's APIs), your client
code will be abstracted away from the underlying implementation. (Y ou could, for example, choose to switch
to a CORBA transaction service at some future point, with no changes to application code.)

3.4. Hibernate provided JDBC connection

Alternatively, you can have the Sessi onFact ory open connections for you. The Sessi onFact ory must be pro-
vided with connection properties in one of the following ways:

Pass an instance of j ava. uti | . Properties t0O Confi guration. set Properties().
Place hi ber nat e. properti es inaroot directory of the classpath.

Set Syst empropertiesusing j ava - Dpr opert y=val ue.

Include <pr oper t y> elementsin hi ber nat e. cf g. xni (see below).

~AwWwDdPRE

If you take this approach, opening a Sessi on isas simple as:

Sessi on sess = sessions. openSession(); // obtain a JDBC connection and
[/ instantiate a new Session

/1 start a new transaction (optional)

Transaction tx = sess. begi nTransacti on();

All Hibernate property names and semantics are defined on the class net . sf. hi bernat e. cf g. Envi ronnent .
We will now describe the most important settings.

Hibernate will obtain (and pool) connections using j ava. sql . Dri ver Manager if you set the following proper-
ties:

Table 3.1. Hibernate JDBC Properties

Property name Purpose

hi ber nat e. connect i on. dri ver_cl ass jdbc driver class

hi ber nat e. connecti on. url| jdbc URL

hi ber nat e. connect i on. user nane database user

hi ber nat e. connect i on. password database user password

hi ber nat e. connecti on. pool _si ze maxi mum number of pooled connections

Hibernate's own connection pooling agorithm is quite rudimentary. It is intended to help you get started and is
not intended for use in a production system or even for performance testing.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the1'i b directory. Hibernate
will use the built-in c3PoConnect i onProvi der for connection pooling if you set the hi ber nat e. c3p0. * proper-
ties. There is aso built-in support for Apache DBCP and for Proxool. You must set the properties hi ber -
nat e. dbcp. * (DBCP connection pool properties) and hi ber nat e. dbcp. ps. * (DBCP statement cache proper-

Hibernate 2.1 12

SessionFactory Configuration

ties) to enable DBCPConnect i onPr ovi der . Please refer the the Apache commons-pool documentation for the in-
terpretation of these properties. You should set the hi ber nat e. proxool . * properties if you wish to use Prox-
ool.

For use inside an application server, Hibernate may obtain connections from a j avax. sql . Dat asour ce regis-
tered in INDI. Set the following properties:

Table 3.2. Hiber nate Datasour ce Properties

Propery name Purpose

hi ber nat e. connect i on. dat asour ce datasource JNDI name

hi ber nate. j ndi . url URL of the JNDI provider (optional)

hi bernate. j ndi . cl ass class of the JNDI | ni ti al Cont ext Fact ory (optional)
hi ber nat e. connect i on. user nane database user (optional)

hi ber nat e. connect i on. password database user password (optional)

3.5. Other properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All are optional and
have reasonable default values.

System-level properties can only be set viaj ava - Dproperty=val ue or be defined in hi bernate. properties
and not with an instance of Properti es passed to the Confi gurati on.
Table 3.3. Hibernate Configuration Properties

Property name Purpose

hi ber nat e. di al ect The classname of a Hibernate bi al ect - enables cer-
tain platform dependent features.

€g.full.classnane. of . Di al ect

hi ber nat e. def aul t _schema Qualify unqualified tablenames with the given
schema/tablespace in generated SQL.

€J. SCHEMA_NAME

hi ber nat e. sessi on_f act ory_nane Bind this name to the Sessi onFact ory.

€g. j ndi / conposi t e/ nane

hi ber nat e. use_out er _j oi n Enables outer join fetching.

€g.true |fal se

hi ber nat e. max_f et ch_depth Set a maximum "depth” for the outer join fetch tree.

eg. recommended values between 0 and 3

hi bernate. jdbc. fetch_size A non-zero value determines the JDBC fetch size

Hibernate 2.1 13

SessionFactory Configuration

Property name

hi ber nat e. j dbc. bat ch_si ze

Purpose
(calls st at ement . set Fet chSi ze()).

A nonzero value enables use of JDBC2 batch updates
by Hibernate.

eg. recommended values between 5 and 30

hi bernat e. j dbc. use_scrol | abl e_resul t set

Enables use of JDBC2 scrollable resultsets by Hiber-
nate. This property is only necessary when using user
supplied connections. Hibernate uses connection
metadata otherwise.

€g.true |fal se

hi bernat e. j dbc. use_streans_for_binary

hi bernate. cglib.use_reflection_optin zer

hi ber nat e. j ndi . <pr opert yName>

hi ber nat e. connection. i sol ati on

hi ber nat e. connecti on. <propertyNanme>

hi ber nat e. connecti on. provi der _cl ass

hi ber nat e. cache. provi der _cl ass

hi bernat e. transacti on.factory_cl ass

jta. UserTransaction

Use streams when writing / reading bi nary or seri -
al i zabl e typesto/from JDBC. System-level property.

€g.true |fal se

Enables use of CGLIB instead of runtime reflection
(System+-level property, default isto use CGLIB where
possible). Reflection can sometimes be useful when
troubleshooting.

€g.true |fal se

Pass the property propertyName to the JNDI I ni -
ti al Cont ext Fact ory (optional)

Set the JDBC transaction isolation level (optional)

€g.1, 2, 4, 8

Pass the JDBC property propertyNane to Dri ver -
Manager . get Connecti on() .

The classname of a custom Connect i onPr ovi der

€g. cl assnane. of . Connect i onProvi der

The classname of a custom CachePr ovi der

€g. cl assnare. of . CachePr ovi der

The classname of a Transact i onFact ory to use with
Hibernate Transaction API.

€J. cl assnane. of . Transacti onFactory

A IJNDI name used by JTATr ansact i onFact ory to ob-
tain the JTA User Transact i on.

€J. j ndi / conposi t e/ name

hi ber nat e. t ransact i on. manager _| ookup_cl ass

The classname of a Transact i onManager Lookup - re-
quired when JVM-level caching is enabled in a JTA
environment.

Hibernate 2.1

14

SessionFactory Configuration

Property name

Purpose

€J. cl assnane. of . Tr ansact i onManager Lookup

hi ber nat e. query. substitutions

Mapping from tokens in Hibernate queries to SQL to-
kens (tokens might be function or literal names, for
example).

€g. hgl Li t eral =SQL_LI TERAL,
ti on=SQLFUNC

hgl Func-

hi ber nat e. show_sql

hi ber nat e. hbn2ddl . aut o

Write all SQL statements to console (as an alternative
to use of the logging functionality).

€g.true |fal se

Automatically export schema DDL.

€g. updat e | create | creat e-drop

3.5.1. SQL Dialects

You should always set the hi ber nat e. di al ect property to the correct net . sf. hi ber nat e. di al ect . bi al ect
subclass for your database. Thisis not strictly essential unless you wish to use nat i ve or sequence primary key
generation or pessimistic locking (with, eg. Sessi on. I ock() Or Query. set LockMode()). However, if you spec-
ify a diaect, Hibernate will use sensible defaults for some of the other properties listed above, saving you the

effort of specifying them manually.

Table 3.4. Hibernate SQL Dialects (hi ber nat e. di al ect)

RDBMS Dialect

DB2 net. sf. hi bernat e. di al ect. DB2Di al ect
MySQL net . sf. hi bernat e. di al ect. MySQLDi al ect
SAPDB net. sf. hi ber nat e. di al ect . SAPDBDI al ect
Oracle (any version) net. sf. hi bernat e. di al ect. Or acl eDi al ect
Oracle9 net. sf. hi bernate. di al ect. Oracl e9Di al ect
Sybase net . sf. hi ber nat e. di al ect . SybasebDi al ect
Sybase Anywhere net . sf. hi bernat e. di al ect . SybaseAnywher eDi al ect
Progress net . sf. hi ber nat e. di al ect . Progr essbDi al ect
Mckoi SQL net. sf. hi bernate. di al ect. Mckoi Di al ect
Interbase net . sf. hi bernat e. di al ect . | nt er baseDi al ect
Pointbase net . sf. hi bernat e. di al ect . Poi nt baseDi al ect
PostgreSQL net. sf. hi bernat e. di al ect . Post gr eSQLDi al ect
HypersonicSQL net . sf. hi ber nat e. di al ect. HSQLDi al ect

Hibernate 2.1

15

SessionFactory Configuration

RDBMS Dialect

Microsoft SQL Server net. sf. hi bernat e. di al ect. SQLSer ver Di al ect
Ingres net . sf. hi bernat e. di al ect. | ngresbDi al ect
Informix net . sf. hi bernate. di al ect. | nformi xDi al ect
FrontBase net. sf. hi ber nat e. di al ect . Front baseDi al ect

3.5.2. Outer Join Fetching

If your database supports ANSI or Oracle style outer joins, outer join fetching might increase performance by
limiting the number of round trips to and from the database (at the cost of possibly more work performed by the
database itself). Outer join fetching allows a graph of objects connected by many-to-one, one-to-many or one-
to-one associations to be retrieved in asingle SQL SELECT.

By default, the fetched graph ends at |eaf objects, collections, objects with proxies, or where circularities occur.
For a particular association, fetching may be enabled or disabled (and the default behaviour overridden) by set-
ting the out er - j oi n attribute in the XML mapping. Outer join fetching may be disabled globally by setting the
property hi ber nat e. use_out er _j oi n to f al se. You may limit the maximum depth of the fetched graph of ob-
jectsusing hi ber nat e. max_f et ch_dept h.

3.5.3. Binary Streams

Oracle limits the size of byt e arrays that may be passed to/from its JIDBC driver. If you wish to use large in-
stances of bi nary Or seri al i zabl e type, you should enable hi ber nat e. j dbc. use_st reans_f or _bi nary. This
isa JVM-level setting only.

3.5.4. SQL Logging to Console

hi ber nat e. show_sql forces Hibernate to write SQL statements to the console. This is provided as an easy al-
ternative to enabling logging.

3.5.5. Custom Connecti onPr ovi der

You may define your own plugin strategy for obtaining JDBC connections by implementing the interface
net . sf. hi ber nat e. connect i on. Connecti onProvi der. YOUu may select a custom implementation by setting
hi ber nat e. connecti on. provi der _cl ass.

3.5.6. Common connection properties

Certain configuration properties affect al of the built-in connection providers apart from Dat asour ceConnec-
ti onProvi der. These include: hi ber nat e. connecti on. driver _class, hi bernate. connection.url, hiber-
nat e. connect i on. user nane and hi ber nat e. connect i on. passwor d.

hi ber nat e. connect i on. i sol ati on should be specified as an integer value. (Check j ava. sql . Connecti on for
meaningful values but note that most databases do not support all isolation levels.)

Arbitrary connection properties may be given by prepending "hi ber nat e. connnecti on" to the property name.
For example, you may specify achar Set using hi ber nat e. connnect i on. char Set .

Hibernate 2.1 16

SessionFactory Configuration

3.5.7. Custom CacheProvi der

You may integrate a JVM-level (or clustered) cache by implementing the interface
net . sf. hi ber nat e. connect i on. Connect i onProvi der. You may select the custom implementation by setting
hi ber nat e. cache. provi der _cl ass.

3.5.8. Transaction Strategy

If you wish to use the Hibernate Tr ansacti on API, you must specify afactory class for Transact i on instances
by setting the property hi ber nate. transacti on. factory_cl ass. There are two standard (built-in) choices:

net . sf. hi bernate. transacti on. JDBCTr ansact i onFact ory

delegates to database (JDBC) transactions

net . sf. hi bernate. transacti on. JTATr ansacti onFactory
delegates to JTA (if an existing transaction is underway, the Sessi on performsits work in that context, oth-
erwise anew transaction is started)

Y ou may also define your own transaction strategies (for a CORBA transaction service, for example).

If you wish to use WVM-level caching of mutable datain a JTA environment, you must specify a strategy for
obtaining the JTA Tr ansact i onManager .

Table 3.5. JTA TransactionM anagers

Transaction Factory Application Server
net . sf. hi bernate.transacti on. JBossTransacti onManager Lookup JBoss
net.sf. hi bernate.transacti on. Wbl ogi cTransact i onManager Lookup Weblogic

net . sf. hi bernate. transacti on. WebSpher eTr ansact i onManager Lookup WebSphere

net . sf. hi bernate.transacti on. Ori onTransacti onManager Lookup Orion

net . sf. hi bernate. transacti on. Resi nTransact i onManager Lookup Resin

net . sf. hi bernate.transacti on. JOTMIT ansact i onManager Lookup JOTM

net . sf. hi bernate. transaction. JONASTr ansact i onManager Lookup JOnAS

net . sf. hi bernate. transaction. JRun4Transact i onManager Lookup JRun4

3.5.9. INDI-bound Sessi onFact ory

If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (eg.
j ava: conp/ env/ hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_factory_nane. If this
property is omitted, the Sessi onFact ory will not be bound to JNDI. (This is especially useful in environments
with aread-only JNDI default implementation, eg. Tomcat.)

When binding the Sessi onFact ory to JNDI, Hibernate will use the values of hi bernate.jndi.url, hiber-
nate.jndi . cl ass to instantiate an initial context. If they are not specified, the default | ni ti al Cont ext will be
used.

Hibernate 2.1 17

SessionFactory Configuration

If you do choose to use JNDI, an EJB or other utility class may obtain the Sessi onFactory using a JNDI
lookup.

3.5.10. Query Language Substitution

Y ou may define new Hibernate query tokens using hi ber nat e. query. substi t uti ons. For example:

hi ber nat e. query. substitutions true=1, fal se=0

would cause the tokenst rue and f al se to be trandated to integer literals in the generated SQL .

hi ber nat e. query. substituti ons tolLowercase=LONER

would allow you to rename the SQL LOWER function.

3.6. XML Configuration File

An aternative approach is to specify a full configuration in a file named hi ber nat e. cf g. xm . The configura-
tion file is expected to be in the root of your CLASSPATH.

<?xm version='"1.0" encoding="utf-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-//H bernate/ H bernate Configuration DID 2. 0//EN'

"http://hibernate. sourceforge. net/hi bernat e-configuration-2.0.dtd">
<hi ber nat e- confi gurati on>

<l-- a SessionFactory instance listed as /jndi/nane -->
<session-factory
nane="j ava: conp/ env/ hi ber nat e/ Sessi onFact ory" >

<l-- properties -->

<property nane="connecti on. datasource">ny/first/datasource</property>

<property nane="di al ect">net. sf. hi bernate. di al ect. MySQLDi al ect </ property>

<property name="show_sql ">fal se</property>

<property nanme="use_outer_joi n">true</property>

<property name="transaction.factory_class">net.sf. hibernate.transacti on. JTATransacti onFact ory:-
<property nane="jta.User Transacti on">j ava: conp/ User Tr ansact i on</ property>

<l-- mapping files -->
<mappi ng resour ce="eg/ Edge. hbm xm "/ >
<mappi ng resource="eg/ Vertex. hbm xm "/ >

</ sessi on-factory>

</ hi ber nat e- conf i gur ati on>

Configuring Hibernate is then assimple as

SessionFactory sf = new Configuration().configure().buildSessionFactory();

Y ou can pick adifferent configuration file using

Sessi onFactory sf = new Configuration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

Hibernate 2.1 18

SessionFactory Configuration

3.7. Logging

Hibernate logs various events using Apache commons-logging. The commons-logging service will direct out-
put to either Apache log4j (if you include I og4j . j ar in your classpath) or JDK1.4 logging (if running under
JDK 1.4 or above). You may download log4j from http://j akarta. apache. org. To use log4j you will need to
place al og4j . properti es filein your classpath. An example properties file is distributed with Hibernate.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of work has been
put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essential trou-
bleshooting device.

Hibernate 2.1 19

Chapter 4. Persistent Classes

4.1. Simple Example

Most Java applications require a persistent class representing felines.

package eg;
import java.util. Set;
i mport java.util.Date;

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nmate;
private Set kittens
private Col or col or;
private char sex;
private float weight;

private void setld(Long id) {
this.id=id;

public Long getld() {
return id,

}

voi d set Mate(Cat mate) {
this.mate = nmate;

}

public Cat getMate() {
return nate;

}

voi d setBirthdate(Date date) {
birthdate = date;

}

public Date getBirthdate() ({
return birthdate;

}

voi d set Wi ght (fl oat wei ght) {
this.weight = weight;

}

public float getWight() {
return wei ght;

}

public Col or getColor() {
return col or;
}

voi d set Col or (Col or color) {
this.color = color;

}

void setKittens(Set kittens) {
this.kittens = kittens;

public Set getKittens() {
return kittens;
}
/1 addKi tten not needed by Hi bernate
public void addKitten(Cat kitten) {
kittens. add(kitten);
}
voi d set Sex(char sex) {
t hi s. sex=sex;

public char getSex() {

Hibernate 2.1

20

Persistent Classes

return sex;

}

There are three main rules to follow here:

4.1.1. Declare accessors and mutators for persistent fields

cat declares accessor methods for al its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believeit is far better to decoupl e this implementation detail from the persistence mechanism. Hiber-
nate persists JavaBeans style properties, and recognizes method names of the form get Foo, i sFoo and set Foo.

Properties need not be declared public - Hibernate can persist a property with a default, prot ected or private
get / set pair.

4.1.2. Implement a default constructor

cat has an implicit default (no-argument) constructor. All persistent classes must have a default constructor
(which may be non-public) so Hibernate can instantiate them using Const r uct or . new nst ance() .

4.1.3. Provide an identifier property (optional)

cat has a property called i d. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, any primitive "wrapper"
type, java. lang. String Of java. util . Dat e. (If your legacy database table has composite keys, you can even
use a user-defined class with properties of these types - see the section on composite identifiers below.)

The identifier property is optional. You can leave it off and let Hibernate keep track of object identifiers inter-
nally. However, for many applicationsit is still agood (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

e Cascaded updates (see "Lifecycle Objects")

* Session. saveO Updat e()

We recommend you declare consistently-named identifier properties on persistent classes. We further recom-
mend that you use anullable (ie. non-primitive) type.

4.1.4. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final, or the imple-
mentation of an interface that declares all public methods.

You can persist fi nal classes that do not implement an interface with Hibernate, but you won't be able to use
proxies - which will limit your options for performance tuning somewhat.

4.2. Inheritance

A subclass must aso observe the first and second rules. It inheritsits identifier property from Cat .

package eg;

Hibernate 2.1 21

Persistent Classes

public class DonmesticCat extends Cat {
private String nane;

public String getNanme() {
return nane;
}

protected void set Nane(String name) {
t hi s. nane=nane;
}

4.3. Persistent Lifecycle Callbacks

Optiondly, a persistent class might implement the interface Li f ecycl e which provides some callbacks that al-
low the persistent object to perform necessary initialization/cleanup after save or load and before deletion or
update.

public interface Lifecycle {
publ i c bool ean onSave(Session s) throws Call backExcepti on;
publ i c bool ean onUpdat e(Sessi on s) throws Call backExcepti on;
publ i ¢ bool ean onDel et e(Sessi on s) throws Cal |l backExcepti on;
public void onLoad(Session s, Serializable id);

Ooood

onSave - called just before the object is saved or inserted

onUpdat e - called just before an object is updated (when the object is passed to Sessi on. updat e())
onDel et e - called just before an object is deleted

onLoad - called just after an object isloaded

(0 I B R

onSave(), onDel et e() and onUpdat e() may be used to cascade saves and deletions of dependent objects. This
is an aternative to declaring cascaded operations in the mapping file. onLoad() may be used to initialize tran-
sient properties of the object from its persistent state. It may not be used to load dependent objects since the
Sessi on interface may not be invoked from inside this method. A further intended usage of onLoad(), on-
Save() and onUpdat e() iSto store areference to the current Sessi on for later use.

Note that onUpdat e() is not called every time the object's persistent state is updated. It is called only when a
transient object is passed to Sessi on. updat e() .

If onSave(), onUpdat e() Or onDel et e() returntrue, the operation is silently vetoed. If a Cal | backExcepti on
isthrown, the operation is vetoed and the exception is passed back to the application.

Note that onsave() is called after an identifier is assigned to the object, except when native key generation is
used.

4.4. Validatable

If the persistent class needs to check invariants before its state is persisted, it may implement the following in-
terface:

public interface Validatable {
public void validate() throws ValidationFail ure;

}

The object should throw aVval i dat i onFai | ur e if an invariant was violated. An instance of val i dat abl e should

Hibernate 2.1 22

Persistent Classes

not changeits state frominside val i dat e() .

Unlike the callback methods of the Li f ecycl e interface, val i date() might be called at unpredictable times.
The application should not rely upon callstoval i dat e() for business functionality.

4.5. XDoclet Example

In the next section we will show how Hibernate mappings may be expressed using a simple, readable XML for-
mat. Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i ber nat e. t ags. We will not cover this approach in this document, since strictly it is considered part of XDo-
clet. However, we include the following example of the cat class with XDoclet mappings.

package eg;
import java.util. Set;
i mport java.util.Date;

/**

* @i bernate.class

* tabl e="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nate;
private Set kittens
private Col or col or;
private char sex;
private float weight;

/**
* @i bernate.id

* generator-class="native"
* col um="CAT_I D"

“f

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id;

}

/**

* @i bernat e. many-t o- one
* col um="MATE I D"
*/
public Cat getMate() ({
return nate;
}

voi d setMate(Cat mate) {
this.mate = nate;

}
/**
* @i bernate. property
* col um="BI RTH_DATE"
*/
public Date getBirthdate() ({
return birthdate;
}
voi d setBirthdate(Date date) {
bi rt hdate = date;
}
/**
* @i bernate. property
* col um="\WEl GHT"
*/
public float getWeight() {

Hibernate 2.1 23

Persistent Classes

return wei ght;

}

voi d set Wei ght (fl oat wei ght) ({
thi s. wei ght = wei ght;

}

/**
* @i bernate. property
* col um="COLCOR'
* not-null="true"
*/
public Col or getColor() {
return col or;
}

voi d set Col or (Col or color) {
this.color = color;

*

}
/
@i ber nat e. set

| azy="true"

or der - by="BI RTH_DATE"
@i ber nat e. col | ecti on-key

col um="PARENT | D'
@i ber nat e. col | ecti on-one-t o-many

L S R T

-~

public Set getKittens() {
return kittens;
}

void setKittens(Set kittens) {
this.kittens = kittens;

/1 addKitten not needed by Hi bernate

public void addKitten(Cat kitten) {
kittens.add(kitten);

}

/**

* @i bernate. property
* col um=" SEX"

* npot-null="true"
* update="fal se"
*/

public char getSex() {
return sex;

voi d set Sex(char sex) {
thi s. sex=sex;

}

Hibernate 2.1

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object-relational mappings may be defined in an XML document. The mapping document is designed to be
readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed
around persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to define XML mappings be hand, a number of tools exist
to generate the mapping document, including XDoclet, Middlegen and AndroMDA.

Letskick off with an example mapping:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 2. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>

<cl ass nane="eg. Cat" tabl e="CATS" discri m nator-val ue="C'>
<id name="id" col um="uid" type="long">
<generator class="hilo"/>
</id>
<di scri m nator col um="subcl ass" type="character"/>
<property name="birthdate" type="date"/>
<property nane="color" not-null="true"/>
<property name="sex" not-null="true" update="fal se"/>
<property nane="wei ght"/>
<many-t o- one nanme="nmate" col um="mate_id"/>
<set nanme="kittens">
<key col um="not her _i d"/>
<one-to-many cl ass="eg. Cat"/>
</set>
<subcl ass nane="eg. Donesti cCat" discrim nator-val ue="D">
<property nane="nane" type="string"/>
</ subcl ass>
</ cl ass>

<cl ass nanme="eg. Dog" >
<!'-- mapping for Dog could go here -->
</cl ass>

</ hi ber nat e- mappi ng>
We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional at-

tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

5.1.1. Doctype
All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, in the

directory hi ber nat e- x. x. x/ src/ net/ sf/ hi bernate Or in hi bernate. j ar. Hibernate will always look for the
DTD inits classpath first.

5.1.2. hibernate-mapping

Hibernate 2.1 25

Basic O/R Mapping

This element has three optional attributes. The schena attribute specifies that tables referred to by this mapping
belong to the named schema. If specified, tablenames will be qualified by the given schema name. If missing,
tablenames will be unqualified. The def aul t - cascade attribute specifies what cascade style should be assumed
for properties and collections which do not specify a cascade attribute. The aut o-i nport attribute lets us use
unqualified class names in the query language, by default.

<hi ber nat e- mappi ng
schema="schemaNange"
def aul t - cascade="none| save- updat e"
aut o-i nmport="true|fal se"

o

/>

O schemn (optional): The name of a database schema.

O defaul t-cascade (optiona - defaultsto none): A default cascade style.

O auto-inport (optional - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

If you have two persistent classes with the same (unqualified) name, you should set aut o-i nport ="f al se" . Hi-
bernate will throw an exception if you attempt to assign two classes to the same "imported" name.

5.1.3. class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nanme="C assNane" O
t abl e="t abl eNane" O
di scri m nat or-val ue="di scri nm nat or _val ue" O
mut abl e="true| f al se" O
schema="owner" O
proxy="Proxyl nterface" |
dynami c- updat e="true| f al se" |
dynami c-insert="true|fal se" a
sel ect - bef or e- updat e="true| fal se" O
pol ynor phi sm"inplicit|explicit" a
where="arbitrary sql where condition" (12)
persi ster="Persisterd ass" (12)
bat ch-si ze="N" (13)
optimstic-lock="none|version|dirty|all" (14)
lazy="true| fal se" (15)
/>

O nane: Thefully qualified Java class name of the persistent class (or interface).

0 tabl e: The name of its database table.

O discrininator-val ue (optiona - defaults to the class name): A value that distiguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesinclude nul I and not nul I .

O nutabl e (optional, defaultstot rue): Specifies that instances of the class are (not) mutable.

O schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

O proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of
the classitsalf.

O dynam c-updat e (optional, defaultsto f al se): Specifies that UPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

O dynamic-insert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

O select-before-update (optional, defaults to f al se): Specifies that Hibernate should never perform an
SQL UPDATE unlessiit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that Hibernate will

Hibernate 2.1 26

Basic O/R Mapping

perform an extra SQL SELECT to determineif an UPDATE is actually required.

O pol ynor phi sm(optional, defaults to i npl i ci t); Determines whether implicit or explicit query polymor-
phismis used.
wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class
persi ster (optional): Specifiesacustom d assPersi ster.
bat ch-si ze (optional, defaultsto 1) specify a "batch size" for fetching instances of this class by identifier.
optimistic-1ock (optional, defaultsto ver si on): Determines the optimistic locking strategy.
| azy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
as the pr oxy interface.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. You may persist any static inner class. Y ou should
specify the class name using the standard form ie. eg. Foo$Bar .

Immutable classes, nut abl e="f al se", may not be updated or deleted by the application. This allows Hibernate
to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate will ini-
tially return CGLIB proxies which implement the named interface. The actual persistent object will be loaded
when a method of the proxy isinvoked. See "Proxiesfor Lazy Initialization” below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a <subcl ass> 0Or <j oi ned- subcl ass>. FOr most purposes the defaullt,
pol yrmor phi sme"inplicit", iS appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a "lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of net . sf. hi bernate. persi ster. EntityPersister Or you might even provide a
completely new implementation of the interface net . sf. hi ber nat e. persi ster. Cl assPersi ster that imple-
ments persistence via, for example, stored procedure calls, serialization to flat files or LDAP. See
net. sf. hi bernate. t est. Cust onPer si st er for asimple example (of "persistence” to aHasht abl e).

Note that the dynani c- updat e and dynani c-i nsert Settings are not inherited by subclasses and so may also be
specified on the <subcl ass> Or <j oi ned-subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judiciously.

Use of sel ect - bef or e- updat e Will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

» versi on check the version/timestamp columns

al | check all columns
e dirty check the changed columns
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with Hibernate.
Thisis the optimal strategy with respect to performance and is the only strategy that correctly handles modifi-
cations made outside of the session (ie. when Sessi on. updat e() isused).

Hibernate 2.1 27

Basic O/R Mapping

514.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a Jav-
aBeans-style property holding the unique identifier of an instance. The <i d> element defines the mapping from
that property to the primary key column.

<id
name="propert yName" O
type="t ypenane" |
col um="col unm_nane" 0
unsaved- val ue="any| none| nul | | i d_val ue" O
access="fiel d| property| Cl assNanme" > O
<generator class="generatord ass"/>

</id>

O nane (optional): The name of the identifier property.

O type (optional): A name that indicates the Hibernate type.

O col um (optional - defaults to the property name): The name of the primary key column.

O unsaved-val ue (optiona - defaultsto nul I): An identifier property value that indicates that an instanceis
newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in apre-
vious session.

O access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

If the nane attributeis missing, it isassumed that the class has no identifier property.

The unsaved- val ue attribute is important! If the identfier property of your class does not default to nul I, then
you should specify the actual default.

There is an aternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.4.1. generator

The required <gener at or > child element names a Java class used to generate unique identifiers for instances of
the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <par an»> €l ement.

<id name="id" type="long" col um="uid" unsaved-val ue="0">
<generator class="net.sf.hibernate.id. Tabl eH LoGenerator">
<par am nane="t abl " >ui d_t abl e</ par an>
<par am nane="col umm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

All generators implement the interface net . sf. hi bernate. i d. I dentifierGenerator. Thisisavery smplein-
terface; some applications may choose to provide their own specialized implementations. However, Hibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

i ncrenent
generates identifiers of typel ong, short orint that are unique only when no other process is inserting data
into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned

Hibernate 2.1 28

Basic O/R Mapping

identifier is of typel ong, short oOrint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned
identifier isof typel ong, short Orint

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short or i nt, given atable and col-
umn (by default hi ber nat e_uni que_key and next respectively) as a source of hi values. The hi/lo ago-
rithm generates identifiers that are unique only for a particular database. Do not use this generator with
connections enlisted with JTA or with a user-supplied connection.

seghil o
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a named database
sequence.

uui d. hex
uses a 128-bit UUID agorithm to generate identifiers of type string, unique within a network (the IP ad-
dressisused). The UUID is encoded as a string of hexadecimal digits of length 32.

uui d. string
uses the same UUID algorithm. The UUID is encoded a string of length 16 consisting of (any) ASCII char-
acters. Do not use with PostgreSQL.

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

assi gned
lets the application to assign an identifier to the object before save() iscalled.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one- t o- one> primary
key association.

5.1.4.2. Hi/Lo Algorithm

The hi | o and seqhi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="id" type="long" colum="cat_id">
<generator class="hilo">
<par am nane="t abl " >hi _val ue</ par anr
<par am nane="col um" >next _val ue</ par an»
<par am nane="max_| 0" >100</ par an»
</ gener at or >
</id>

<id name="id" type="long" colum="cat _id">
<generator class="seqghil o">
<par am nanme="sequence" >hi _val ue</ par anp
<par am nane="nmax_| 0" >100</ par an>
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own Connect i on to Hibernate, or when Hibernate is us-
ing an application server datasource to obtain connections enlisted with JTA. Hibernate must be able to fetch

Hibernate 2.1 29

Basic O/R Mapping

the"hi" value in a new transaction. A standard approach in an EJB environment is to implement the hi/lo algo-
rithm using a statel ess session bean.

5.1.4.3. UUID Algorithm

The UUIDs contain: |P address, startup time of the VM (accurate to a quarter second), system time and a
counter value (unique within the JVM). It's not possible to obtain a MAC address or memory address from Java
code, so thisisthe best we can do without using JNI.

Don't try to use uui d. st ri ng in PostgreSQL.

5.1.4.4. Identity Columns and Sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence Style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="id" type="long" colum="uid">
<generator class="sequence">
<par am nanme="sequence" >ui d_sequence</ par an>
</ gener at or >
</id>

<id name="id" type="long" columm="uid" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the nat i ve strategy will choose from thei denti ty, sequence and hi | o strate-
gies, dependant upon the capabilities of the underlying database.

5.1.4.5. Assigned Identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them), you may use
the assi gned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. Be very careful when using this feature to assign keys with business meaning (almost always a
terrible design decision).

5.1.5. composite-id

<conposite-id
name="pr opert yNanme"
cl ass="d assNane"
unsaved- val ue="any| none"
access="fi el d| property| d assNane" >

<key-property name="propertyNanme" type="typenane" col um="col um_nane"/>
<key- many-t o- one nane="propertyNane cl ass="C assNane" col um="col utm_nane"/>

</ conposite-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi te-i d> element accepts <key- property> property mappings and <key- many-t o- one> mappings as
child elements.

<conposite-id>
<key- property nane="medi car eNunber"/ >
<key- property nane="dependent"/>

</ conposi te-id>

Hibernate 2.1 30

Basic O/R Mapping

Your persistent class must override equal s() and hashCode() to implement composite identifier equality. It
must also implements Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can | oad() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
seperate class in Section 7.4, “As Composite Identifiers’. The attributes described below apply only to this al-
ternative approach:

» nane (optional): A property of component type that holds the composite identifier (see next section).

» class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

* unsaved-val ue (optional - defaults to none): Indicates that transient instances should be considered newly
instantiated, if set to any.

5.1.6. discriminator

The <di scri i nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: string, character, i nteger, byte, short, bool ean, yes_no, true_f al se.

<di scri m nat or
col um="di scri m nator_colum"” 0O
type="di scri m nator _type" ad
force="true|fal se" O
/>

O col um (optional - defaultsto cl ass) the name of the discriminator column.

O type (optional - defaultsto st ri ng) a name that indicates the Hibernate type

O force (optiona - defaultsto f al se) "force" Hibernate to specify allowed discriminator values even when
retrieving all instances of the root class.

Actual values of the discriminator column are specified by the di scri mi nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

5.1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<versi on
col um="ver si on_col um"
nanme="pr oper t yNane"
type="t ypenane"
access="fi el d| property| O assNane"
unsaved-val ue="nul | | negat i ve| undef i ned"

Oooooo

/>

O colum (optional - defaults to the property name): The name of the column holding the version number.
O nane: The name of aproperty of the persistent class.

Hibernate 2.1 31

Basic O/R Mapping

O type (optional - defaultstoi nt eger): The type of the version number.

0 access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

O unsaved-val ue (optional - defaultsto undef i ned): A version property value that indicates that an instance
is newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a
previous session. (undef i ned specifiesthat the identifier property value should be used.)

Version numbers may be of typel ong, i nt eger, short, ti mest anp Of cal endar .

5.1.8. timestamp (optional)

The optional <t i nest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<ti mest anp
col um="ti mest anp_col um"
name="pr oper t yNanme"
access="fi el d| property| Cl assNane"
unsaved- val ue="nul | | undefi ned"

OoOooOod

/>

O col um (optional - defaults to the property name): The name of a column holding the timestamp.

O nane: The name of a JavaBeans style property of Javatype Dat e or Ti mest anp of the persistent class.

O access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

O unsaved-val ue (optiona - defaults to nul 1): A version property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

Note that <t i mest anp> iSequivalent to <ver si on type="ti nest anp">.

5.1.9. property

The <pr oper t y> element declares a persistent, JavaBean style property of the class.

<property

name="pr opert yNanme" 0
col um="col um_nane" a
type="t ypenane" 0
updat e="true| fal se" O
insert="true|fal se" O
formul a="arbitrary SQ expression" 0O
access="fi el d| property| Cl assNane" O
/>
O nane: the name of the property, with an initial lowercase |etter.
O col um (optional - defaults to the property name): the name of the mapped database table column.
O type (optional): a name that indicates the Hibernate type.
O update, insert (optional - defaults to true) : specifies that the mapped columns should be included in

SQL urDATE and/or | NSERT statements. Setting both to f al se alows a pure "derived" property whose
valueisinitialized from some other property that maps to the same colum(s) or by atrigger or other appli-
cation.

O formul a (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

O access (optiona - defaults to property): The strategy Hibernate should use for accessing the property

Hibernate 2.1 32

Basic O/R Mapping

value.

typename could be:

1

3.
4.
S.

The name of a Hibernate basic type (eg. i nt eger, string, character, date, timestanp, float, bi-
nary, serializable, object, blob).

The name of a Java class with a default basic type (eg. int, float, char, java.lang.String,
java.util.Date, java.lang.Integer, java.sql.d ob).

The name of a subclass of Per si st ent Enum(€g. eg. Col or).

The name of a serializable Javaclass.

The class name of a custom type (eg. comi | | 1 ow. t ype. MyCust onfType).

If you do not specify atype, Hibernate will use reflection upon the named property to take a guess at the correct
Hibernate type. Hibernate will try to interpret the name of the return class of the property getter using rules 2, 3,
4 in that order. However, thisis not aways enough. In certain cases you will till need the t ype attribute. (For
example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, Or t0 Specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify access="fi el d", Hibernate will bypass the get/set pair and ac-
cess the field directly, using reflection. Y ou may specify your own strategy for property access by naming a
class that implementsthe interface net . sf . hi ber nat e. property. PropertyAccessor .

5.1

.10. many-to-one

An ordinary association to another persistent class is declared using a many-t o- one element. The relational
model is a many-to-one association. (Itsreally just an object reference.)

<many-t o- one

/>

name="pr opert yNanme"

col um="col unmm_nane"

cl ass="C assNane"

cascade="al | | none| save- updat e| del et e"
outer-join="true|fal se|] aut 0"

updat e="true| fal se"

insert="true|fal se"
property-ref="propertyNaneFromAssoci at edd ass"
access="fi el d| property| Cl assNane"

OoooOoOooOooo

nane: The name of the property.

col urm (optional): The name of the column.

cl ass (optiona - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

outer-join (optional - defaults to aut o): enables outer-join fetching for this association when hi ber -
nate. use_outer_join iSset.

update, insert (optional - defaults to true) specifies that the mapped columns should be included in
SQL uPDATE and/or | NSERT statements. Setting both to f al se allows a pure "derived" association whose
valueisinitialized from some other property that maps to the same colum(s) or by atrigger or other appli-
cation.

property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

Hibernate 2.1 33

Basic O/R Mapping

The cascade attribute permits the following values: al | , save- updat e, del et e, none. Setting a value other than
none Will propagate certain operations to the associated (child) object. See "Lifecycle Objects' below.

Theout er -j oi n attribute accepts three different values.

e auto (default) Fetch the association using an outerjoin if the associated class has no proxy
* true Alwaysfetch the association using an outerjoin
» fal se Never fetch the association using an outerjoin

A typical many-t o- one declaration looks as simple as

<many-t o- one nane="product" class="Product" col um="PRODUCT | D"/>

The property-ref attribute should only be used for mapping legacy data where aforeign key refers to a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key.

<property name="serial Nunber" uni que="true" type="string" col um="SERI AL_NUVBER'/ >

Then the mapping for o der | t emmight use:

<many-t o-one nane="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER'/ >

Thisis certainly not encouraged, however.

5.1.11. one-to-one

A one-to-one association to another persistent class is declared using aone- t o- one element.

<one-t o0-one

/>

name="pr opert yNanme"

cl ass="dC assNane"

cascade="al | | none| save- updat e| del et e"

constrai ned="true| fal se"

outer-join="true|fal se|] aut 0"
property-ref="propertyNaneFromAssoci at edd ass"
access="fi el d| property| Cl assNane"

OoooooOod

name: The name of the property.

cl ass (optional - defaults to the property type determined by reflection): The name of the associated
class.

cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

constrai ned (optional) specifies that aforeign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which save() and del ete() are
cascaded (and is also used by the schema export toal).

outer-join (optiona - defaults to aut 0o): Enable outer-join fetching for this association when hi ber -
nate. use_outer _join iSset.

property-ref: (optional) The name of a property of the associated class that is joined to the primary key
of thisclass. If not specified, the primary key of the associated class is used.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

There are two varieties of one-to-one association:

Hibernate 2.1 34

Basic O/R Mapping

e primary key associations
* unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-t o-one nanme="person" class="Person" constrai ned="true"/>
<one-t 0- one nane="enpl oyee" cl ass="Enpl oyee"/>

Alternatively, aforeign key with a unique constraint, from Enpl oyee to Per son, may be expressed as.

<many-t o- one name="person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o-one nane"enpl oyee" cl ass="Enpl oyee" property-ref="person"/>

5.1.12. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compo-
nents may, in turn, declare their own properties, components or collections. See "Components" below.

<conponent
nane="pr opert yNane" O
cl ass="cl assNane" a
insert="true|fal se" ||
upate="true| f al se" a
access="fiel d| property| C assNane"> [

<property />
<many-to-one />

</ conponent >

O nane: The name of the property.

0 class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

O insert: Dothe mapped columns appear in SQL | NSERTS?

O update: Do the mapped columns appear in SQL UPDATES?

O access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the property names refer
to keys of the map.

Hibernate 2.1 35

Basic O/R Mapping

5.1.13. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
name="C assNane"
di scrim nat or-val ue="di scri m nat or _val ue"
proxy="Proxyl nt er f ace"
| azy="true|fal se"
dynam c- updat e="true| f al se"
dynami c-insert="true|fal se">

I o

<property [>

</ subcl ass>

O nane: Thefully qualified class name of the subclass.

di scri mi nat or - val ue (optional - defaults to the class name): A value that distiguishes individual sub-

classes.

O proxy (optional): Specifies aclass or interface to use for lazy initializing proxies.

O lazy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
asthe pr oxy interface.

|

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a heirarchy must define a unique di scri mi nat or -
val ue. If noneis specified, the fully qualified Java class nameis used.

5.1.14. joined-subclass

Alternatively, a subclass that is persisted to its own table (table-per-subclass mapping strategy) is declared us-
ing a<j oi ned- subcl ass> element.

<j oi ned- subcl ass
name="C assNane"
proxy="Proxyl nterface"
| azy="true| fal se"
dynami c- updat e="true| f al se"
dynam c-insert="true|fal se">

e

<key >

<property [>

</ subcl ass>

O nane: Thefully qualified class name of the subclass.

O proxy (optional): Specifies aclass or interface to use for lazy initializing proxies.

I azy (optional): Setting | azy="true" is a shortcut equalivalent to specifying the name of the class itself
asthe pr oxy interface.

|

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD// EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng- 2. 0. dt d" >

Hibernate 2.1 36

Basic O/R Mapping

<hi ber nat e- mappi ng>

<cl ass nane="eg. Cat" tabl e="CATS">
<id name="id" col um="uid" type="long">
<generator class="hilo"/>

</id>

<property nane="birthdate" type="date"/>
<property nane="col or" not-null="true"/>
<property nane="sex" not-null="true"/>

<property nane="wei ght"/>
<many-t o- one nane="nate"/>
<set nanme="kittens">
<key col um="MOTHER"/ >
<one-to-many cl ass="eg. Cat"/>
</set>
<j oi ned- subcl ass nane="eg. Donesti cCat" tabl e="DOVESTI C_CATS" >
<key col um="CAT"/>
<property name="nane" type="string"/>
</ j oi ned- subcl ass>
</cl ass>

<cl ass nanme="eg. Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

5.1.15. map, set, list, bag

Collections are discussed | ater.

5.1.16. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified (package) name in Hibernate queries. Classes may be "imported” explicitly, rather than relying upon
aut o-i mport ="true". YOUu may even import classes and interfaces that are not explicitly mapped.

<i nport cl ass="java.l ang. Obj ect" rename="Universe"/>

<i nport
cl ass="d assNanme" O
r enane=" Shor t Nane" O
/>

O class: Thefully qualified class name of of any Java class.
O renane (optiona - defaults to the unqualified class name): A name that may be used in the query lan-

guage.
5.2. Hibernate Types

5.2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual

Hibernate 2.1 37

Basic O/R Mapping

Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the
ODMG model of object persistence by reachablity - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are primi-
tives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All Hibernate types except collections support null semantics.

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into

i nteger, long, short, float, double, character, byte, bool ean, yes no, true_false
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL column
types. boolean, yes_no and true_false are al aternative encodings for a Java bool ean or
j ava. | ang. Bool ean.

string
A type mapping fromj ava. | ang. St ri ng t0 VARCHAR (Or Oracle VARCHAR?).

date, tinme, tinmestanp
Type mappings from j ava. util.Date and its subclasses to SQL types DATE, TI ME and TI MESTAMP (OF
equivalent).

cal endar, cal endar_date
Type mappings fromj ava. uti| . Cal endar to SQL types TI MESTAMP and DATE (or equivalent).

bi g_deci ma
A type mapping fromj ava. mat h. Bi gDeci mal t0 NUMERI C (or Oracle NUVBER).

| ocal e, tinezone, currency
Type mappings from j ava. util . Local e, java. util.Ti meZone and java. util. Currency tO VARCHAR (Or
Oracle VARCHAR?). Instances of Local e and cur r ency are mapped to their I SO codes. Instances of Ti nezone
are mapped to their 1 D.

cl ass
A type mapping from j ava. | ang. O ass t0 VARCHAR (or Oracle VARCHAR?2). A d ass is mapped to its fully
qualified name.

bi nary

Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

Hibernate 2.1 38

Basic O/R Mapping

serializable
Maps serializable Java types to an appropriate SQL binary type. Y ou may also indicate the Hibernate type
seri al i zabl e with the name of a serializable Java class or interface that does not default to a basic type or
implement Per si st ent Enum

cl ob, bl ob
Type mappings for the JDBC classes j ava. sql . d ob and j ava. sql . Bl ob. These types may be inconve-
nient for some applications, since the blob or clob object may not be reused outside of a transaction.
(Furthermore, driver support is patchy and inconsistent.)

Unique identifiers of entities and collections may be of any basic type except binary, bl ob and cl ob.
(Composite identifiers are also allowed, see below.)

The basic value types have corresponding Type constants defined on net . sf. hi ber nat e. Hi ber nat e. For exam-
ple, Hi ber nat e. STRI NG representsthe st ri ng type.

5.2.3. Persistent enum types

An enumerated type is a common Java idiom where a class has a constant (small) nhumber of immutable in-
stances. You may create a persistent enumerated type by implementing net . sf . hi ber nat e. Per si st ent Enum
defining the operationst ol nt () andfrom nt () :

package eg;
i mport net.sf.hi bernate. Persistent Enum

public class Col or inplenents Persistent Enum {
private final int code;
private Color(int code) {
thi s. code = code;
}

public static final Color TABBY = new Col or (0);
public static final Color A NGER = new Col or(1);
public static final Color BLACK = new Col or(2);

public int tolnt() { return code; }

public static Color from nt(int code) {
switch (code) {
case 0: return TABBY;
case 1: return G NGER;
case 2. return BLACK;
default: throw new Runti neException("Unknown col or code");

The Hibernate type name is simply the name of the enumerated class, in this case eg. Col or .

5.2.4. Custom value types

Itisrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of typej ava. | ang. Bi gl nt eger t0 VARCHAR columns. Hibernate does not provide a built-in type for this.
But custom types are not limited to mapping a property (or collection element) to a single table column. So, for
example, you might have a Java property get Nane() /set Name() Of typej ava.lang. String that is persisted to
the columns FI RST_NAME, | NI TI AL, SURNAME.

To implement a custom type, implement either net. sf. hi bernat e. User Type or
net . sf. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname of the type.

Hibernate 2.1 39

Basic O/R Mapping

Check out net . sf . hi ber nat e. t est . Doubl eSt ri ngType to see the kind of things that are possible.

<property nane="twoStrings" type="net.sf.hibernate.test.Doubl eStringType">
<col um nane="first_string"/>
<col um nane="second_string"/>

</ property>

Notice the use of <col um> tags to map a property to multiple columns.

Even though Hibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet or yAnount class is a good candidate for a Com

posi t eUser Type, even though it could easily be mapped as a component. One mativation for thisis abstraction.
With a custom type, your mapping documents would be future-proofed against possible changes in your way of
representing monetory val ues.

5.2.5. Any type mappings

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It isimpossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

<any name="anyEntity" id-type="long" neta-type="eg.custom C ass2Tabl enaneType" >
<col um nane="t abl e_nane"/ >
<col um nane="id"/>

</ any>

The net a- t ype attribute lets the application specify a custom type that maps database column values to persis-
tent classes which have identifier properties of the type specified by i d- t ype.

<any
nanme="pr opertyNane" g
i d-type="idtypenane" O
met a-t ype="net at ypenane" O
cascade="none| al | | save- updat e" O
access="fiel d| property| assNane" ad
>
<colum />
<colum />
danys
0 nane: the property name.
O id-type:theidentifier type.
O neta-type (optiona - defaultsto cl ass): atypethat mapsj ava. | ang. d ass to a single database column.
0 cascade (optional- defaultsto none): the cascade style.
O access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.

The old obj ect typethat filled asimilar role in Hibernate 1.2 is still supported, but is now semi-deprecated.

5.3. SQL quoted identifiers

Hibernate 2.1 40

Basic O/R Mapping

Y ou may force Hibernate to quote an identifier in the generated SQL by enclosing the table or column namein
backticks in the mapping document. Hibernate will use the correct quotation style for the SQL bi al ect (usually
double quotes, but brackets for SQL Server and backticks for MySQL).

<cl ass name="Lineltent table=""Line Item">

<id name="id" colum=""Item |d "/><generator class="assigned"/></id>
<property nanme="itenmNunber" colum=""Item# "/>
</ cl ass>

5.4. Customizing the DDL

The Hibernate mapping document also contains information used only for DDL generation using the Schera-
Export commandline tool. For example, you can override a column type using the sql -t ype attribute of a
<col uim> element.

<property
nanme="anount "
type="bi g_deci nal ">
<col um
name="AMOUNT"
sql -type="NUMERI C(11, 2)"/>
</ property>

Or, you can specify column lengths and constraints. The following are equivalent:

<property
nane="soci al Securit yNurmber"
type="string"
| engt h="9"
col um=" SSN"
not - nul I ="true"
uni que="true"/>

<property
nane="soci al Securi t yNurmber"
type="string">
<col um
nanme="SSN'
| engt h="9"
not - nul I ="true"
uni que="true"/>
</ property>

5.5. Modular mapping files

It is possible to define subcl ass and j oi ned- subcl ass mappings in seperate mapping documents, directly be-
neath hi ber nat e- mappi ng. This allows you to extend a class hierachy just by adding a new mapping file. You
must specify an ext ends attribute in the subclass mapping, naming a previously mapped superclass. Use of this
feature makes the ordering of the mapping documents important!

<hi ber nat e- mappi ng>
<subcl ass nane="eg. Donmesti cCat" extends="eg.Cat" discriminator-value="D">
<property nanme="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

Hibernate 2.1 41

Chapter 6. Collections

6.1. Persistent Collections

This section does not contain much example Java code. We assume you already know how to use Java's collec-
tions framework. If so, theres not really anything more to know ... with asingle caveat, you may use collections
the same way you always have.

Hibernate can persist instances of java.util.Map, java.util.Set, java.util.SortedMap,
java.util.SortedSet, java.util.List, and any array of persistent entities or values. Properties of type
java.util.Col l ectionoOrjava.util.List may also be persisted with "bag" semantics.

Now the caveat: persistent collections do not retain any extra semantics added by the class implementing the
collection interface (eg. iteration order of a Li nkedHashSet). The persistent collections actually behave like
HashMap, HashSet, TreeMap, TreeSet and ArrayLi st respectively. Furthermore, the Java type of a property
holding a collection must be the interface type (ie. Map, Set Or Li st ; never HashMap, TreeSet OF Arrayli st).
This restriction exists because, when you're not looking, Hibernate sneakily replaces your instances of Map, Set
and Li st with instances of its own persistent implementations of Map, Set or Li st . (So aso be careful when us-
ing == on your collections.)

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

sessi on. save(cat);

kittens = cat.getKittens(); //Ckay, kittens collection is a Set
(HashSet) cat.getKittens(); //Error!

Collections obey the usual rules for value types: no shared references, created and deleted along with contain-
ing entity. Due to the underlying relational model, they do not support null value semantics; Hibernate does not
distinguish between anull collection reference and an empty collection.

Coallection instances are distinguished in the database by a foreign key to the owning entity. This foreign key is
referred to as the collection key . The collection key is mapped by the <key> element.

Coallections may contain almost any other Hibernate type, including all basic types, custom types, entity types
and components. Collections may not contain other collections. The contained type is referred to as the collec-
tion element type. Collection elements are mapped by <el enent >, <conposi t e- el enent >, <one-t o- many>,
<many-t o- many> Of <many-t o- any>.

All collection types except set and bag have an index column - a column that maps to an array or Li st index or
vap key. Theindex of a Map may be of any basic type, an entity type or even a composite type (it may not be a
collection). The index of an array or list is aways of type i nteger. Indexes are mapped using <i ndex>,
<i ndex- many-t o- many>, <conposi t e-i ndex> Of <i ndex- many-t o- any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations trans ate to database tables.

6.2. Mapping a Collection

Hibernate 2.1 42

Collections

Collections are declared by the <set >, <l ist>, <map>, <bag>, <array> and <prinitive-array> elements.
<map> IS representative:

<map
nane="pr opert yNane"
tabl e="t abl e_nane"
schema="schena_nane"
| azy="true|fal se"
i nverse="true| fal se"
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan"
sort="unsorted| nat ural | conpar at or d ass"
or der - by="col utmm_nane asc| desc"
where="arbitrary sql where condition"
outer-join="true|fal se|] aut 0"
bat ch-si ze="N" (12)
access="fi el d| property| Cl assNane" (12)

OoooOoOoooono

<key />

<index />

<elenment />
</ map>

(|

nane the collection property name

O table (optional - defaults to property hame) the name of the collection table (not used for one-to-many
associ ations)

O scherm (optional) the name of atable schemato override the schema declared on the root element

O 1azy (optiona - defaultstof al se) enable lazy initialization (not used for arrays)

O inverse (optiona - defaultsto f al se) mark this collection as the "inverse" end of a bidirectional associa-
tion

0 cascade (optional - defaults to none) enable operations to cascade to child entities

O sort (optional) specify asorted collection with nat ural sort order, or a given comparator class

O order-by (optional, JDK1.4 only) specify atable column (or columns) that define the iteration order of
the Map, Set or bag, together with an optional asc or desc

O where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

O outer-join (optional) specify that the collection should be fetched by outer join, whenever possible. Only

one collection may be fetched by outer join per SQL SELECT.

bat ch- si ze (optional, defaultsto 1) specify a"batch size" for lazily fetching instances of this collection.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property

value.

The mapping of a List or array requires a seperate table column holding the array or list index (the i in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an
unordered Set instead. This seems to put people off who assume that Li st should just be a more convenient
way of accessing an unordered collection. Hibernate collections strictly obey the actual semantics attached to
the set, Li st and map interfaces. Li st elementsdon't just spontaneously rearrange themselves!

On the other hand, people who planned to use the Li st to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
Java collections framework lacks a Bag interface (though you can emulate it with a Li st). Hibernate lets you
map properties of type Li st or Col | ecti on With the <bag> element. Note that bag semantics are not really part
of the col I ect i on contract and they actually conflict with the semantics of the Li st contract.

Large Hibernate bags mapped with i nverse="fal se" are inefficient and should be avoided; Hibernate can't
create, delete or update rows individually, because there is no key that may be used to identify an individual
row.

Hibernate 2.1 43

Collections

6.3. Collections of Values and Many To Many Associations

A collection table is required for any collection of values and any collection of entities mapped as a many-
to-many association (the natural semantics for a Java collection). The table requires (foreign) key column(s), e-
ement column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning class is declared using a<key> element.

<key col um="col utm_nane"/ >

O col um (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <i ndex> element. For lists, this column contains se-
quential integers numbered from zero. For maps, the column may contain any values of any Hibernate type.

<i ndex
col um="col unm_nane" a
type="t ypenane" O
/>

O col um (required): The name of the column holding the collection index values.
O type (optional, defaultstoi nt eger): The type of the collection index.

Alternatively, amap may be indexed by objects of entity type. We use the <i ndex- many- t o- many> element.

<i ndex- many-t o- many
col um="col unmm_nane" ad
cl ass="C assNane" O
/>

O col um (required): The name of the foreign key column for the collection index values.
O class (required): The entity class used as the collection index.

For acollection of values, we use the <el enent > tag.

<el enent
col um="col um_nange" a
type="t ypenane" 0
/>

O col um (required): The name of the column holding the collection element values.
O type (required): Thetype of the collection element.

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a Java collection but is not usually the best relational
model.

<many-t o- nany
col um="col um_nane"
cl ass="dC assNane"
outer-join="true|fal se| aut o"

o

/>

O col um (required): The name of the element foreign key column.

O class (required): The name of the associated class.

O outer-join (optiona - defaults to aut o): enables outer-join fetching for this association when hi ber -
nate. use_outer_j oi n iSSet.

Hibernate 2.1 44

Collections

Examples:
First, aset of strings:

<set nanme="names" tabl e=" NAMES">

<key col umm="GROUPI D'/ >

<el enent col um="NAME" type="string"/>
</set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nane="si zes" tabl e="SIZES" order-by="Sl ZE ASC'>
<key col um="OMNER"/ >
<el enent col um="SI ZE' type="integer"/>

</ bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="al | "):

<array nanme="foos" tabl e="BAR FOOS" cascade="al |l ">
<key colum="BAR | D'/ >

<i ndex col um="1"/>
<many-t o- many col um="FOO_ I D' class="comillfl ow Foo"/>
</ array>

A map from string indices to dates.

<map nanme="hol i days" tabl e="hol i days" schema="dbo" order-by="hol _nane asc">
<key col um="id"/>
<i ndex col um="hol _nanme" type="string"/>
<el ement col um="hol _date" type="date"/>

</ map>

A list of components:

<l i st nane="car Conponent s" tabl e="car_conponents">
<key col um="car _id"/>
<i ndex col um="posn"/>
<conposi te-el ement class="comillfl ow. Car Conponent" >
<property nane="price" type="float"/>
<property nane="type" type="comillfl ow Conponent Type"/>
<property nanme="serial Nunber" col um="seri al _no" type="string"/>
</ conposi t e- el emrent >
</list>

6.4. One To Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model 1oses some of the semantics of Java collec-
tions:

* No null values may be contained in amap, set or list
« Aninstance of the contained entity class may not belong to more than one instance of the collection
e Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar reguires the addition of akey column and possibly an index column to the table
of the contained entity class, Bar . These columns are mapped using the <key> and <i ndex> elements described
above.

Hibernate 2.1 45

Collections

The <one- t o- many> tag indicates a one to many association.

<one-to-many cl ass="C assNane"/ >

O class (required): The name of the associated class.
Example:

<set nanme="bars">

<key colum="foo_id"/>

<one-to-many class="comillflow Bar"/>
</set>

Notice that the <one-t o- many> element does not need to declare any columns. Nor isit necessary to specify the
t abl e name anywhere.

Very Important Note: If the <key> column of a <one-t o- many> association is declared NOT NuULL, Hibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a bidirectional association with the many valued end (the set or bag) marked asi nver se="true".

6.5. Lazy Initialization

Coallections (other than arrays) may be lazily initialized, meaning they load their state from the database only
when the application needs to access it. Initialization happens transparently to the user so the application would
not normally need to worry about this (in fact, transparent lazy initialization is the main reason why Hibernate
needs its own collection implementations). However, if the application tries something like this:

S = sessions. openSession();

User u = (User) s.find("from User u where u.nanme=?", userNanme, Hi bernate.STRI NG .get(0);
Map perm ssions = u. getPerm ssions();

s.connection().commit();

s.cl ose();

I nt eger accesslLevel = (Integer) perm ssions.get("accounts"); // Error

It could be in for a nasty surprise. Since the permissions collection was not initialized when the Sessi on was
committed, the collection will never be able to load its state. The fix isto move the line that reads from the col-
lection to just before the commit.

Alternatively, use a non-lazy collection. Since lazy initialization can lead to bugs like that above, non-laziness
is the default. However, it is intended that lazy initialization be used for almost all collections, especially for
collections of entities (for reasons of efficiency).

Exceptions that occur while lazily initializing a collection are wrapped in aLazyl ni ti al i zat i onExcept i on.
Declare alazy collection using the optional | azy attribute:

<set nanme="nanes" tabl e="NAMES" |azy="true">
<key col um="group_id"/>
<el enent col um="NAME" type="string"/>
</ set>

In some application architectures, particularly where the code that accesses data using Hibernate, and the code
that usesit are in different application layers, it can be a problem to ensure that the Sessi on is open when a col-
lection isinitialized. They are two basic ways to deal with thisissue:

Hibernate 2.1 46

Collections

* In aweb-based application, a servlet filter can be used to close the Sessi on only at the very end of a user
reguest, once the rendering of the view is complete. Of course, this places heavy demands upon the correct-
ness of the exception handling of your application infrastructure. It is vitally important that the Sessi on is
closed and the transaction ended before returning to the user, even when an exception occurs during render-
ing of the view. The servlet filter has to be able to access the Sessi on for this approach. We recommend
that a Thr eadLocal variable be used to hold the current Sessi on.

* Inan application with a seperate business tier, the business logic must "prepare” all collections that will be
needed by the web tier before returning. Usually, the application calls Hi bernate.initialize() for each
collection that will be needed in the web tier (this call must occur before the session is closed) or retrieves
the collection eagerly using a query with a FETCH clause.

You can usethefilter () method of the Hibernate Session API to get the size of a collection without initializ-
ing it:

((Integer) s.filter(collection, "select count(*)").get(0)).intValue()

filter() OrcreateFilter() areaso used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection.

6.6. Sorted Collections

Hibernate supports collections implementing j ava. util. SortedMap and java. util.SortedSet. You must
specify a comparator in the mapping file:

<set nanme="al i ases" tabl e="person_aliases" sort="natural ">
<key col um="person"/>
<el ement col um="nane" type="string"/>

</set>

<map nanme="hol i days" sort="ny.custom Hol i dayConparator" |azy="true">
<key col um="year _id"/>
<i ndex col um="hol _nanme" type="string"/>
<el ement col um="hol _date type="date"/>

</ map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing
java.util . Conparator.

Sorted collections actually behave likej ava. util. TreeSet Ofjava. util. TreeMap.

6.7. Other Ways To Sort a Collection

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This solution is only available under JDK 1.4 or higher (it is implemented using Li nkedHashSet or
Li nkedHashMap). This performs the ordering in the SQL query, not in memory.

<set nane="al i ases" tabl e="person_aliases" order-by="name asc">
<key col um="person"/>
<el ement col um="name" type="string"/>

</ set>

<map name="hol i days" order-by="hol _date, hol _nane" |azy="true">
<key col um="year id"/>
<i ndex col um="hol _nanme" type="string"/>
<el ement col um="hol date type="date"/>

Hibernate 2.1 47

Collections

</ map>

Note that the value of the or der - by attributeis an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteriaat runtime using afilter().

sortedUsers = s.filter(group.getUsers(), "order by this.name");

6.8. Garbage Collection

Collections are automatically persisted when referenced by a persistent object and automatically deleted when
unreferenced. If a collection is passed from one persistent object to ancther, its elements might be moved from
one table to another. Y ou shouldn't have to worry much about any of this. Just use Hibernate's collections the
same way you use ordinary Java collections.

Note: this does not apply to collections mapped with i nver se="true", aswe will see in the next section.

6.9. Bidirectional Associations

A bidirectional association alows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Please note that Hibernate does not support bidirectional one-to-many associations with an indexed collection
(list, map or array) as the "many" end.

Y ou may specify abidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse. Heres an example of a bidirectional many-to-many
association from a class back to itself:

<cl ass nane="eg. Node" >
<id name="id" colum="id"/>

<bag nanme="accessi bl eTo" tabl e="node_access" |azy="true">
<key colum="to_node_i d"/>
<many-t o- many cl ass="eg. Node" col um="from node_i d"/>

</ bag>

<l-- inverse end -->

<bag nanme="accessi bl eFront' tabl e="node_access" inverse="true" |azy="true">
<key col um="from node_id"/>
<many-t o- many cl ass="eg. Node" col um="to_node_id"/>

</ bag>

</ cl ass>

Changes made only to the inverse end of the association are not persisted.

Y ou may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end i nver se="true".

Hibernate 2.1 48

Collections

<cl ass nane="eg. Parent">
<id name="id" colum="id"/>

<set nanme="children" inverse="true" |azy="true">
<key col um="parent _id"/>
<one-to-many class="eg. Child"/>
</ set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id" colum="id"/>

<many-t o-one nane="parent" class="eg.Parent" colum="parent _id"/>
</ cl ass>

Mapping one end of an association withi nverse="true" doesn't affect the operation of cascades.

6.10. Ternary Associations

There are two possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another isto use a vap with an association asits index.

<map nanme="contracts" |azy="true">
<key col um="enpl oyer _id"/>
<i ndex- many-t o- many col utm="enpl oyee_i d" cl ass="Enpl oyee"/>
<one-to-many col um="contract _id" class="Contract"/>

</ map>

<map nanme="connections" |azy="true">
<key col um="nodel_id"/>
<i ndex- many-t o- many col utmm="node2_i d" cl ass="Node"/>
<many-t o- many col um="connection_i d" cl ass="Connecti on"/>
</ map>

6.11. Heterogeneous Associations

The <many-t o-any> and <i ndex- many-t o- any> elements provide for true heterogeneous associations. These
mapping el ements work in the same way as the <any> element - and should also be used rarely, if ever.

6.12. Collection Example

The previous sections are pretty confusing. So letslook at an example. This class:

package eg;
import java.util. Set;

public class Parent {
private long id;
private Set children

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

Hibernate 2.1 49

Collections

has a collection of eg. chi | d instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:;

<hi ber nat e- mappi ng>

<cl ass nane="eg. Parent">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<set name="children" |azy="true">
<key col um="parent_id"/>
<one-to-nmany cl ass="eg. Child"/>
</set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id">
<generator class="sequence"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use bidirectional one-to-many association (see the Parent / Child Relationship section
below).

<hi ber nat e- mappi ng>

<cl ass name="eg. Parent" >
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<set name="children" inverse="true" |azy="true">
<key col um="parent _id"/>
<one-to-many cl ass="eg. Child"/>
</ set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id">
<generator cl ass="sequence"/>

</id>

<property nanme="nane"/>

<many-to-one nanme="parent" class="eg.Parent" colum="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

create table parent (id bigint not null primary key)
create table child (id bigint not nul
primary key,
nane var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Hibernate 2.1 50

Collections

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng>

<cl ass nane="eg. Parent">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<set name="children" lazy="true" table="childset">
<key col um="parent _id"/>
<many-t o- many cl ass="eg. Child" colum="child_id"/>
</set>
</ cl ass>

<cl ass nanme="eg. Chil d">
<id name="id">
<generator class="sequence"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions;

create table parent (id bigint not null primary key)

create table child (id bigint not null primry key, name varchar(255))

create table childset (parent_id bigint not null, child_id bigint not null, primary key (parent_id,
alter table childset add constraint childsetfkO (parent_id) references parent

alter table childset add constraint childsetfkl (child_id) references child

6.13. <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far al map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, Hibernate provides a (dightly experimental) feature that allows you to map many to
many associations and collections of valuesto atable with a surrogate key.

The <i dbag> element letsyou map aLi st (or Col | ecti on) with bag semantics.

<i dbag nanme="|overs" tabl e="LOVERS" |azy="true">
<col l ection-id colum="ID" type="long">
<generator class="hilo"/>
</coll ection-id>
<key col unm="PERSONL"/ >
<many-t o- many col um="PERSON2" cl ass="eg. Person" outer-join="true"/>
</i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. Hibernate does not provide any mechanism to discover the surrogate key value
of aparticular row, however.

Note that the update performance of an <i dbag> is much better than a regular <bag>! Hibernate can locate indi-
vidual rows efficiently and update or delete them individually, just like alist, map or set.

In the current implementation, thei dent i t y identifier generation strategy is not supported.

Hibernate 2.1 51

Chapter 7. Components

The notion of a component isre-used in several different contexts, for different purposes, throughout Hibernate.

7.1. As Dependent Objects

A component is a contained object persisted to the same table as its owner, ie. it is a value type, not an entity.
The term "component” refers to the object-oriented notion of composition (not to architecture-level compo-
nents). For example, you might model a person like this:

public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}

private void setKey(String key) {
t hi s. key=key;

}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name get Nanme() ({
return nane;

}

public void set Nane(Nanme nane) ({
thi s. nane = nane;

public class Name {
char initial;
String first;
String |ast;
public String getFirst() {
return first;
}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return | ast;

}

voi d setlLast(String last) {
this.last = | ast;

public char getlnitial () {
return initial;

}

void setlnitial (char initial) {
this.initial = initial;

}

Now Narme may be persisted as a component of Person. Notice that Narme defines getter and setter methods for its
persistent properties, but doesn't need to declare any interfaces or identifier fields.

Hibernate 2.1 52

Components

Our XML mapping would look like:

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid. hex"/>

</id>
<property nane="birthday" type="date"/>
<conmponent name="Nane" cl ass="eg. Name"> <!-- class attribute optional -->

<property nane="initial"/>
<property nanme="first"/>
<property nane="last"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first andl ast.

Like al value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to sup-
port avery fine-grained object model.

The <conponent > element alows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">
<id name="Key" colum="pid" type="string">
<generator class="uuid. hex"/>
</id>
<property nane="birthday" type="date"/>
<conponent nanme="Nanme" cl ass="eg. Nane">
<par ent nanme="nanedPerson"/> <!-- reference back to the Person -->
<property nane="initial"/>
<property nane="first"/>
<property nane="|ast"/>
</ conponent >
</ cl ass>

7.2. In Collections

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el ement > tag with a<conposi t e- el enent > tag.

<set nanme="soneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposi te-el enent cl ass="eg. Nane"> <!-- class attribute required -->
<property nane="initial"/>
<property nane="first"/>
<property nane="last"/>
</ conposi t e- el enent >
</set>

Note: if you define a set of composite elements, it is very important to implement equal s() and hashCode()
correctly.

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. This is a pretty exotic case - a collection of compo-

Hibernate 2.1 53

Components

nents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
Javamodel is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >. Hi-
bernate has to use each columns value to identify a record when deleting objects (there is no separate primary
key column in the composite element table), which is not possible with null values. Y ou have to either use only
not-null propertiesin a composite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A specia case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from or der to | t emwhere pur chaseDat e, pri ce and quan-
tity are properties of the association:

<cl ass name="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. Purchase" >
<property name="purchaseDate"/>
<property nane="price"/>
<property name="quantity"/>
<many-to-one nane="iten'' class="eg.lten/> <!-- class attribute is optional -->
</ conposi t e- el enent >
</ set>
</ cl ass>

Even ternary (or quaternary, etc) associations are possible:

<cl ass nane="eg.Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. O derLi ne">
<many-t o- one name="purchaseDetails cl ass="eg. Purchase"/>
<many-to-one nanme="itent class="eg.lten/>
</ conposi t e- el emrent >
</set>
</cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. As a Map Index

The <conposi t e-i ndex> element lets you map a component class as the key of a vap. Make sure you override
hashCode() and equal s() correctly on the component class.

7.4. As Composite Identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-
ments:

e Itmustimplementjava.io. Serializabl e.
e It must re-implement equal s() and hashCode() , consistently with the database's notion of composite key

equality.

You can't usean | dentifier Generat or t0 generate composite keys. Instead the application must assign its own

Hibernate 2.1 54

Components

identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved- val ue to dis-
tinguish between newly instantiated instances and instances saved in a previous session. Y ou should instead im-
plement I nt ercept or. i sUnsaved() if you wish to use saveOr Updat e() Or cascading save/ update.

Use the <conposi t e- i d> tag (same attributes and elements as <conponent >) in place of <i d>. Declaration of a
composite identifier classlooks like:

<cl ass nanme="eg. Foo" tabl e"FOOS">
<conposite-id name="conpld" cl ass="eg. FooConpositel D'>
<key- property nane="string"/>
<key- property name="short"/>
<key- property nane="date" colum="date_ " type="date"/>
</ conposi te-id>
<property nane="nane"/>

</ cl ass>

Now, any foreign keys into the table FOos are al'so composite. Y ou must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-t o- one nane="foo" cl ass="eg. Foo">

<I-- the "class" attribute is optional, as usual -->
<col um nane="foo_string"/>
<col um name="foo_short"/>
<col um nane="foo_date"/>

</ many-t o- one>

This new <col um> tag is aso used by multi-column custom types. Actually it is an alternative to the col um at-
tribute everywhere. A collection with elements of type Foo would use:

<set name="foos">
<key col um="owner _i d"/>
<many-t o- many cl ass="eg. Foo" >
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo_date"/>
</ many-t o- many>
</set>

On the other hand, <one- t o- many>, as usual, declares no columns.
If Foo itself contains collections, they will also need a composite foreign key.

<cl ass nanme="eg. Foo" >

<set name="dates" |azy="true">
<key> <lI-- a collection inherits the conposite key type -->
<col um nanme="foo_string"/>
<col um nane="foo_short"/>
<col um nane="f oo_date"/ >
</ key>
<el ement col um="foo_date" type="date"/>
</set>
</ cl ass>

7.5. Dynamic components

Y ou may even map a property of type Map:

Hibernate 2.1 55

Components

<dynam c- conponent name="userAttri butes">

<property nane="foo" col um="FQOO'/>

<property nane="bar" col um="BAR'/>

<many-t o- one name="baz" cl ass="eg. Baz" col um="BAZ"/>
</ dynam c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the bean at deployment time, just by editing the
mapping document. (Runtime manipulation of the mapping document is also possible, using a DOM parser.)

Hibernate 2.1 56

Chapter 8. Manipulating Persistent Data

8.1. Creating a persistent object

An object (entity instance) is either transient or persistent with respect to a particular Sessi on. Newly instanti-
ated objects are, of course, transient. The session offers services for saving (ie. persisting) transient instances:

DonmesticCat fritz = new DonmesticCat();
fritz.setCol or(Col or. d NGER) ;
fritz.setSex('M);

fritz.setNane("Fritz");

Long generatedld = (Long) sess.save(fritz);

Donesti cCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk. set Sex(' F');

pk. set Name(" PK") ;

pk. setKittens(new HashSet());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

The single-argument save() generates and assigns a unique identifier to fritz. The two-argument form at-
tempts to persist pk using the given identifier. We generally discourage the use of the two-argument form since
it may be used to create primary keys with business meaning. It is most useful in certain specia situations like
using Hibernate to persist a BMP entity bean.

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never arisk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you save() the objectsin the wrong order.

8.2. Loading an object

Thel oad() methods of Sessi on give you away to retrieve a persistent instance if you already know its identi-
fier. One version takes a class object and will load the state into a newly instantiated object. The second version
allows you to supply an instance into which the state will be loaded. The form which takes an instance is partic-
ularly useful if you plan to use Hibernate with BMP entity beans and is provided for exactly that purpose. Y ou
may discover other uses. (DIY instance pooling etc.)

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
| ong pkld = 1234;
DonesticCat pk = (DomesticCat) sess.load(Cat.class, new Long(pkld));

Cat cat = new DonesticCat();

/1 load pk's state into cat

sess. | oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Note that 1 oad() will throw an unrecoverable exception if there is no matching database row. If the class is
mapped with a proxy, 1 oad() returns an object that is an uninitialized proxy and does not actualy hit the
database until you invoke a method of the object. This behaviour is very useful if you wish to create an associa-
tion to an object without actually loading it from the database.

Hibernate 2.1 57

Manipulating Persistent Data

If you are not certain that a matching row exists, you should use the get () method, which hits the database im-
mediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat ();

sess. save(cat, id);

}

return cat;

You may also load an objects using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
Hibernate LockModes.

Cat cat = (Cat) sess.get(Cat.class, id, LockMyde. UPGRADE);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using ther ef resh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQ | NSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

8.3. Querying

If you don't know the identifier(s) of the abject(s) you are looking for, usethefind() methods of Sessi on. Hi-
bernate supports a simple but powerful object oriented query language.

List cats = sess.find(
"from Cat as cat where cat.birthdate = ?",
dat e,
H ber nat e. DATE

)

Li st mates = sess. find(
"select mate fromCat as cat join cat.mate as mate " +
"where cat.nane = ?",
nane,
Hi ber nat e. STRI NG

)
List cats = sess.find("from Cat as cat where cat.nate.bithdate is null");

Li st noreCats = sess. find(
"fromCat as cat where " +
"cat.name = 'Fritz' or cat.id = ? or cat.id = ?",
new oject[] { idl, id2 },
new Type[] { Hi bernate. LONG Hi bernate. LONG }
DE

Li st mates = sess. find(
"from Cat as cat where cat.mate = ?",
izi,
Hi bernate. entity(Cat.cl ass)

)

Li st problens = sess. find(
"from Gol dFi sh as fish " +
"where fish.birthday > fish. deceased or fish.birthday is null"

DE

Hibernate 2.1 58

Manipulating Persistent Data

The second argument to fi nd() accepts an object or array of objects. The third argument accepts a Hibernate
type or array of Hibernate types. These given types are used to bind the given objects to the ? query placehold-
ers (which map to IN parameters of a JDBC Pr epar edst at ement). Just as in JDBC, you should use this binding
mechanism in preference to string manipulation.

The Hi ber nat e class defines a number of static methods and constants, providing access to most of the built-in
types, asinstances of net . sf. hi ber nat e. t ype. Type

If you expect your query to return a very large number of objects, but you don't expect to use them all, you
might get better performance from the i terat e() methods, which return aj ava. util.Iterator. The iterator
will load objects on demand, using the identifiers returned by aninitial SQL query.

/] fetch ids
Iterator iter = sess.iterate("fromeg. Qux g order by q.likeliness");
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/1 sonmething we coul dnt express in the query
i f (qux.calcul ateConplicatedAl gorithm()) {
/1 delete the current instance
iter.remove();
/1 dont need to process the rest
br eak;

Unfortunately j ava. uti | . 1terat or does not declare any exceptions, so any SQL or Hibernate exceptions that
occur arewrapped inalazyl nitial i zati onExcept i on (asubclass of Runt i meExcepti on).

The iterate() method also performs better if you expect that many of the objects are already loaded and
cached by the session, or if the query results contain the same objects many times. (When no data is cached or
repeated, fi nd() isamost aways faster.) Heres an example of a query that should be called usingi terate():

Iterator iter = sess.iterate(
"sel ect customer, product " +
"from Custoner customer, " +
"Product product " +
"join custoner. purchases purchase " +
"where product = purchase. product"

Calling the previous query using fi nd() would return a very large JDBC Resul t Set containing the same data
many times.

Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

Iterator foosAndBars = sess.iterate(
"sel ect foo, bar from Foo foo, Bar bar " +
"where bar.date = foo.date"

)

while (foosAndBars. hasNext ()) {
bject[] tuple = (bject[]) foosAndBars. next();
Foo foo = tuple[0]; Bar bar = tuple[l];

8.3.1. Scalar queries

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.

Hibernate 2.1 59

Manipulating Persistent Data

Properties or aggregates are considered "scalar” results.

Iterator results = sess.iterate(

"select cat.color, mn(cat.birthdate), count(cat) fromCat cat " +
"group by cat.color"
)
while (results.hasNext()) {
bject[] row = results. next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
I nteger count = (Integer) row 2];

Iterator iter = sess.iterate(
"sel ect cat.type, cat.birthdate, cat.nane from DonesticCat cat"
I

List list = sess.find(
"sel ect cat, cat.mate.nane from DonesticCat cat"
DE

8.3.2. The Query interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should obtain an instance of net . sf. hi ber nat e. Query:

Query g = sess.createQuery("from DonmesticCat cat");
g. set Fi rst Resul t (20) ;

g. set MaxResul t s(10) ;

List cats = qg.list();

You may even define a hamed query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query nane="eg. Donesti cCat. by. nane. and. m ni num wei ght " ><! [CDATA[
from eg. DonesticCat as cat
where cat.nanme = ?
and cat.weight > ?
] 1></query>

Query g = sess. get NanmedQuery("eg. Donesti cCat . by. nane. and. mi ni nrum wei ght");
g.setString(0, nane);

g.setInt(1, mnWight);

List cats = qg.list();

The query interface supports the use of named parameters. Named parameters are identifiers of the form : nanme
in the query string. There are methods on Query for binding values to named parameters or JDBC-style ? pa-
rameters. Contrary to JDBC, Hibernate numbers parameters from zero. The advantages of named parameters
are:

* named parameters are insensitive to the order they occur in the query string
e they may occur multiple times in the same query
e they are self-documenting

/I naned paraneter (preferred)
Query g = sess.createQuery("from DonmesticCat cat where cat.nanme = :nanme");
g.setString("nanme", "Fritz");
Iterator cats = qg.iterate();

Hibernate 2.1 60

Manipulating Persistent Data

[/ positional paraneter

Query g = sess.createQuery("from DonesticCat cat where cat.nane = ?");
g.setString(0, "lzi");

Iterator cats = qg.iterate();

/I naned paranmeter |ist

Li st nanes = new ArraylList();

nanes. add("1zi");

nanes. add("Fritz");

Query g = sess.createQuery("from DonmesticCat cat where cat.nane in (:nanmesList)");
g. set Paranet er Li st (" nanesLi st", nanes);

List cats = q.list();

8.3.3. Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface may be used to obtain a Scrol -
| abl eResul t s which allows more flexible navigation of the query results.

Query g = sess.createQuery("select cat.name, cat from DonesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = q.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical |ist of cats by nane
firstNanesOf Pages = new Arraylist();
do {

String nane = cats.getString(0);
first NanesCOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1 Now get the first page of cats

pagetf Cats = new Arraylist();

cats. beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) pageO Cats.add(cats.get(1l));

The behaviour of scroll () is Similar to iterate(), except that objects may be initialized selectively by
get (i nt), instead of an entire row being initialized at once.

8.3.4. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to t hi s, meaning the current collection element.

Col I ection blackKittens = session.filter(
pk.getKittens(), "where this.color = ?", Col or.BLACK, Hi bernate.enun(Col or.cl ass)
)
The returned collection is considered a bag.

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

Col | ection bl ackKittenMates = session.filter(
pk.getKittens(), "select this.mte where this.color = eg. Col or. BLACK"
)

Hibernate 2.1 61

Manipulating Persistent Data

8.3.5. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented API,
rather than embedding strings in their Java code. For these people, Hibernate provides an intuitive Criteri a
query API.

Criteria crit = session.createCriteria(Cat.class);
crit.add(Expression.eq("color", eg.Color.BLACK));
crit.set MaxResul ts(10);
List cats = crit.list();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with Hibernate.
This API is also more extensible than HQL. Applications might provide their own implementations of the cri -
terion interface.

8.3.6. Queries in native SQL

You may expressaquery in SQL, using creat eSQLQuer y() . You must enclose SQL aliasesin braces.

Li st cats = session. createSQLQuery(
"SELECT {cat.*} FROM CAT AS {cat} WHERE ROANUM<10",
"cat”,
Cat.cl ass

). list();

Li st cats = session. creat eSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, {cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS
"FROM CAT AS {cat} WHERE ROANUM<10",
“cat",
Cat . cl ass

). list()

SQL queries may contain named and positional parameters, just like Hibernate queries.

8.4. Updating objects saved or loaded in the current session

Persistent instances (ie. objects loaded, saved, created or queried by the Sessi on) may be manipulated by the
application and any changes to persistent state will be persisted when the Sessi on is flushed (see "flushing" be-
low). So the most straightforward way to update the state of an object isto | oad() it, and then manipulate it di-
rectly.

DonesticCat cat = (DonesticCat) sess.load(Cat.class, new Long(69));
cat.set Name(" PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming modéd is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an ater-
nate approach.

8.5. Updating objects saved or loaded in a previous session

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a hew transaction. (Applications that use this kind of approach in a high-concurrency envi-

Hibernate 2.1 62

Manipulating Persistent Data

ronment usually use versioned data to ensure transaction isolation.) This approach requires a slightly different
programming model to the one described in the last section. Hibernate supports this model by providing the
method Sessi on. updat e() .

/1 in the first session

Cat cat = (Cat) firstSession.|load(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

/1 in a higher tier of the application
cat.set Mate(potential Mate);

// later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update nate

If the cat with identifier cat | d had already been loaded by secondSessi on when the application tried to update
it, an exception would have been thrown.

The application should individually updat e() transient instances reachable from the given transient instance if
and only if it wants their state also updated. (Except for lifecycle objects.)

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or update the persistent state associated with its current identifier. The saveOr Updat e() method
now implements this functionality. Hibernate distinguishes "new" (unsaved) instances from "existing" (saved or
loaded in a previous session) instances by the value of their identifier property. The unsaved- val ue attribute of
the <i d> mapping specifies which identifier values should be interpreted as representing a"new" instance.

<id name="id" type="long" colum="uid" unsaved-val ue="null ">
<generator class="hilo"/>
</id>

The allowed values of unsaved- val ue are:

e any - dwayssave

* none - always update

* null -savewhenidentifier isnull (thisisthe default)

« valididentifier value - save when identifier is null or the given value

/1 in the first session
Cat cat = (Cat) firstSession.|load(Cat.class, catlD);

/1 in a higher tier of the application
Cat mate = new Cat();
cat.setMate(nmate);

/1 later, in a new session
secondSessi on. saveOr Updat e(cat) ; /1 update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (mate has a null id)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use updat e() or
saveOr Updat e() . Some whole applications will never use either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

» the application loads an object in the first session
» theobject is passed up to the Ul tier
« some modifications are made to the object

Hibernate 2.1 63

Manipulating Persistent Data

» theobject is passed back down to the business logic tier
» the application persists these modifications by calling updat e() in asecond session

save(Or Updat e() doesthe following:

e if the object isaready persistent in this session, do nothing

« if the object has no identifier property, save() it

» if the object's identifier matches the criteria specified by unsaved- val ue, save() it

» if another object associated with the session has the same identifier, throw an exception

8.6. Reassociating objects saved or loaded in a previous ses-
sion

Thel ock() method allows the application to reassociate an unmodified object with a new session.

/ljust reassoci ate:

sess.lock(fritz, LockMdde. NONE);

//do a version check, then reassoci ate:

sess. |l ock(izi, LockMbde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMbde. UPGRADE) ;

8.7. Deleting persistent objects

Sessi on. del et e() Will remove an object's state from the database. Of course, your application might still hold
areferencetoit. Soit's best to think of del et e() asmaking a persistent instance transient.

sess. del ete(cat);

Y ou may also delete many objects at once by passing a Hibernate query string to del et e() .

You may now delete objects in any order you like, without risk of foreign key constraint violations. Of course,
it isstill possible to violate aNOT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

8.8. Graphs of objects

To save or update all objectsin agraph of associated objects, you must either

* save(),saveOr Update() Or updat e() each individual object OR
e map associated objectsusing cascade="al | * Or cascade="save- updat e".

Likewise, to delete all abjectsin agraph, either

e delete() eachindividual object OR
e map associated objectsusing cascade="al | *, cascade="al | - del et e- or phan" Of cascade="del et e" .

Recommendation:

« |If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | .
e Otherwise, save() and del ete() it explicitly from application code. If you really want to save yourself

Hibernate 2.1 64

Manipulating Persistent Data

some extratyping, use cascade="save- updat e" and explicit del et e() .

8.8.1. Lifecycle objects

Mapping an association (many-to-one, or collection) with cascade="al | * marks the association as a parent /
child style relationship where save / update / deletion of the parent results in save / update / deletion of the
child(ren). Futhermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor isincomplete, however. A child which becomes unreferenced by its parent is not automati-
cally deleted, except in the case of a <one-t o- many> association mapped with cascade="al | - del et e- or phan".
The precise semantics of cascading operations are as follows:

o If aparentissaved, al children are passed to saveOr Updat e()

e |f aparentispassedtoupdat e() Or saveOr Updat e() , all children are passed to saveOr Updat e()

e If atransient child becomes referenced by a persistent parent, it is passed to saveOr Updat e()

» |f aparentisdeleted, all children are passed to del et e()

« If atransient child is dereferenced by a persistent parent, nothing special happens (the application should
explicitly delete the child if necessary) unless cascade="al | - del et e- or phan", in which case the "or-
phaned" child is deleted.

8.8.2. Persistence by Reachability

Hibernate does not fully implement "persistence by reachability”, which would imply (inefficient) persistent
garbage collection. However, due to popular demand, Hibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save- updat e" behave
in thisway. If you wish to use this approach throughout your application, its easier to specify the def aul t - cas-
cade attribute of the <hi ber nat e- mappi ng> €lement.

8.9. Flushing

From time to time the Sessi on will execute the SQL statements needed to synchronize the JDBC connection's
state with the state of objects held in memory. This process, flush, occurs by default at the following points

+ from someinvocationsof find() oriterate()
e fromnet. sf. hibernate. Transaction. comit ()
¢ from Session. f1 ush()

The SQL statements are issued in the following order

all entity insertions, in the same order the corresponding objects were saved using Sessi on. save()

al entity updates

all collection deletions

all collection element deletions, updates and insertions

al collection insertions

al entity deletions, in the same order the corresponding objects were deleted using Sessi on. del et e()

ok wbhNE

(An exception isthat objects using nat i ve I|D generation are inserted when they are saved.)

Except when you explicity 1 ush(), there are absolutely no guarantees about when the Sessi on executes the
JDBC cadlls, only the order in which they are executed. However, Hibernate does guarantee that the Ses-
si on. find(..) methodswill never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushMde class defines

Hibernate 2.1 65

Manipulating Persistent Data

three different modes. This is most useful in the case of "readonly” transactions, where it might be used to
achieve a (very) slight performance increase.

sess = sf.openSession();

Transaction tx = sess. begi nTransacti on();

sess. set Fl ushMode(Fl ushMbde. COM T); //allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);

i zi .setNane(iznizi);

/| execute sonme queries....

sess.find("fromCat as cat left outer join cat.kittens kitten"); //change to izi is not flushed!!

tx.commit(); //flush occurs

8.10. Ending a Session

Ending a session involves four distinct phases:

» flush the session

e commit the transaction
* closethe session

¢ handle exceptions

8.10.1. Flushing the session

If you happen to be using the Transact i on API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call Sessi on. flush() to ensure that al
changes are synchronized with the database.

8.10.2. Committing the transaction
If you are using the Hibernate Tr ansact i on API, thislookslike:
tx.commit(); // flush the Session and commit the transaction

If you are managing JDBC transactions yourself you should manually comi t () the JIDBC connection.

sess. flush();
sess. connection().commt(); // not necessary for JTA datasource

If you decide not to commit your changes:

tx.roll back(); // rollback the transaction

or:

/1 not necessary for JTA datasource, inportant otherw se
sess. connection().roll back();

8.10.3. Closing the session

A call to Sessi on. cl ose() marksthe end of a session. The main implication of cl ose() isthat the JDBC con-
nection will be relinquished by the session.

tx.commt();

Hibernate 2.1 66

Manipulating Persistent Data

Sess

Sess
Sess
Sess

.close();

.flush();
.connection().commit();
.close();

/'l not necessary for JTA datasource

If you provided your own connection, cl ose() returns areference to it, so you can manually closeit or return it
to the pool. Otherwisecl ose() returnsit to the pool.

8.10.4. Exception handling

If the Sessi on throws an exception (including any SQLExcept i on), you should immediately rollback the trans-
action, call Session. cl ose() and discard the Sessi on instance. Certain methods of Sessi on will not leave the
session in a consistent state.

The following exception handling idiom is recommended:

Sessi on sess =
Transaction tx

try

}

nul | ;

{

factory. openSession();

tx = sess. begi nTransaction();

/! do sone work

tx.commt();

catch (Exception e) {
if (tx!'=null) tx.rollback();

throw e;
}
finally {
sess. cl ose();
}

Or, when manually managing JDBC transactions:

Sessi on sess = factory. openSession();

try

}

{

/1 do sonme work

sess. flush();

sess. connection().commt();

catch (Exception e) {
sess. connection().roll back();

throw e;
}
finally {
sess. cl ose();
}

Or, when using a datasource enlisted with JTA:

User Transaction ut = ;
Sessi on sess = factory. openSession();

try

}

{

/1 do sone work

sess. fl ush():

catch (Exception e) {

ut . set Rol | backOnl y();
throw e;

Hibernate 2.1

67

Manipulating Persistent Data

finally {
sess. cl ose();
}

8.11. Interceptors

The nt er cept or interface provides callbacks from the session to the application alowing the application to in-
spect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following I nt er cept or automatically
setsthe cr eat eTi mest anp When an Audi t abl e is created and updates the | ast Updat eTi nmest anp property when
an Audi t abl e is updated.

package net.sf. hi bernate.test;

import java.io.Serializable;
i mport java.util.Date;
import java.util.lterator;

i mport net.sf.hibernate.Interceptor;
i mport net.sf.hibernate.type. Type;

public class Auditlnterceptor inplenments Interceptor, Serializable {

private int updates;
private int creates;

public void onDel ete(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng

}

publ i c bool ean onFl ushDirty(Cbject entity,
Serializable id,
Ooj ect[] currentState,
Cbj ect[] previousState,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNames.length; i++) {
if ("lastUpdateTi nestanp". equal s(propertyNames[i])) {
currentState[i] = new Date();
return true;

}
}

return fal se;

}

publ i c bool ean onLoad(Obj ect entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
return false;

}

publ i c bool ean onSave((Obj ect entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {

Hibernate 2.1 68

Manipulating Persistent Data

if (entity instanceof Auditable) {
creat es++;
for (int i=0; i<propertyNames.length; i++) {
if ("createTimestanmp". equal s(propertyNanes[i])) {
state[i] = new Date();
return true;

}
}
}
return false;
}
public void postFlush(lterator entities) {
Systemout.println("Creations: " + creates + ", Updates: " + updates);
}
public void preFlush(lterator entities) {
updat es=0;
creat es=0;

The interceptor would be specified when a session is created.

Session session = sf.openSession(new Auditlnterceptor());

8.12. Metadata API

Hibernate requires a very rich meta-level model of al entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use Hibernate's metadata to implement
a"smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types) and
which should not (eg. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the d assMet adat a and Col | ect i onMet adat a interfaces and the Type hierar-
chy. Instances of the metadata interfaces may be obtained from the Sessi onFact ory.

Cat fritz = ;
Long id = (Long) catMeta.getldentifier(fritz);
Cl assMet adat a cat Meta = sessionfactory. get 0 assMet adat a(Cat . cl ass) ;
oj ect[] propertyVal ues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanmes = cat Meta. get PropertyNanes();
Type[] propertyTypes = cat Meta. get PropertyTypes();
/1l get a Map of all properties which are not collections or associations
[/ TODO what about conponents?
Map nanedVal ues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {
if (!'propertyTypes[i].isEntityType() && !propertyTypes[i].

].isColl ectionType()) {
nanedVal ues. put (propertyNanes[i], propertyValues[i]);
}

Hibernate 2.1 69

Chapter 9. Parent/Child Relationships

One of the very first things that new users try to do with Hibernate isto model a parent / child type relationship.
There are two different approaches to this. For various reasons the most convenient approach, especially for
new users, isto model both Par ent and chi | d as entity classes with a <one- t o- many> association from Par ent

to ¢hi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el enent >.) Now, it turns out that
default semantics of a one to many association (in Hibernate) are much less close to the usual semantics of a
parent / child relationship than those of a composite element mapping. We will explain how to use a bidirec-
tional one to many association with cascades to model a parent / child relationship efficiently and elegantly. It's
not at all difficult!

9.1. A note about collections

Hibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behaviour is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behaviour is that adding an entity to a collection merely creates alink between the two enti-
ties, while removing it removes the link. Thisis very appropriate for all sorts of cases. Where it is not appropri-
ate at al is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

9.2. Bidirectional one to many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="children">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

If we were to execute the following code

Parent p = ;

Child ¢ = new Child();
p. get Chi l dren().add(c);
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

Hibernate 2.1 70

Parent/Child Relationships

e an | NSERT to create the record for ¢
* an UPDATE to create thelink fromp toc
Thisisnot only inefficient, but also violates any NOT NULL constraint on the par ent _i d column.

The underlying cause is that the link (the foreign key par ent _i d) from p to c is not considered part of the state
of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the link part of the
Chi | d mapping.

<many-t o-one nane="parent" col um="parent _id" not-null="true"/>

(We aso need to add the par ent property to the chi | d class.)

Now that the cni | d entity is managing the state of the link, we tell the collection not to update the link. We use
thei nver se attribute.

<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

The following code would be used to add anew chi I d

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

c.setParent (p);

p. get Chi l dren().add(c);

sessi on. save(c);

session. flush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an addchi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

Now, the code to add achi | d looks like

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

sessi on. save(c);

session. flush();

9.3. Cascades

The explicit call to save() isstill annoying. We will address this by using cascades.

<set nane="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set >

Hibernate 2.1 71

Parent/Child Relationships

This simplifies the code above to

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

session. flush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and all its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
sessi on. del ete(p);
session. flush();

However, this code

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chi l dren().renove(c);

c.setParent(null);

session. flush();

will not remove ¢ from the database; it will ony remove the link to p (and cause a NOT NULL constraint viola-
tion, in this case). Y ou need to explicitly del et e() the cni | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

session. del ete(c);

session. flush();

Now, in our case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set name="children" inverse="true" cascade="all -del et e-orphan">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>

</set>

Note: even though the collection mapping specifiesi nverse="t rue", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply call set Parent ().

9.4. Using cascading updat e()

Suppose we loaded up a Par ent in one Sessi on, Made some changes in a Ul action and wish to persist these
changesin anew Session (by calling updat e()). The Par ent will contain a collection of childen and, since cas-
cading update is enabled, Hibernate needs to know which children are newly instantiated and which represent
existing rows in the database. L ets assume that both Par ent and chi | d have (synthetic) identifier properties of
typej ava. | ang. Long. Hibernate will use the identifier property value to determine which of the children are
new.

The unsaved- val ue attribute is used to specify the identifier value of a newly instantiated instance. unsaved-
val ue defaults to "null”, which is perfect for a Long identifier type. If we would have used a primitive identiti-
fier property, we would need to specify

<id name="id" type="long" unsaved-val ue="0">

Hibernate 2.1 72

Parent/Child Relationships

for the cnhi | d mapping. (There is also an unsaved- val ue attribute for version and timestamp property map-
pings.)

The following code will update par ent and chi I d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
parent . addChi | d(chil d);

Child newChild = new Child();

par ent . addChi | d(newChi | d) ;

sessi on. updat e(parent);

session. flush();

Well, thats all very well for the case of a generated identifier, but what about assigned identifiers and composite
identifiers? This is more difficult, since unsaved- val ue can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give Hibernate a hint; either

¢ define unsaved-val ue="nul | " Or unsaved-val ue="negative" ON @ <versi on> Of <ti mestanp> property
mapping for the class.

e set unsaved-val ue="none" and explicitly save() newly instantiated children before calling up-
dat e(parent)

e set unsaved-val ue="any" and explicitly update() previously persistent children before calling up-
dat e(parent)

none isthe default unsaved- val ue for assigned and composite identifiers.

There is one further possibility. Thereisanew I nt er cept or method named i sunsaved() which lets the appli-
cation implement its own strategy for distinguishing newly instantiated objects. For example, you could define
abase class for your persistent classes.

public class Persistent {
private bool ean _saved = fal se;
public void onSave() ({
_saved=true;
}

public void onLoad() {
_saved=true;

publ i c bool ean isSaved() {
return _saved;
}

(The saved property is non-persistent.) Now implement i sunsaved(), adong with onLoad() and onSave() as
follows.

publ i c Bool ean i sUnsaved(Cbject entity) {
if (entity instanceof Persistent) {
return new Bool ean(!((Persistent) entity).isSaved());

}
el se {

return nul | ;
}

}

publ i ¢ bool ean onLoad((Chject entity,
Serializable id,
oj ect[] state,

Hibernate 2.1 73

Parent/Child Relationships

String[] propertyNanes,
Type[] types) {

if (entity instanceof Persistent) ((Persistent) entity).onLoad();
return false;

}

publ i ¢ bool ean onSave((bject entity,
Serializable id,
bj ect[] state,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Persistent) ((Persistent) entity).onSave();
return false;

9.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most Hibernate applications use the parent / child pattern in many places.

We mentioned an dternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite el ements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surro-
gate primary key, using an <i dbag> mapping.)

Hibernate 2.1 74

Chapter 10. Hibernate Query Language

Hibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much like
SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inheritence,
polymorphism and association.

10.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but net . sf. hi ber nat e. eg. FOO IS NOt net . sf. hi ber nat e. eg. Foo and f oo. bar Set is not
f 00. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

10.2. The from clause

The simplest possible Hibernate query is of the form:

from eg. Cat

which simply returns al instances of the class eg. Cat .

Most of the time, you will need to assign an alias, since you will want to refer to the cat in other parts of the
query.

fromeg. Cat as cat

This query assignsthe alias cat to cat instances, so we could use that alias later in the query. The as keyword
isoptional; we could also write:

fromeg. Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Fornul a, Paraneter
fromFornmula as form Paranmeter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. donest i cCat).

10.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

fromeg. Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromeg.Cat as cat left join cat.mate.kittens as kittens

Hibernate 2.1 75

Hibernate Query Language

fromFormula formfull join form paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e J|eft outer join

® right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

fromeg. Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

In addition, a "fetch" join alows associations or collections of values to be initialized along with their parent
objects, using asingle select. Thisis particularly useful in the case of a collection.

fromeg. Cat as cat
inner join fetch cat.mte
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed viathe parent object.

Note that, in the current implementation, only one collection role may be fetched in a query. Note also that the
f et ch construct may not be used in queries called using scrol | () oriterate(). Finaly, notethat full join
fetchandright join fetch arenot meaningful.

10.4. The select clause

Thesel ect clause picks which objects and properties to return in the query result set. Consider:

sel ect mate
fromeg. Cat as cat
inner join cat.mate as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

select cat.mate from eg. Cat cat

Y ou may even select collection elements, using the specia el ement s function. The following query returns all
kittens of any cat.

sel ect elenments(cat.kittens) from eg.Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.name from eg. DonesticCat cat
where cat.nanme like '"fri%

sel ect cust.nane.firstNanme from Custoner as cust

Hibernate 2.1 76

Hibernate Query Language

Queries may return multiple objects and/or properties as an array of type j ect []

sel ect nother, offspr, mate.nanme
from eg. Donesti cCat as not her
inner join nother.mate as mate
| eft outer join nother.kittens as offspr

or as an actual typesafe Java object

sel ect new Fami | y(nother, mate, offspr)
from eg. Donesti cCat as not her

join nother.mate as nate

left join nother.kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.

10.5. Aggregate functions

Queryies may even return aggregate functions of properties.

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)
fromeg. Cat cat

Collections may also appear inside aggregate functionsin the sel ect clause.

sel ect cat, count(elenents(cat.kittens))
fromeg. Cat cat group by cat

The supported aggregate functions are

* avg(...), sun(...), mn(...), mx(...)

e count(*)

e count(...), count(distinct ...), count(all...)

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.nane from eg. Cat cat

sel ect count(distinct cat.nanme), count(cat) fromeg.Cat cat

10.6. polymorphism

A query like:

fromeg. Cat as cat

returns instances not only of cat, but also of subclasses like Donest i cCat . Hibernate queries may name any
Java class or interface in the f r om clause. The query will return instances of al persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

fromjava.l ang. Obj ect o

The interface Named might be implemented by various persistent classes:

Hibernate 2.1 77

Hibernate Query Language

from eg. Naned n, eg. Naned m where n.nane = m nane

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set. (It also means you can't call these queriesusing Query. scrol 1 ().)

10.7. The where clause

The wher e clause allows you to narrow the list of instances returned.

fromeg. Cat as cat where cat.nanme='Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from eg. Foo foo, eg.Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a dat e property equal to the
start Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

fromeg.Cat cat where cat.nmate.nane is not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from eg. Foo foo
where foo. bar. baz. custoner. address.city is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

fromeg.Cat cat, eg.Cat rival where cat.mate = rival.nmate
sel ect cat, mate

fromeg. Cat cat, eg.Cat mate
where cat.mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (You may aso
use its property name.)
fromeg.Cat as cat where cat.id = 123

fromeg.Cat as cat where cat.nmate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
count ry and nedi car eNunber .

from bank. Person person
where person.id.country = "'AU
and person.id. medi careNunber = 123456

f rom bank. Account account
where account.owner.id.country = "'AU
and account. owner. i d. nedi careNunber = 123456

Hibernate 2.1 78

Hibernate Query Language

Once again, the second query requires no table join.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be trandlated to its discriminator value.

fromeg. Cat cat where cat.class = eg. Donesti cCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that endsin a property of component type (as opposed to a property of a
component). For example, if st or e. owner isan entity with a component addr ess

store. owner. address.city / | okay
st ore. owner . addr ess /lerror!

An "any" type has the specia propertiesid and cl ass, alowing us to express a join in the following way
(where Audi t Log. i t emis aproperty mapped with <any>).

fromeg. AuditlLog | og, eg.Paynent paynent
where log.itemclass = 'eg. Paynent' and log.itemid = paynment.id

Notice that | og.item cl ass and paynent. cl ass would refer to the values of completely different database
columnsin the above query.

10.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL.:

e mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
* logical operationsand, or, not

e string concatenation ||

e SQL scaar functions like upper () and | ower ()

e Parentheses () indicate grouping

* in,between,is null

e JDBCIN parameters ?

¢ named parameters: nane, : start_date, : x1

e SQL literals' foo', 69, ' 1970-01-01 10: 00: 01. 0'

e Javapublic static final constantseg. Col or. TABBY

i n and bet ween may be used as follows:

from eg. DonesticCat cat where cat.nane between 'A and 'B

from eg. DonesticCat cat where cat.nane in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from eg. Donesti cCat cat where cat.nane not between 'A and 'B'

from eg. Donesti cCat cat where cat.nane not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may be used to test for null values.

Y ou may test the size of a collection with the special property si ze, or the specia si ze() function.

Hibernate 2.1 79

Hibernate Query Language

fromeg. Cat cat where cat.kittens.size > 0
fromeg.Cat cat where size(cat.kittens) > 0
For indexed collections, you may refer to the minimum and maximum indices using mi ni ndex and max! ndex.

Similarly, you may refer to the minimum and maximum elements of a collection of basic type using ni nEl e-
ment and naxEl ement .

from Cal endar cal where cal . holidays. maxEl enent > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where naxi ndex(order.itens) > 100

from Order order where mnel enent (order.itens) > 10000

The SQL functionsany, sone, all, exists, in aresupported when passed the element or index set of acol-
lection (el enent s and i ndi ces functions) or the result of a subquery (see below).

sel ect nother fromeg. Cat as nother, eg.Cat as kit
where kit in el ements(foo.kittens)

select p fromeg. NaneLi st |ist, eg.Person p
where p.nane = sone el ements(list. nanes)

fromeg.Cat cat where exists el enents(cat.kittens)
fromeg. Player p where 3 > all el enments(p.scores)

from eg. Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, nmi nl ndex, max| ndex, mi nEl ement, naxEl enent - have
certain usage restrictions:

* inawhere clause: only for databases with subselects
e inasel ect clause: only el enent s and i ndi ces make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only)

from Order order where order.itenms[0].id = 1234

sel ect person from Person person, Cal endar cal endar

wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person. nationality.cal endar = cal endar

select itemfromlitemitem O der order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromlitemitem O der order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

select itemfromltemitem Order order
where order.itens[size(order.items) - 1] = item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(itenm) from O der order
join order.itens item

Hibernate 2.1 80

Hibernate Query Language

where index(iten) < 5

Scalar SQL functions supported by the underlying database may be used

from eg. DonesticCat cat where upper(cat.nane) |like 'FR %

If you are not yet convinced by al this, think how much longer and less readable the following query would be

in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.custonmers cust
where prod. nanme = 'w dget'
and store.location.nanme in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOrder.lineltens)

Hint: something like

SELECT cust.nane, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc,
product prod
VWHERE prod. nane = 'w dget'
AND store.loc_id = loc.id
AND | oc. nane I N (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_items item orders o
VWHERE itemorder _id = o.id
AND cust.current_order = o.id

10.9. The order by clause

The list returned by aquery may be ordered by any property of areturned class or components:

from eg. Donesti cCat cat
order by cat.nane asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

10.10. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

sel ect cat.color, sunm(cat.weight), count(cat)
fromeg. Cat cat
group by cat. col or

select foo.id, avg(el enents(foo.nanmes)), max(indices(foo.nanmes))
from eg. Foo foo
group by foo.id

Hibernate 2.1

Hibernate Query Language

Note: You may use theel enents and i ndi ces constructs inside a select clause, even on databases with no sub-
selects.

A havi ng clauseis also allowed.

sel ect cat.color, sum(cat.weight), count(cat)
fromeg. Cat cat

group by cat. col or

havi ng cat.color in (eg. Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-
derlying database (ie. not in MySQL).

sel ect cat
from eg. Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100
order by count (kitten) asc, sum(kitten.weight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

10.11. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subquery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqgueries (subqueries that
refer to an aliasin the outer query) are allowed.

fromeg. Cat as fatcat
where fatcat.weight > (

sel ect avg(cat.weight) from eg. DonesticCat cat
)

from eg. DonesticCat as cat
where cat.nanme = sone (

sel ect nane. ni ckNane from eg. Name as nane
)

fromeg. Cat as cat
where not exists (
fromeg.Cat as nate where nmate. mate = cat

)

from eg. Donesti cCat as cat
where cat.name not in (

sel ect nane. ni ckNane from eg. Nane as nane
)

10.12. Examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hiber-
nate's main selling points. Here are some example queries very similar to queries that | used on arecent project.
Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for al unpaid ordersfor a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG

Hibernate 2.1 82

Hibernate Query Language

and PRI CE tables has four inner joins and an (uncorrelated) subselect.

sel ect order.id, sun(price.amunt), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as catal og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effecti veDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sum(price. amount) > :m nAmount
order by sun(price.anmount) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.amunt), count(item
from Order as order

join order.lineltens as item

join item product as product,

Cat al og as catal og

join catal og.prices as price
where order.paid = fal se

and order.custoner = :custoner
and price. product = product
and catal og = : current Catal og

group by order
havi ng sum(price. amount) > :m nAnmount
order by sum(price.anmpunt) desc

The next query counts the number of payments in each status, excluding all payments in the Awal T-
| NG_APPROVAL status where the most recent status change was made by the current user. It translates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-
MENT_STATUS_CHANGE tables.

sel ect count (paynent), status.nane
from Paynent as paymnent
join payment.currentStatus as status
join paynent. st at usChanges as st at usChange
wher e payment. st at us. name <> Paynent St at us. AWAI TI NG_APPROVAL
or (
st atusChange. ti meStanmp = (
sel ect max(change. ti neSt anp)
f rom Paynent St at usChange change
wher e change. paynent = paynent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

If 1 would have mapped the st at usChanges collection as a list, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
wher e paynent. st atus. nanme <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[naxlndex(paymnment. st atusChanges)].user <> :currentUser
group by status.nane, status.sortOrder

Hibernate 2.1 83

Hibernate Query Language

order by status.sortO der

The next query uses the MS SQL Server i sNul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
| eft outer join account.paynents as payment
where :currentUser in el enents(account. hol der. users)
and Payment St at us. UNPAI D = i sNul | (paynent. current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortO der, account.account Nunber, paynent. duebDate

For some databases, we would need to do away with the (correlated) subsel ect.

sel ect account, paynent
from Account as account
join account. hol der. users as user
|l eft outer join account.paynents as payment
where :currentUser = user
and Payment St at us. UNPAI D = i sNul | (paynent . current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortOder, account.accountNunber, payment.dueDate

10.13. Tips & Tricks

Y ou can count the number of query results without actually returning them:

((Integer) session.iterate("select count(*) from....").next()).intValue()

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
| eft join usr.nessages as nsg
group by usr.id, usr.nane
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.nmessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.name
from User usr.nane

join usr.messages nsg
group by usr.id, usr.nane
havi ng count(nsg) >= 1

Asthis solution can't return aUser with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.name
from User as usr

left join usr.nmessages as nsg
group by usr.id, usr.nane

Hibernate 2.1 84

Hibernate Query Language

havi ng count(nsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query g = s.createQuery("fromfoo in class Foo where foo.name=: nane and foo. si ze=:si ze");
g. set Properties(fooBean); // fooBean has get Nane() and getSize()
List foos = q.list();

Collections are pageable by using the Quer y interface with afilter:

Query g = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi rst Resul t (PAGE_SI ZE * pageNunber) ;

Li st page = qg.list();

Collection elements may be ordered or grouped using a query filter:

Col | ection orderedCol l ection = s.filter(collection, "order by this.anmunt");
Col l ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

Y ou can find the size of a collection without initializing it:

((Integer) session.iterate("select count(*) from....").next()).intValue();

Hibernate 2.1 85

Chapter 11. A Worked Example

Well now demonstrate some of the concepts from the last two sections with example code.

11.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stan-
dard parent/child relationship, but we will use an ordered bag, instead of a set.

package eg;
i mport java.util.List;

public class Blog {
private Long _id;
private String _naneg;
private List _itemns;

public Long getld() {
return _id;

public List getltens() {
return _itens;

}
public String getNane() {
return _nane;

}

public void setld(Long |ongl) {
_id = longl;

}

public void setltens(List list) {
_items = list;

}

public void setName(String string) {
_nanme = string;
}

package eg;

i mport java.text. DateFornmat;
i mport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _datetine;
private String _text;
private String _title;
private Bl og _bl og;

public Bl og getBlog() {
return _bl og;

public Cal endar getDatetime() {
return _datetineg;

}
public Long getld() {

return _id,;

public String getText() {
return _text;
}

public String getTitle() {
return _title;
}

Hibernate 2.1 86

A Worked Example

public void setBl og(Blog blog) {
_blog = bl og;
}

public void setDatetine(Cal endar cal endar) {
_datetine = cal endar

}

public void setld(Long |ongl) {
_id = longl;

}

public void setText(String string) {
_text = string;
}

public void setTitle(String string) {
_title = string;

}

11.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 2. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>

<cl ass
nanme="eg. Bl og"
t abl e=" BLOGS"
proxy="eg. Bl og" >

<id
name="id"
col um="BLOG | D' >

<generator class="native"/>
</id>

<property
name="nane"
col umm=" NAME"
not - nul | ="true"
uni que="true"/>

<bag
name="itens"
i nverse="true"
| azy="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG_ | D'/ >
<one-to-many cl ass="eg. Bl ogltent'/>

</ bag>
</ cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-//H bernat e/ H bernate Mappi ng DID 2. 0// EN'

Hibernate 2.1

87

A Worked Example

"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">
<hi ber nat e- mappi ng>

<cl ass
name="eg. Bl ogl t enf'
tabl e="BLOG_| TEMS"
dynam c- updat e="true" >

<id
nanme="i d"
col um="BLOG | TEM | D' >

<generator class="native"/>
</id>
<property

name="title"
col um="TI TLE"

not-null ="true"/>
<property

name="t ext"

col um="TEXT"

not-null ="true"/>
<property

nanme="dat eti me"
col um="DATE_TI ME"
not-null ="true"/>

<nmany-t o-one
nanme="bl og"
col um="BLOG | D"
not-null="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

11.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using Hibernate.

package eg;

i mport java.util.Arraylist;
i mport java.util. Cal endar
import java.util.lterator
import java.util.List;

i mport net.sf.hi bernate. H bernat eExcepti on

i mport net.sf.hibernate. Query;

i mport net.sf.hi bernate. Sessi on;

i mport net.sf. hi bernate. Sessi onFactory;

i mport net.sf. hi bernate. Transacti on

i mport net.sf.hibernate.cfg. Configuration;

i mport net.sf.hibernate.tool.hbnRddl . SchenaExport;

public class Bl ogMain {
private SessionFactory _sessions;
public void configure() throws H bernateException {

_sessions = new Configuration()
. addd ass(Bl og. cl ass)

Hibernate 2.1

A Worked Example

.addCl ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

}

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass);
new SchemaExport(cfg).create(true, true);

}

public Blog createBl og(String nane) throws Hi bernateException {

Bl og bl og = new Bl og();
bl og. set Name(nane) ;
bl og. setltens(new ArrayList());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransacti on();
sessi on. save(bl og);
tx.commt();

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return bl og;

}

public BlogltemcreateBlogltenm(Blog blog, String title, String text) throws Hi bernateException {

Blogltemitem = new Bloglten();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl og);

item setDateti me(Cal endar. getlnstance());
bl og. getltens().add(iten);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();
sessi on. updat e(bl og) ;
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return item

}

public Bl ogltem createBl ogltem Long blogid, String title, String text) throws Hi bernateException |

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

item set Dateti ne(Cal endar. getlnstance());

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();

Hibernate 2.1 89

A Worked Example

Bl og bl og = (Bl og) session.|oad(Bl og.class, blogid);
i tem set Bl og(bl 0g);

bl og. getltens().add(iten);

tx.commt();

catch (H bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {
sessi on. cl ose();
}

return item

}

public void updateBl ogltem Blogltemitem String text) throws Hi bernateException {

item set Text (text);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransacti on();
sessi on. update(item;
tx.commt();

catch (H bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {
session. cl ose();
}
}
public void updateBl ogltemLong item d, String text) throws Hi bernateException {
Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();

Blogltemitem = (Bloglten) session.|load(Blogltemclass, itemd);
item set Text (text);

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

}

public List |istAllBlIogNamesAndltenCounts(int max) throws Hi bernateException {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"sel ect blog.id, blog.name, count(blogltem " +
"fromBlog as blog " +
"l eft outer join blog.items as blogltem" +
"group by blog.nane, blog.id " +
"order by max(blogltem datetine)"
)
g. set MaxResul t s(max) ;
result = q.list();
tx.commt();

Hibernate 2.1

90

A Worked Example

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

public Bl og getBl ogAndAl I | tens(Long bl ogi d) throws Hi bernateException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
Bl og blog = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
I
g. set Paranet er (" bl ogi d", bl ogi d);
blog = (Blog) g.list().get(0);
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"inner join blog.itens as blogltem" +
"where bl ogltemdatetime > : minDate"

)

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar ("m nDate", cal);

result = q.list();
tx.commt();

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

Hibernate 2.1

Chapter 12. Improving Performance

We have already shown how you can use lazy initialization for persistent collections. A similar effect is achiev-
able for ordinary object references, using CGLIB proxies. We have also mentioned how Hibernate caches per-
sistent objects at the level of a Sessi on. More aggressive caching strategies may be configured upon a class-
by-class basis.

In this section, we show you how to use these features, which may be used to achieve much higher perfor-
mance, where necessary.

12.1. Proxies for Lazy Initialization

Hibernate implements lazy initializing proxies for persistent objects using runtime bytecode enhancement (via
the excellent CGLIB library).

The mapping file declares a class or interface to use as the proxy interface for that class. The recommended ap-
proach isto specify the class itself:

<cl ass nane="eg. Order" proxy="eg. O der">

The runtime type of the proxies will be a subclass of o der . Note that the proxied class must implement a de-
fault constructor with at least package visihility.

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass nane="eg. Cat" proxy="eg. Cat">
<subcl ass nane="eg. Donesti cCat" proxy="eg. DonesticCat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat .

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
DonesticCat dc = (DomesticCat) cat; [l Error

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); [/ instantiate a Cat proxy
DonesticCat dc =

(DomesticCat) session.|oad(DonesticCat.class, id); // required new DonesticCat proxy!
System out . printl n(cat==dc); /1 fal se

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.setWight(11.0); // hit the db to initialize the proxy
Systemout.println(dc.getWight()); // 11.0

Hibernate 2.1 92

Improving Performance

Third, you may not use a CGLIB proxy for afi nal classor aclasswith any fi nal methods.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the
persistent class.

These problems are all due to fundamental limitations in Java's single inheritence model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass name="eg. Cat" proxy="eg.|Cat">

</ subcl ass>
</ cl ass>

where cat implementsthe interface | cat and Donmest i cCat implements the interface | Donest i cCat . Then prox-
ies for instances of cat and Donesti cCat may be returned by | oad() oriterate(). (Notethat find() does not
return proxies.)

ICat cat = (ICat) session.load(Cat.class, catid);
Iterator iter = session.iterate("fromcat in class eg.Cat where cat.nanme="fritz'");
ICat fritz = (ICat) iter.next();

Relationships are also lazily initialized. This means you must declare any propertiesto be of type| Cat , not Cat .
Certain operations do not require proxy initialization

* equal s(), if the persistent class does not override equal s()
e hashCode(), if the persistent class does not override hashCode()
e Theidentifier getter method

Hibernate will detect persistent classes that override equal s() or hashCode().
Exceptions that occur while initializing a proxy are wrapped in aLazyl ni ti al i zat i onExcept i on.

Sometimes we need to ensure that a proxy or collection isinitialized before closing the Sessi on. Of course, we
can alway force initialization by calling cat . get Sex() Or cat. getKittens().size(), for example. But that is
confusing to readers of the code and is not convenient for generic code. The static methods Hi ber -
nate.initialize() and H bernate.islnitialized() provide the application with a convenient way of work-
ing with lazyily initialized collections or proxies. Hi bernate.initialize(cat) will forcetheinitiaization of a
proxy, cat , aslong asits Sessi on isstill open. Hi bernate.initialize(cat.getKittens()) hasasimilar ef-
fect for the collection of kittens.

12.2. The Second Level Cache

A Hibernate Sessi on is atransaction-level cache of persistent data. It is possible to configure a cluster or VM-
level (sessi onFact or y-level) cache on a class-by-class and collection-by-collection basis. Y ou may even plug
in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by another ap-
plication (though they may be configured to regularly expire cached data).

By default, Hibernate uses Apache Turbine's JCS for VM-level caching. However, JCS support is now depre-
cated and will be removed in a future version of Hibernate. You may choose a different implementation by
specifying the name of a class that implements net . sf. hi ber nat e. cache. CachePr ovi der using the property

Hibernate 2.1 93

Improving Performance

hi ber nat e. cache. manager _| ookup_cl ass.

Table 12.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable net. sf. hi ber nat e. cache. Hasht abl eCacheP memory yes

(not intended rovi der

for produc-

tion use)

EHCache net . sf. ehcache. hi ber nat e. Provi der memory, disk yes

OSCache net . sf. hi ber nat e. cache. 0SCachePr ovi der memory, disk yes

SwarmCache | net . sf. hi ber nat e. cache. Swar mCacheProvi | clustered (ip yes(clustered no

der multicast) invalidation)
JBoss net. sf. hi bernat e. cache. TreeCacheProvid clustered (ip | yes yes
TreeCache er multicast), (replication)
transactional

12.2.1. Mapping

The <cache> element of aclass or collection mapping has the following form:

<cache
usage="transactional |[read-wite| nonstrict-read-wite|read-only" 0O
/>

O usage specifiesthe caching strategy: t r ansacti onal , read-write, nonstrict-read-wite Of read-only

Alternatively (preferrably?), you may specify <cl ass-cache> and <col | ecti on- cache> elements in hi ber -
nate.cfg. xm .

The usage attribute specifies a cache concurrency strategy.

12.2.2. read only

If your application needs to read but never modify instances of a persistent class, aread- onl y cache may be
used. Thisisthe simplest and best performing strategy. Its even perfectly safe for usein acluster.

<cl ass nane="eg. | nmut abl e" nut abl e="f al se" >
<cache usage="read-only"/>

</ cl ass>

12.2.3. read / write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment,
you must specify the property hi ber nat e. transact i on. manager _| ookup_cl ass, haming a strategy for obtain-
ing the JTA Transact i onManager . In other environments, you should ensure that the transaction is completed

Hibernate 2.1 94

Improving Performance

when Sessi on. cl ose() Or Sessi on. di sconnect () is called. If you wish to use this strategy in a cluster, you
should ensure that the underlying cache implementation supports locking. The built-in cache providers do not.

<cl ass nane="eg.Cat" >
<cache usage="read-wite"/>

<set name="kittens" ... >
<cache usage="read-write"/>

</ set >
</ cl ass>

12.2.4. nonstrict read / write

If the application only occasionally needs to update data (ie. if it is extremey unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-write cache might be appropriate. If the cache is used in a JTA environment, you must specify hi ber -
nat e. transacti on. manager _| ookup_cl ass. In other environments, you should ensure that the transaction is
completed when Sessi on. cl ose() Of Sessi on. di sconnect () iscalled.

12.2.5. transactional

The transactional cache strategy provides support for fully transactional cache providers such as JBoss
TreeCache. Such a cache may only be used in a JTA environment and you must specify hi ber-
nat e. transacti on. manager _| ookup_cl ass.

None of the cache providers support all of the cache concurrency strategies. The following table shows which
providers are compatible with which concurrency strategies.

Table 12.2. Cache Concurrency Strategy Support

Cache read-only nonstrict- read-write transactional
read-write

Hashtable (notin- | yes yes yes

tended for produc-

tion use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

JBoss TreeCache yes yes

12.3. Managing the sessi on Cache

Whenever you pass an object to save(), updat e() Or saveQr Updat e() and whenever you retrieve an object us-
ing load(), find(),iterate(), Or filter(), that object is added to the internal cache of the Sessi on. When
flush() is subsequently called, the state of that object will be synchronized with the database. If you do not
want this synchronization to occur or if you are processing a huge number of objects and need to manage mem-
ory efficiently, theevi ct () method may be used to remove the object and its collections from the cache.

Hibernate 2.1 95

Improving Performance

Iterator cats = sess.iterate("fromeg.Cat as cat"); //a huge result set
while (cats.hasNext()) {

Cat cat = (Cat) iter.next();

doSonet hi ngW t hACat (cat) ;

sess. evict(cat);

The sessi on also provides acont ai ns() method to determine if an instance belongs to the session cache.
To completely evict al objects from the session cache, call Sessi on. ¢l ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

12.4. The Query Cache

Query result sets may also be cached. Thisis only useful for queries that are run frequently with the same pa-
rameters. To use the query cache you must first enable it by setting the property hi ber-
nat e. cache. use_query_cache=t r ue. This causes the creation of two cache regions - one holding cached query
result sets (net. sf. hi ber nat e. cache. Quer yCache), the other holding timestamps of most recent updates to
queried tables (net . sf . hi ber nat e. cache. Updat eTi nest anpsCache). Note that the query cache does not cache
the state of any entities in the result set; it caches only identifier values and results of value type. So the query
cache is usually used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
Query. set Cacheabl e(true). This call alows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for aparticular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger = : bl ogger order by bl og. datetinme de:
.setEntity("bl ogger", bl ogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
dist();

Hibernate 2.1 96

Chapter 13. Understanding Collection Performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

13.1. Taxonomy

Hibernate defines three basic kinds of collections

» collections of values
e Oneto many associations
e many to many associations

this classification distinguishes the various table and foreign key relationships but does not tell us quite every-
thing we need to know about the relational model. To fully understand the relational structure and performance
characteristics, we must also consider the structure of the primary key that is used by Hibernate to update or
delete collection rows. This suggests the following classification

* indexed collections

e sets
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
aparticular row may be efficiently located when Hibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associa-
tions, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not -
nul | ="true".)

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this prob-
lem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This might
be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how Hibernate "locates” indi-
vidual rows of the collection.)

13.2. Lists, maps and sets are the most efficient collections to
update

Hibernate 2.1 97

Understanding Collection Performance

From the discussion above, it should be clear that indexed collections and (usually) sets alow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of a Set, Hibernate doesn't ever UPDATE a row when an ele-
ment is "changed". Changesto a set alwayswork via| NSERT and DELETE (of individual rows). Once again, this
consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and sets are the most performant
collection types. (With the caveat that a set might be less efficient for some collections of values.)

Sets are expected to be the most common kind of collection in Hibernate applications.

There is an undocumented feature in this release of Hibernate. The <i dbag> mapping implements bag seman-
tics for a collection of values or a many to many association and is more efficient that any other style of collec-
tion in this case!

13.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nver se="true" (the standard bidirectiona one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
Thisis because Col I ecti on. add() Or Col | ecti on. addAl | () must always return true for a bag or Li st (unlike
aset). This can make the following common code much faster.

Parent p = (Parent) sess.|oad(Parent.class, id);

Child ¢ = new Child();

c.setParent (p);

p.get Children().add(c); //no need to fetch the collection!
sess. flush();

13.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate isn't completly
stupid, so it knows not to do that in the case of an newly-empty collection (if you called li st. cl ear (), for ex-
ample). In this case, Hibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. Hibernate will
issue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

* delete eighteen rows one by one and then insert three rows
» remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for Hibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)

Hibernate 2.1 98

Understanding Collection Performance

the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from timeto time.

Hibernate 2.1 99

Chapter 14. Criteria Queries

Hibernate now features an intuitive, extensible criteria query API. For now, this API is less powerful and than
the more mature HQL query facilities. In particular, criteria queries do not support projection or aggregation.

14.1. Creating a Criteri a instance

The interface net . sf. hi bernate. Criteri a represents a query against a particular persistent class. The Ses-
si on isafactory for Cri teri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

14.2. Narrowing the result set

An individual query criterion is an instance of the interface net . sf. hi bernate. expression. Criterion. The
class net . sf. hi ber nat e. expr essi on. Expr essi on defines factory methods for obtaining certain built-in cri -
terion types.

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("nanme", "Fritz%))
.add(Expression. between("wei ght", m nWight, maxWeight))
dist();

Expressions may be grouped logically.

Li st cats = sess.createCriteria(Cat.cl ass)
.add(Expression.like("nanme", "Fritz%))
.add(Expression.or(
Expression. eq("age", new I nteger(0)),
Expression.isNull ("age")
))
dist();

Li st cats = sess.createCriteria(Cat.cl ass)
.add(Expression.in("name", new String[] { "Fritz", "lzi", "Pk" }))
.add(Expression. disjunction()
.add(Expression.isNull ("age"))
.add(Expression.eq("age", new Integer(0)))
.add(Expression.eq("age", new Integer(1l)))
.add(Expression.eq("age", new Integer(2)))

))
dist();

There are quite arange of built-in criterion types (Expr essi on subclasses), but one that is especially useful lets
you specify SQL directly.

Li st cats = sess.createCriteria(Cat.class)
.add(Expression.sql ("lower({alias}.name) like lower(?)", "Fritz%, H bernate.STRI NG)
dist();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

Hibernate 2.1 100

Criteria Queries

14.3. Ordering the results

Y ou may order the results using net . sf . hi ber nat e. expr essi on. Or der .

List cats = sess.createCriteria(Cat.cl ass)
.add(Expression.like("nanme", "F%)
.addOrder(Order.asc("nane"))
.addOrder(Order.desc("age"))

. set MaxResul t s(50)
ist();

14.4. Associations

Y ou may easily specify constraints upon related entities by navigating associationsusing creat eCriteri a() .

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("name", "F%)
.createCriteria("kittens")

.add(Expression.like("nanme", "F%)
dist();

note that the second creat eCri teri a() returnsanew instance of Crit eri a, which refers to the elements of the
ki ttens collection.

The following, alternate form is useful in certain circumstances.

Li st cats = sess.createCriteria(Cat.cl ass)
.createAlias("kittens", "kt")
.createAlias("mate", "nt")
.add(Expression. egProperty("kt.name", "nt.nane"))
dist();

(creat eAl i as() doesnot create anew instanceof Criteria.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use r et ur n-
Maps() .

Li st cats = sess.createCriteria(Cat.cl ass)

.createCriteria("kittens", "kt")
.add(Expression.eq("nanme", "F%))

.returniaps()
dist();

Iterator iter = cats.iterator();

while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria. ROOT_ALIAS);
Cat kitten = (Cat) nmap.get("kt");

14.5. Dynamic association fetching

Y ou may specify association fetching semantics at runtime using set Fet chMode() .

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("name", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)

Hibernate 2.1 101

Criteria Queries

. set Fet chMbde("ki ttens", FetchMde. EAGER)
dist();

This query will fetch both mat e and ki t t ens by outer join.

14.6. Example queries

The class net . sf . hi ber nat e. expr essi on. Exanpl e alows you to construct a query criterion from a given in-
stance.

Cat cat = new Cat();

cat.setSex('F');

cat . set Col or (Col or. BLACK) ;

List results = session.createCriteria(Cat.cl ass)
.add(Exanpl e.create(cat))
dist();

Version properties, identifiers and associations are ignored. By default, null valued properties are excluded.
Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. creat e(cat)

. excl udeZer oes() /I excl ude zero val ued properties

.excl udeProperty("color") //exclude the property naned "col or"
.ignoreCase() /I perform case insensitive string conparisons
. enabl eLi ke(); /luse like for string conparisons

List results = session.createCriteria(Cat.class)
. add(exanpl e)
dist();

Y ou can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.cl ass)
.add(Exanpl e.create(cat))
.createCriteria("mte")

.add(Exanple.create(cat.getMate()))
dist();

Hibernate 2.1 102

Chapter 15. SQL Queries

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as the CONNECT keyword in Oracle. This also allows for a cleaner migration
path from adirect SQL/JDBC based application to Hibernate.

15.1. Creating a SQL based Query

SQL queries are exposed through the same Quer y interface, just like ordinary HQL queries. The only difference
isthe use of Sessi on. creat eSQLQuery() .

Query sqgl Query = sess.createSQLQuery("select {cat.*} fromcats {cat}", "cat", Cat.class);
sql Query. set MaxResul t s(50) ;
List cats = sql Query.list();

The three parameters provided to cr eat eSQLQuer y() are:

» the SQL query string
* atablealiasname
» the persistent class returned by the query

The alias name is used inside the sqgl string to refer to the properties of the mapped class (in this case cat). You
may retrieve multiple objects per row by supplying a st ri ng array of alias names and ad ass array of corre-
sponding classes.

15.2. Alias and property references

The{cat.*} notation used above is a shorthand for "all properties’. Y ou may even list the properties explicity,
but you must let Hibernate provide SQL column aliases for each property. The placeholders for these column
aliases are the property name qualified by the table aias. In the following example, we retrieve cat s from a dif-
ferent table (cat _I og) to the one declared in the mapping metadata. Notice that we may even use the property
aliasesin the where clause.

String sql = "select cat.originalld as {cat.id}, cat.mateid as {cat.mte}, cat.sex as {cat.sex}, cat.\
+ " fromcat_|log cat where {cat.mate} = :catld"
Li st |1 oggedCats = sess.createSQ. Query(sqgl, "cat", Cat.class)
.setlLong("catld", catld)
dist();

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

15.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query.

Li st people = sess. get NanedQuery("mySqgl Query")
. set MaxResul t s(50)
dist();

Hibernate 2.1 103

SQL Queries

<sql - query name="nySql Query">
<return alias="person" class="eg.Person"/>
SELECT {person}. NAME AS {person.nane}, {person}.AGE AS {person.age}, {person}.SEX AS {person. sex}
FROM PERSON { person} WHERE {person}. NAVE LI KE ' H ber %

</ sql - query>

Hibernate 2.1 104

Chapter 16. Inheritance Mappings

16.1. The Three Strategies

Hibernate supports the three basic inheritance mapping strategies.

* table per class hierarchy
e table per subclass
» table per concrete class (some limitations)

It is even possible to use different mapping strategies for different branches of the same inheritance hierarchy,
but the same limitations apply as apply to table-per-concrete class mappings. Hibernate does not support mix-
ing <subcl ass> mappings and <j oi ned- subcl ass> Mappings inside the same <cl ass> element.

Suppose we have an interface Payment , with implementors Cr edi t Car dPaynent , CashPaynment , ChequePayment .
The table-per-hierarchy mapping would look like:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D" >
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT TYPE" type="string"/>
<property nanme="anmount" col utm="AMOUNT"/>

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

Exactly onetableisrequired. Thereisone big limitation of this mapping strategy: columns declared by the sub-
classes may not have NOT NULL constraints.

A table-per-subclass mapping would ook like:

<cl ass nanme="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D"'>
<generator class="native"/>
</id>
<property nanme="anmount" col utm="AMOUNT"/>

<j oi ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ subcl ass>
<j oi ned- subcl ass nane="CashPaynment" tabl e=" CASH_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT | D'/ >

</ subcl ass>

Hibernate 2.1 105

Inheritance Mappings

</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

Note that Hibernate's implementation of table-per-subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator col-
umn in the superclass table. The approach taken by Hibernate is much more difficult to implement but arguably
more correct from arelational point of view.

For either of these two mapping strategies, a polymorphic association to Payment is mapped using
<many-to-one>.

<many-t o- one nane="paynent"
col um=" PAYMENT"
cl ass="Paynent"/ >

The table-per-concrete-class strategy is very different.

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="long" col um="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anmount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nanme="CashPayment" tabl e=" CASH_PAYMENT" >
<id name="id" type="long" col um="CASH PAYMENT_ | D'>
<generator class="native"/>

</id>
<property nane="anount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nanme="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<id name="id" type="long" col um="CHEQUE PAYMENT | D"'>
<generator class="native"/>

</id>
<property nanme="anount" col um="CHEQUE AMOUNT"/ >

</ cl ass>

Three tables were required. Notice that nowhere do we mention the Paynent interface explicitly. Instead, we
make use of Hibernate's implicit polymorphism. Also notice that properties of Paynment are mapped in each of
the subclasses.

In this case, a polymorphic association to Paynent is mapped using <any>.

<any nanme="paynent"
net a- t ype="cl ass"
i d-type="1ong">
<col um nane="PAYMENT CLASS"/ >
<col um nane="PAYMENT_I D'/ >
</ any>

It would be better if we defined a User Type as the net a- t ype, to handle the mapping from type discriminator
strings to Payment subclass.

<any nane="paynent"
met a-t ype="Paynent Met aType"
i d-type="1ong">

Hibernate 2.1 106

Inheritance Mappings

<col um nanme="PAYMENT_TYPE"/> <!-- CREDIT, CASH or CHEQUE -->
<col um nane="PAYMENT | D'/ >
</ any>

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since Paynent isjust an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the Paynent interface.)

<cl ass nanme="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator colum="CREDI T_CARD' type="string"/>
<property nanme="anount" col utm="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or-val ue="MXC'/ >
<subcl ass nane="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nanme="Nonel ectroni cTransacti on” tabl e=" NONELECTRONI C_TXN'>
<id name="id" type="long" colum="TXN_|D"'>
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col um="PAYMENT | D'/ >
<property nane="anount" col utm="CASH_AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" t abl e=" CHEQUE PAYMENT" >
<key col umm="PAYMENT | D'/ >
<property nane="anount" col um="CHEQUE AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention Paynent explicitly. If we execute a query against the Paynent interface - for ex-
ample, from Payment - Hibernate automatically returns instances of Credi t Car dPaynent (and its subclasses,
since they also implement Paynent), CashPayment and ChequePayment but not instances of Nonel ect roni c-
Transacti on.

16.2. Limitations

Hibernate assumes that an association maps to exactly one foreign key column. Multiple associations per for-
eign key are tolerated (you might need to specify i nverse="true" Or i nsert="fal se" update="fal se"), but
there is no way to map any association to multiple foreign keys. This means that:

< when an association is modified, it is aways the same foreign key that is updated
« when an association is fetched lazily, a single database query is used
« when an association is fetched eagerly, it may be fetched using a single outer join

In particular, it implies that polymorphic one-to-many associations to classes mapped using the table-
per-concrete-class strategy are not supported. (Fetching this association would require multiple queries or mul-
tiplejoins.)

The following table shows the limitations of table-per-concrete-class mappings, and of implicit polymorphism,

Hibernate 2.1 107

Inheritance Mappings

in Hibernate.

Table 16.1. Cache Providers

Inheri- Polymor- Polymor- Polymor- Polymor- Polymor- Polymor- Polymor-
tancestrat- phic many- phicone- | phicone- phicmany- phic phic phicjoins
egy to-one to-one to-many to-many | oad()/get queries
0
table- <nmany-to-o0 | <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der
per- ne> e> ny> any> ent.class, nent p o join
hierarchy i d) 0. payment
p
table- <nmany-to0-0 | <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der
per- ne> e> ny> any> ent.class, nent p 0 join
subclass i d) 0. paynent
p
table- <any> not sup- not sup- <many-to-a useaquery from Pay- not sup-
per-class ported ported ny> ment p ported
hierarchy
(implicit
polymor-
phism)
Hibernate 2.1 108

Chapter 17. Transactions And Concurrency

Hibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management is
delegated to the underlying database connection. If the connection is enlisted with JTA, operations performed
by the Sessi on are atomically part of the wider JTA transaction. Hibernate can be seen as a thin adapter to
JDBC, adding object oriented semantics.

17.1. Configurations, Sessions and Factories

A Sessi onFact ory is an expensive-to-create, threadsafe object intended to be shared by all application threads.
A Sessi on is an inexpensive, honthreadsafe object that should be used once, for a single business process, and
then discarded. For example, when using Hibernate in a servlet-based application, servlets could obtain a Ses-
si onFact ory using

Sessi onFactory sf = (Sessi onFactory)get Servl et Context().getAttribute("ny.session.factory");

Each call to a service method could create a new Sessi on, f1 ush() it, commi t () its connection, cl ose() it and
finally discard it.

In a stateless session bean, a similar approach could be used. The bean would obtain a Sessi onFact ory inset -
Sessi onCont ext () . Then each business method would create a Sessi on, f1 ush() it and cl ose() it. Of course,
the application should not commi t () the connection. (Leave that to JTA.)

Ensure you understand the semantics of f 1 ush() . Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. So when you f 1 ush() and then comni t () the connection, the session will continue
to contain potentially stale data. The only way you may continue to use a session after afl ush() and commi t ()

is by using versioned data.

The next few sections will discuss alternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

17.2. Threads and connections

Y ou should observe the following practices when creating Hibernate Sessions:

» Never create more than one concurrent Sessi on Or Tr ansact i on instance per database connection

» Beextremely careful when creating more than one Sessi on per datastore per transaction. The Sessi on itself
keeps track of updates made to loaded objects, so adifferent Sessi on might see stale data.

e Thesessi on isnot threadsafe. We can't see why you would need to share a session between two concurrent
threads but if you must, make sure your threads carefully synchronize on the Sessi on object before access-
ing it.

17.3. Optimistic Locking / Versioning

Many business processes require a whole series of interactions with the user interleaved with database accesses.
In web and enterprise applications it is not acceptable for a database transaction to span a user interaction.
Maintaining isolation of business processes becomes the partial responsibility of the application tier. The only
approach that is consistent with high concurrency and high scalability is optimistic locking with versioning. Hi-
bernate provides for three possible approaches to writing application code that uses optimistic locking.

Hibernate 2.1 109

Transactions And Concurrency

17.3.1. Long session with automatic versioning

A single sessi on instance and its persistent instances are used for the whole business process. The Sessi on
uses optimistic locking with versioning to ensure that many database transactions appear to the application as a
single logical transaction. The Sessi on is disconnected when waiting for user interaction. This approach is the
most efficient in terms of database access. The application need not concern itself with version checking or
with reassociating transient instances.

/1 foo is an instance | oaded earlier by the Session
sessi on. reconnect () ;

f 0o. set Property("bar");

session. flush();

sessi on. connection().comit();

sessi on. di sconnect () ;

17.3.2. Many sessions with automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipul ates the state of transient instances origi-
nally loaded in another Session and then 'reassociates' them using Session.update() Or Ses-
si on. saveOr Updat e() .

/1 foo is an instance | oaded by a previous Session
f 0o. set Property("bar");

session = factory. openSession();

sessi on. saveOr Updat e(f 00) ;

session. flush();

sessi on. connection().conmmt();

session. cl ose();

17.3.3. Application version checking

Each interaction with the persistent store occurs in a new Sessi on that reloads all persistent instances from the
datastore before manipulating them. This approach forces the application to carry out its own version checking
to ensure business process isolation. (Of course, Hibernate will till update version numbers for you.) This ap-
proach isthe least efficient in terms of database access. It is the approach most similar to entity EJBs.

/1 foo is an instance | oaded by a previous Session

session = factory. openSession();

int ol dVersion = foo.getVersion();

session. | oad(foo, foo.getKey());

if (oldVersion!=foo.getVersion) throw new Stal eCbj ect St at eExcepti on();
f 0o. set Property("bar");

session. flush();

sessi on. connection().conmt();

session. cl ose();

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

17.4. Session disconnection

The first approach described above is to maintain a single Sessi on for a whole business process thats spans

user think time. (For example, a servlet might keep a Sessi on in the user's Ht t pSessi on.) For performance rea-
sons you should

Hibernate 2.1 110

Transactions And Concurrency

1. commit the Transacti on (or JIDBC connection) and then
2. disconnect the Sessi on from the JDBC connection

before waiting for user activity. The method Sessi on. di sconnect () will disconnect the session from the
JDBC connection and return the connection to the pool (unless you provided the connection).

Sessi on. reconnect () Obtains a new connection (or you may supply one) and restarts the session. After recon-
nection, to force a version check on data you aren't updating, you may call Sessi on. | ock() on any objects that
might have been updated by another transaction. Y ou don't need to lock any datathat you are updating.

Heres an example:

Sessi onFactory sessions;
Li st foolist;
Bar bar;

Session s = sessi ons. openSessi on();

Transaction tx = null;

try {
tx = s.beginTransaction();

foolLi st = s.find(
"select foo fromeg. Foo foo where foo.Date = current date"
/1 uses db2 date function

)

bar = (Bar) s.create(Bar.class);
tx.commt();

catch (Exception e) {
if (tx!'=null) tx.rollback();
s.cl ose();
t hrow e;

}

s. di sconnect () ;

Later on:

s.reconnect ();

try {
tx = s.beginTransaction();

bar . set FooTabl e(new HashMap())

Iterator iter = foolList.iterator();

while (iter.hasNext()) {
Foo foo = (Foo) iter.next();
s. |l ock(foo, LockMdde. READ); //check that foo isn't stale
bar . get FooTabl e() . put (foo. get Nane(), foo);

}

tx.commt();

}
catch (Exception e) {
if (tx!'=null) tx.rollback();

throw e;
}
finally {

s.cl ose();
}

You can see from this how the relationship between Transacti ons and Sessi onS is many-to-one, A Sessi on
represents a conversation between the application and the persistent store. The Tr ansact i on breaks that conver-
sation up into atomic units of work.

Hibernate 2.1 111

Transactions And Concurrency

17.5. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually enough to specify an
isolation level and then simply let the database do all the work. However, advanced users may sometimes wish
to obtain pessimistic locks, or re-obtain locks at the start of a new transaction.

The LockMde class defines the different lock levels that may be acquired by Hibernate. A lock is obtained by
the following mechanisms:

e LockMde. WRI TE is acquired automatically when Hibernate updates or inserts arow.

e LockMde. UPGRADE may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
* LockMde. UPGRADE_NOMAI T may be acquired upon explicit user request using a SELECT ... FOR UPDATE

Nowal T under Oracle.

e LockMde. READ is acquired automatically when Hibernate reads data under Repeatable Read or Serializable
isolation level. May be re-acquired by explicit user request.

* LockMde. NONE represents the absence of alock. All objects switch to thislock mode at the end of a Tr ans-
act i on. Objects associated with the session viaa call to updat e() or saveOr Updat e() also start out in this
lock mode.

The "explicit user request” is expressed in one of the following ways:

* A cal to session. |l oad(), specifying aLockMde.
e A cal toSession. | ock().
« A cal toQuery. set LockMode().

If Session. 1 oad() is called with UPGRADE or UPGRADE_NOWAI T, and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If | oad() is called for an abject that is already
loaded with aless restrictive lock than the one requested, Hibernate calls1 ock() for that object.

Session. | ock() performs a version number check if the specified lock mode is READ, UPGRADE Or UP-
GRADE_NOWAI T. (In the case of UPGRADE Or UPGRADE_NOWAI T, SELECT ... FOR UPDATE isused.)

If the database does not support the requested lock mode, Hibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

Hibernate 2.1 112

Chapter 18. Mapping Examples

This section shows off some more complex association mappings.

18.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetory values and employee names.

Employer Employment Employee Name
ploy +employer 0.% kit 0.+ Py

-id : long -startDate : Date = -id : long ~firstWame : 5tring
—hame : 5tring -endDate : Date +employee| taxfileMumber ; String +namel initial : char
+getldd : long -id : lang +gethamen : Hame ~lastName : String
+zetld_id:long +getstartDated : Date +setNameiname: Namel +getFirstNamen : 5tring
+getHamed ; String +setitartDate_startDate:Date) +getldi : long +3etFirstName_firstNameString
+setName_name:String) +getEndDated : Date +setldi_id:longs +ygetlnitiald : char

+setEndDatei_endDate:Datel +getTaxfileMumberd : String +setlnitialCinitial:chan

+getHourlyRated : MonetorgAmount +setTaxfileNumber_taxfileMumberString +getlastMamen ; String

+setHourlyRatelrate: Monetorydmount) +setlasthame_lastName:String

+getldd : long

+set|;(_|tl:l:lonil Emol +hourlyRatd Monetorydmount

+aget :

+gEtEmD| oyeri mEp 05;er " -amount : Bighecimal

setEmployeriemp:Employe
poy pEmpley —currency © Currency
+getEmployvesd : Employes - -
+getAmountd : Bighecimal
+setEmployveelemp Employves) X .
+setAmounti_amount:BigDecimal

+getCurrencyl @ Currency
+ et CUrrency_Currency Currencyl

Heres a possible mapping document:

<hi ber nat e- mappi ng>

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="id">
<generator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property nanme="nane"/>
</ cl ass>

<cl ass nanme="Enpl oynent" tabl e="enpl oynent peri ods" >

<id name="id">
<generator class="sequence">
<par am nanme="sequence" >enpl oynent _i d_seq</ par an»
</ gener at or >
</id>
<property nane="startDate" colum="start_date"/>
<property nanme="endDate" col utm="end_date"/>

<conponent name="hour | yRate" cl ass="Monet oryAmount" >
<property nane="anount">
<col um nane="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property name="currency" |ength="12"/>
</ conponent >

<many-t o- one nane="enpl oyer" col um="enpl oyer _i d" not-nul |l ="true"/>
<many-t o- one nane="enpl oyee" col um="enpl oyee i d" not-null="true"/>
</ cl ass>

<cl ass nanme="Enpl oyee" tabl e="enpl oyees" >
<id name="id">

Hibernate 2.1 113

Mapping Examples

<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»

</ gener at or >

</id>

<property nane="taxfil eNunber"/>

<conponent nanme="nane" cl ass="Nane">
<property nane="firstNane"/>
<property nane="initial"/>
<property nane="| ast Nane"/>

</ conponent >

</ cl ass>

</ hi ber nat e- mappi ng>

And heres the table schema generated by SchemaExport .

create table enployers (
id BIG NT not null,
name VARCHAR(255),
primary key (id)

)

create tabl e enpl oynent _periods (
id BIG@ NT not null,
hourly rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BI G NT not null,
enpl oyer _id BI G NT not null,
end_date TI MESTAVP
start_date TI MESTAMP
primary key (id)

)

create tabl e enpl oyees (
id BIA NT not null,
firstNane VARCHAR(255),
initial CHAR(1),
| ast Name VARCHAR(255),
taxfil eNunmber VARCHAR(255),
primary key (id)

)

alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFKO foreign key (enployer_id) references enpl oyers
alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id) references enpl oyees
create sequence enpl oyee_id_seq
create sequence enpl oynent _id_seq
create sequence enployer _id_seq

18.2. Author/Work

Consider the following model of the relationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

Hibernate 2.1 114

Mapping Examples

Whark: Author Persan

-id : long -id : long -id : long
~title : String 0..* 0% | _alias : String -hame : String
+qgetldd : long oo rhes +authord+oetidd : lang +persoh |HOetldd :long
+ietldi_id:long +zetldi_id:long +zetldiid:long
+gethuthorsi : Set +getWarksn : Set +getamen : 5tring
+setfAuthorsiemployees:Set) +setWarkslemployers:Set) +setName_namesString
+getTitled : 5tring +getPersond ; Person
+setTitle_title:String) +setPersaniperson:Person

+gethliaso : 5tring

+setfliasi_alias:String

song Book
~tempao : float ~text :int
-genre : 5tring

+getTextd:int

+gethenred - String +setText_textiint
+ietGenre_genre:String)

+getTempob ; float
+ietTempai_tempo:floar

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass nanme="Work" tabl e="works" discrim nator-val ue="W >

<id name="id" col um="id">
<generator class="native"/>
</id>
<di scri m nator colum="type" type="character"/>

<property nane="title"/>
<set nane="aut hors" tabl e="author_work" |azy="true">

<key>
<col um nane="work_id" not-null="true"/>
</ key>
<many-t o- many cl ass="Aut hor">
<col umm nane="aut hor _id" not-null="true"/>
</ many-t o- nany>
</set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nane="text"/>
</ subcl ass>

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="tenpo"/>
<property nane="genre"/>
</ subcl ass>
</cl ass>

<cl ass nanme="Aut hor" tabl e="aut hors">

<id name="id" colum="id">

<l -- The Author nust have the sane identifier as the Person -->
<generator class="assigned"/>
</id>

<property nane="alias"/>
<one-t o- one name="person" constrained="true"/>

<set name="wor ks" tabl e="aut hor_work" inverse="true" |azy="true">
<key col um="aut hor _i d"/>
<many-t o- many cl ass="Wrk" col um="work_id"/>

Hibernate 2.1 115

Mapping Examples

</ set >
</ cl ass>

<cl ass nane="Person" tabl e="persons">
<id name="id" col um="id">
<generator class="native"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respec-
tively. aut hor _wor k is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport.

create table works (
id BIANT not null generated by default as identity,
tenpo FLQAT,
genre VARCHAR(255),
text | NTEGER
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create table author_work (
author _id BIANT not null,
work_id BIG NT not null,
primary key (work_id, author_id)
)

create table authors (
id BIA NT not null generated by default as identity,
al i as VARCHAR(255),
primary key (id)

)

create table persons (
id BIA NT not null generated by default as identity,
nane VARCHAR(255),
primary key (id)

)

alter table authors

add constraint authorsFKO foreign key (id) references persons
al ter table author_work

add constraint author_workFKO foreign key (author_id) references authors
al ter table author_work

add constraint author_workFK1 foreign key (work_id) references works

18.3. Customer/Order/Product

Now consider a model of the relationships between cust omer, O der and Li nel temand Product . There is a
one-to-many association between cust oner and o der, but how should we represent o der / Li nel t em/ Pr od-
uct ? I've chosen to map Li nel t emas an association class representing the many-to-many association between
O der and Pr oduct . In Hibernate, thisis called a composite element.

Hibernate 2.1 116

Mapping Examples

Customer Order Lineltem Product
- 0. = 1.2 — [-

-id : long -id : long —quantity :int -id : long
-hame : 5tring +customer +orders |-date : Date +Iine|ter1€ +getCuantityl : int +|Jr0dlﬁt/ -setialNumber : String
+getldd : long +aetldd : lang +setluantityl_quantity:int) +getldo: long
+setldizid:lang +setldi_id:long +getProductd ; Product +setldi_id:long
+getNamed : String +getlineltemso : List +setProductiproduct:Product) +getserialMumberd : String
+setNamei_name:>5tring +setlineltemsilineltems:List) +setSerialNumber_serialNumber:String
+getOrdersd : Set +getCustamerd : Customer
+setOrdersiordersSet) +ietCustomericustomer:Customen

+getDated : Date

+setDatei_date:Date)

The mapping document:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="custoners">
<id name="id">
<generator class="native"/>
</id>
<property name="name"/>
<set nanme="orders" inverse="true" |azy="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</set>
</ cl ass>

<cl ass nane="Order" tabl e="orders">
<id name="id">
<generator class="native"/>
</id>
<property nane="date"/>
<many-t o- one nane="custoner" colum="custoner _id"/>

<list nane="lineltens" table="line_itens" |azy="true">
<key col umm="order_id"/>
<i ndex col um="1i ne_nunber"/>

<conposi te-el emrent class="Linelteni>
<property nanme="quantity"/>
<many-t o- one nane="product" col um="product _id"/>
</ conposi te-el enent >
</list>
</cl ass>

<cl ass name="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property nane="seri al Nunber"/>
</cl ass>

</ hi ber nat e- mappi ng>

custoners, orders, |ine_itenms and products hold customer, order, order line item and product data respec-
tively. I i ne_i t ems aso acts as an association table linking orders with products.

create table custoners (
id BIA NT not null generated by default as identity
nane VARCHAR(255),
primary key (id)

)

create table orders (
id BIA NT not null generated by default as identity
custoner_id Bl G NT,
date TI MESTAMP
primary key (id)
)

create table line_itens (
i ne_nunber | NTEGER not nul |,

Hibernate 2.1 117

Mapping Examples

order_id BIG NT not null,

product _id BI G NT,

quantity | NTEGER,

primary key (order_id, |ine_nunber)

)

create table products (
id BIANT not null generated by default as identity
seri al Nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references products
alter table line_itens

add constraint line_itensFKL foreign key (order_id) references orders

Hibernate 2.1 118

Chapter 19. Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of commandline tools maintained as part of the
Hibernate project, along with Hibernate support built into XDoclet, Middlegen and AndroMDA.

The Hibernate main package comes bundled with the most important tool (it can even be used from "inside"
Hibernate on-the-fly):

» DDL schemageneration from a mapping file (aka SchemaExpor t , hbr2ddl)

Other tools directly provided by the Hibernate project are delivered with a separate package, Hibernate Exten-
sions. This package includes tools for the following tasks:

e Javasource generation from a mapping file (aka CodeGener at or , hbr2j ava)

» mapping file generation from compiled Java classes or from Java source with XDoclet markup (aka Map-
Gener at or , ¢l ass2hbm)

There's actually another utitily living in Hibernate Extensions: ddl 2hbm It is considered deprecated and will no
longer be maintained, Middlegen does a better job for the same task.

Third party tools with Hibernate support are:

» Middlegen (mapping file generation from an existing database schema)

e AndroMDA (MDA (Mode-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the Hibernate website for up-to-date
information (a snapshot of the site isincluded in the Hibernate main package).

19.1. Schema Generation

DDL may be generated from your mapping files by acommand line utility. A batch file is located in the hi ber -
nat e- x. x. x/ bi n directory of the core Hibernate package.

The generated schema include referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

Y ou must specify a SQL Di al ect viathehi ber nat e. di al ect property when using thistool.

19.1.1. Customizing the schema

Many Hibernate mapping elements define an optional attribute named | engt h. Y ou may set the length of a col-
umn with this attribute.

Some tags also accept a not-nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

Some tags accept an i ndex attribute for specifying the name of an index for that column. A uni que- key at-
tribute can be used to group columns in a single unit key constraint. Currently, the specified value of the

Hibernate 2.1 119

Toolset Guide

uni que- key attribute is not used to name the constraint, only to group the columnsin the mapping file.

Examples:

<property nanme="foo" type="string"
<many-t o- one name="bar" foreign-key="fk_foo_bar"

<el enent col um="seri al _nunber” type="I|ong"

| engt h="64" not-nul | ="true"/>
not -nul | ="true"/>
not-null ="true" uni que="true"/>

Alternatively, these elements also accept a child <col urm> element. Thisis particularly useful for multi-column

types:

<property nane="foo" type="string">
<col um nane="f oo"

</ property>

| engt h="64" not-null="true" sql-type="text"/>

<property nane="bar" type="ny.custontypes. Ml ti Col umType"/>

<col um
<col um
<col um
</ property>

nanme="f ee"
name="fi"
name="f o"

not-null ="true" index="bar idx"/>
not-null ="true" index="bar_idx"/>
not-null ="true" index="bar _idx"/>

Thesql - t ype attribute allows the user to override the default mapping of Hibernate type to SQL datatype.

Table19.1. Summary

Attribute

I ength
not - nul

uni que

i ndex

uni que- key
foreign-key

sql -type

Values
true|fal se
true| fal se
true| fal se

i ndex_nanme

uni que_key_nane
foreign_key_nane

colum_type

19.1.2. Running the tool

The schemaExpor t tool writesa DDL script to standard out and/or executes the DDL statements.

java -cp hibernate classpathsnet . sf. hi bernat e. t ool . hbn2ddl . SchemaExport options mapping_files

Table 19.2. schemabExport Command Line Options

Option
--qui et
--drop

--text

Description
don't output the script to stdout
only drop the tables

don't export to the database

Hibernate 2.1

120

Toolset Guide

Option Description

- - out put =ny_schenma. ddl output the ddl script to afile

--confi g=hi bernate. cf g. xni read Hibernate configuration from an XML file
--properties=hi bernate. properties read database properties from afile

--format format the generated SQL nicely in the script
--delimter=x set an end of line delimiter for the script

Y ou may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, true);

19.1.3. Properties

Database properties may be specified

e assystem properties with - D<property>
* inhibernate. properties
e inanamed propertiesfile with - - properti es

The needed properties are:

Table 19.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connect i on. dri ver_cl ass jdbc driver class
hi ber nat e. connect i on. url| jdbc url

hi ber nat e. connect i on. user nane database user

hi ber nat e. connecti on. password user password
hi ber nat e. di al ect dialect

19.1.4. Using Ant

You can call schemaExport from your Ant build script:

<t arget nane="schenaexport">
<t askdef nane="schenaexport"
cl assnane="net . sf. hi bernat e. t ool . hbn2ddl . SchemaExport Task"
cl asspat href ="cl ass. path"/ >

<schenmaexport
properti es="hi bernate. properties"
qui et =" no"
text ="no"
dr op="no"
delimter=";"
out put =" schenma- export.sqgl ">
<fileset dir="src">

Hibernate 2.1

121

Toolset Guide

<i ncl ude name="**/*_hbm xm "/ >
</fileset>
</ schemaexport >
</target>

19.1.5. Incremental schema updates

The schemaUpdat e tool will update an existing schema with "incremental” changes. Note that SchemaUpdat e
depends heavily upon the JIDBC metadata API, so it will not work with all JDBC drivers.

java -cp hibernate classpathsnet . sf. hi bernat e. t ool . hbn2ddl . SchemaUpdat e options mapping_files

Table 19.4. schemaUpdat e Command L ine Options

Option Description
--qui et don't output the script to stdout
--properties=hi bernate. properties read database properties from afile

Y ou may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchemaUpdat e(cf g) . execut e(fal se);

19.1.6. Using Ant for incremental schema updates

Y ou can call SchemaUpdat e from the Ant script:

<t arget nane="schenaupdate">
<t askdef nane="schenmaupdate"
cl assnanme="net . sf. hi bernat e. t ool . hbn2ddl . SchenaUpdat eTask"

cl asspat href ="cl ass. path"/>

<schenmaupdat e
properties="hi bernate. properties"
qui et ="no" >
<fileset dir="src">

<i ncl ude nane="**/*_hbm xm "/ >
</fileset>

</ schemaupdat e>

</target>

19.2. Code Generation

The Hibernate code generator may be used to generate skeletal Java implementation classes from a Hibernate
mapping file. Thistool isincluded in the Hibernate Extensions package (a seperate download).

hbnej ava parses the mapping files and generates fully working Java source files from these. Thus with
hbn2j ava one could "just" provide the . hbmfiles, and then don't worry about hand-writing/coding the Javafiles.

java -cp hibernate _classpathsnet . sf. hi ber nat e. t ool . hbr2j ava. CodeGener at or options mapping_files

Hibernate 2.1 122

Toolset Guide

Table 19.5. Code Generator Command Line Options

Option Description
- - out put =output_dir root directory for generated code
--confi g=config_file optional file for configuring hbm2java

19.2.1. The config file (optional)

The config file provides for a way to specify multiple "renderers’ for the source code and to declare <net a> at-
tributes that is "global" in scope. See more about thisin the <net a> attribute section.

<codegen>
<neta attribute="inpl enents">codegen.test.|Auditabl e</ neta>
<generate renderer="net.sf.hi bernate.tool.hbn2j ava. Basi cRenderer"/ >
<gener at e
package="aut of i nders. onl y"
suf fi x="Fi nder"
render er ="net . sf. hi ber nat e. t ool . hbnRj ava. Fi nder Renderer"/ >
</ codegen>

This config file declares a global meta attribute "implements’ and specify two renderers, the default one
(BasicRenderer) and arenderer that generates Finder's (See more in "Basic Finder generation” below).

The second renderer is provided with a package and suffix attribute.

The package attribute specifies that the generated source files from this renderer should be placed here instead
of the package scope specified in the . hbmfiles.

The suffix attribute specifies the suffix for generated files. E.g. here a file named Foo.java would be
FooFi nder . j ava instead.

19.2.2. The net a attribute

The <net a> tag is a simple way of annotating the hbm xm with information, so tools have a natural place to
store/read information that is not directly related to the Hibernate core.

You can use the <nmet a> tag to tell hbnej ava to only generate "protected” setters, have classes always imple-
ment a certain set of interfaces or even have them extend a certain base class and even more.

The following example:

<cl ass name="Person" >
<meta attribute="cl ass-description">
Javadoc for the Person class
@ut hor Frodo
</ met a>
<meta attribute="inpl erents" >l Audi t abl e</ met a>
<id name="id" type="long">
<meta attribute="scope-set">protected</neta>
<generator class="increment"/>
</id>
<property name="nane" type="string">
<meta attribute="fiel d-description">The nane of the person</neta>
</ property>
</cl ass>

Hibernate 2.1 123

Toolset Guide

will produce something like the following (code shortened for better understanding). Notice the Javadoc com-
ment and the protected set methods:

/1 default package

i mport java.io.Serializable;

i mport org. apache. conmons. | ang. bui | der . Equal sBui | der

i mport org.apache. conmons. | ang. bui | der . HashCodeBui | der
i mport org. apache. conmons. | ang. bui | der. ToStri ngBui | der

/**

* Javadoc for the Person class
& @t hor Frodo

*

=[]

public class Person inmplenments Serializable, |Auditable {

[** identifier field */
public Long id;

/** nullable persistent field */
public String nane;

[** full constructor */
public Person(java.lang. String nanme) {
thi s. nane = nane;

}

/** default constructor */
public Person() {

}

public java.lang.Long getld() {
return this.id;

}

protected void setld(java.lang.Long id) {
this.id =id;
}

/**

* The nane of the person

*/

public java.lang. String get Name() {
return this.name;

}

public void setNane(java.lang. String nanme) {
thi s. name = nane;

}

Table 19.6. Supported meta tags

Attribute Description

cl ass-description inserted into the javadoc for classes

fiel d-description inserted into the javadoc for fields/properties
interface If true an interface is generated instead of an class.

i mpl ement s interface the class should implement

ext ends class the class should extend (ignored for subclasses)

Hibernate 2.1 124

Toolset Guide

Attribute Description

gener at ed- cl ass overrule the name of the actua class generated

scope-cl ass scope for class

scope- set scope for setter method

scope- get scope for getter method

scope-field scope for actual field

use-in-tostring include this property inthet oSt ri ng()

bound add propertyChangeL istener support for a property

constrai ned bound + vetoChangeL istener support for a property

gen- property property will not be generated if false (use with care)

property-type Overrides the default type of property. Use this with any tag's
to specify the concrete type instead of just Object.

fi nder - met hod see "Basic finder generator" below

sessi on- net hod see "Basic finder generator” below

Attributes declared viathe <net a> tag are per default "inherited” inside an hbm xni file.

What does that mean? It means that if you e.g want to have al your classes implement | Audi t abl e then you
just add an <neta attribute="i npl ement s" >l Audi t abl e</ net a> in the top of the hbm xm file, just after
<hi ber nat e- mappi ng>. Now all classes defined in that hbm xni file will implement | Audi t abl e! (Except if a
class also has an "implements' meta attribute, because local specified meta tags always overrules/replaces any
inherited meta tags).

Note: This applies to all <net a>-tags. Thus it can aso e.g. be used to specify that all fields should be declare
protected, instead of the default privatee This is done by adding <neta at-
tribute="scope-fiel d">protected</neta> a e.g. just under the <cl ass> tag and all fields of that class will
be protected.

To avoid having a <nmet a>-tag inherited then you can simply specify i nherit="fal se" for the attribute, e.g.
<meta attribute="scope-class" inherit="false">public abstract</meta> will restrict the "class-scope"
to the current class, not the subclasses.

19.2.3. Basic finder generator

It is now possible to have hbnej ava generate basic finders for Hibernate properties. This requires two thingsin
the hbm xm files.

Thefirst is an indication of which fields you want to generate finders for. Y ou indicate that with a meta block
inside a property tag such as:

<property nane="nane" col um="nane" type="string">
<neta attribute="finder-nethod">findByNane</ neta>
</ property>

The finder method name will be the text enclosed in the meta tags.

Hibernate 2.1 125

Toolset Guide

The second isto create a config file for hbm2java of the format:

<codegen>

<generate renderer="net.sf.hi bernate.tool.hbnjava. Basi cRenderer"/ >

<generate suffix="Finder" renderer="net.sf. hibernate.tool.hbnRjava. Fi nder Renderer"/>
</ codegen>

And then use the param to hbnej ava - - confi g=xxx. xm where xxx. xni isthe config file you just created.
An optional parameter is metatag at the classlevel of the format:

<meta attribute="sessi on-net hod">
com what ever . Sessi onTabl e. get Sessi onTabl e() . get Sessi on() ;
</ met a>

Which would be the way in which you get sessions if you use the Thread Local Session pattern (documented in
the Design Patterns area of the Hibernate website).

19.2.4. Velocity based renderer/generator

It is now possible to use velocity as an alternative rendering mechanism. The follwing config.xml shows how to
configure hbm2javato use its velocity renderer.

<codegen>

<generate renderer="net.sf.hi bernate.tool.hbnjava. Vel oci t yRenderer">
<par am nanme="t enpl at e" >poj 0. vnk/ par an>

</ gener at e>

</ codegen>

The parameter named t enpl at e iS a resource path to the velocity macro file you want to use. This file must be
available via the classpath for hbm2java. Thus remember to add the directory where pojo.vm islocated to your
ant task or shell script. (The default location is. / t ool s/ src/ vel ocity)

Be aware that the current poj o. vm generates only the most basic parts of the java beans. It is not as complete
and feature rich as the default renderer - primarily alot of the net a tags are not supported.

19.3. Mapping File Generation

A skeletal mapping file may be generated from compiled persistent classes using a command line utility called
MapGener at or . This utility is part of the Hibernate Extensions package.

The Hibernate mapping generator provides a mechanism to produce mappings from compiled classes. It uses
Java reflection to find properties and uses heuristics to guess an appropriate mapping from the property type.
The generated mapping is intended to be a starting point only. Thereis no way to produce a full Hibernate map-
ping without extra input from the user. However, the tool does take away some of the repetitive "grunt” work
involved in producing a mapping.

Classes are added to the mapping one at a time. The tool will reject classes that it judges are are not Hibernate
persistable.

To be Hibernate persistable a class

* must not be aprimitive type
e must not be an array

Hibernate 2.1 126

Toolset Guide

¢ must not be an interface
e must not be anested class
¢ must have a default (zero argument) constructor.

Note that interfaces and nested classes actually are persistable by Hibernate, but this would not usually be in-
tended by the user.

MapGener at or Will climb the superclass chain of al added classes attempting to add as many Hibernate per-
sistable superclasses as possible to the same database table. The search stops as soon as a property is found that
has a name appearing on alist of candidate UID names.

The default list of candidate UID property namesis. ui d, Ul D, i d, | D, key, KEY, pk, PK.

Properties are discovered when there are two methods in the class, a setter and a getter, where the type of the
setter's single argument is the same as the return type of the zero argument getter, and the setter returns voi d.
Furthermore, the setter's name must start with the string set and either the getter's name starts with get or the
getter's name starts with i s and the type of the property is boolean. In either case, the remainder of their names
must match. This matching portion is the name of the property, except that the initial character of the property
name is made lower case if the second |etter is lower case.

Therules for determining the database type of each property are asfollows:

1. IftheJavatypeisHi bernat e. basi c() , then the property is asimple column of that type.

2. For hibernate. t ype. Type custom types and Per si st ent Enumasimple column is used as well.

3. If the property typeisan array, then a Hibernate array is used, and MapGener at or attempts to reflect on the
array element type.

4. |If the property hastypejava. util.List,java. util.Mp, Or java.util. Set, then the corresponding Hi-
bernate types are used, but MapGener at or cannot further process the insides of these types.

5. If the property's type is any other class, MapGener at or defers the decision on the database representation
until all classes have been processed. At this point, if the class was discovered through the superclass
search described above, then the property is an many- t o- one association. If the class has any properties,
then it isaconponent . Otherwiseit is serializable, or not persistable.

19.3.1. Running the tool

The tool writes XML mappings to standard out and/or to afile.
When invoking the tool you must place your compiled classes on the classpath.

java -cp hibernate and your_ class classpaths net . sf. hi bernate. t ool . cl ass2hbm MapGener at or Options
and classnames

There are two modes of operation: command line or interactive.

The interactive mode is selected by providing the single command line argument - - i nt er act . This mode pro-
vides a prompt response console. Using it you can set the UID property name for each class using the ui d=Xxx
command where xxx is the UID property name. Other command alternatives are simply a fully qualified class
name, or the command done which emits the XML and terminates.

In command line mode the arguments are the options below interspersed with fully qualified class names of the
classes to be processed. Most of the options are meant to be used multiple times; each use affects subsequently
added classes.

Table 19.7. MapGenerator Command Line Options

Hibernate 2.1 127

Toolset Guide

Option Description

--qui et don't output the O-R Mapping to stdout

--set Ul D=ui d set the list of candidate UIDs to the singleton uid

--addUl D=ui d add uid to the front of the list of candidate UIDs

--sel ect =mode mode use select mode mode(e.g., distinct or all) for subsequently added
classes

--dept h=<smal | -i nt > limit the depth of component data recursion for subsequently added
classes

- - out put =ny_mappi ng. xm output the O-R Mapping to afile

full.class.Name add the class to the mapping

- - abst ract =full.class.Name see below

The abstract switch directs the map generator tool to ignore specific super classes so that classes with common
inheritance are not mapped to one large table. For instance, consider these class hierarchies:

Ani mal - - >Mammal - - >Hurman
Ani mal - - >Manmmal - - >Mar supi al - - >Kangar oo

If the - - abst ract switch is not used, all classes will be mapped as subclasses of Ani mal , resulting in one large
table containing all the properties of al the classes plus a discriminator column to indicate which subclassis ac-
tually stored. If Mammal is marked as abst ract , Huran and Mar supi al will be mapped to separate <cl ass> dec-
larations and stored in separate tables. Kangar oo Will still be a subclass of Mar supi al unless Mar supi al isalso
marked asabstract .

Hibernate 2.1 128

Chapter 20. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you should use them. We
recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, usej ava. | ang. Long Of j ava. | ang. Stri ng.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com eg. Foo in the file cont eg/ Foo. hbm xni . This
makes particularly good sense in ateam environment.

L oad mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings will make the application more portable.

Use bind variables.
As in JDBC, aways replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using named parametersin queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be considered a last-resort.
If you can't use the built-in connections providers, consider providing your own implementation of
net . sf. hi bernat e. connecti on. Connecti onProvi der .

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but doesn't provide the ac-
cessors needed to map it a a component. You should consider implementing
net . sf. hi ber nat e. User Type. This approach frees the application code from implementing transforma-
tionsto / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct JDBC. But please, wait until you know something is a bottleneck. And don't assume that di-
rect JDBC is necessarily faster. If need to use direct JDBC, it might be worth opening a Hibernate Sessi on
and using that SQL connection. That way you can still use the same transaction strategy and underlying
connection provider.

Understand Sessi on flushing.
From time to time the Session synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. Y ou may sometimes minimize unnecessary flushing by disabling au-
tomatic flushing or even by changing the order of queries and other operations within a particular transac-
tion.

In athreetiered architecture, consider using saveOr Updat e() .
When using a servlet / session bean architecture, you could pass persistent objects loaded in the session
bean to and from the servlet / JSP layer. Use a new session to service each request. Use Sessi on. updat e()

Hibernate 2.1 129

Best Practices

Or Sessi on. saveOr Updat e() to update the persistent state of an object.

In atwo tiered architecture, consider using session disconnection.
When using a servlet only, you may reuse the same session for multiple client requests. Just remember to
disconnect the session before returning control to the client.

Don't treat exceptions as recoverable.
This is more of a necessary paractice than a "best" practice. When an exception occurs, roll back the
Transact i on and close the Sessi on. If you don't, Hibernate can't guarantee that in-memory state accurately
represents persistent state. As a special case of this, do not use Sessi on. | oad() to determine if an instance
with the given identifier exists on the database; usefi nd() instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached at the JVM-level. For associations to cached classes, where there is a high prob-
ability of a cache hit, explicitly disable eager fetching using out er-j oi n="f al se". When an outer-join
fetch is appropriate to a particular use case, use aquery withal eft join.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded JDBC, associated to Hibernate via a User -
Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an application
with five tables!)

Hibernate 2.1 130

	HIBERNATE - Relational Persistence for Idiomatic Java
	Preface
	Chapter 1. Quickstart with Tomcat
	1.1. Getting started with Hibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview
	2.2. Persistent Object Identity
	2.3. JMX Integration
	2.4. JCA Support

	Chapter 3. SessionFactory Configuration
	3.1. Programmatic Configuration
	3.2. Obtaining a SessionFactory
	3.3. User provided JDBC connection
	3.4. Hibernate provided JDBC connection
	3.5. Other properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Binary Streams
	3.5.4. SQL Logging to Console
	3.5.5. Custom ConnectionProvider
	3.5.6. Common connection properties
	3.5.7. Custom CacheProvider
	3.5.8. Transaction Strategy
	3.5.9. JNDI-bound SessionFactory
	3.5.10. Query Language Substitution

	3.6. XML Configuration File
	3.7. Logging

	Chapter 4. Persistent Classes
	4.1. Simple Example
	4.1.1. Declare accessors and mutators for persistent fields
	4.1.2. Implement a default constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-final classes (optional)

	4.2. Inheritance
	4.3. Persistent Lifecycle Callbacks
	4.4. Validatable
	4.5. XDoclet Example

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. Doctype
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. id
	5.1.4.1. generator
	5.1.4.2. Hi/Lo Algorithm
	5.1.4.3. UUID Algorithm
	5.1.4.4. Identity Columns and Sequences
	5.1.4.5. Assigned Identifiers

	5.1.5. composite-id
	5.1.6. discriminator
	5.1.7. version (optional)
	5.1.8. timestamp (optional)
	5.1.9. property
	5.1.10. many-to-one
	5.1.11. one-to-one
	5.1.12. component, dynamic-component
	5.1.13. subclass
	5.1.14. joined-subclass
	5.1.15. map, set, list, bag
	5.1.16. import

	5.2. Hibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Persistent enum types
	5.2.4. Custom value types
	5.2.5. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Customizing the DDL
	5.5. Modular mapping files

	Chapter 6. Collections
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many To Many Associations
	6.4. One To Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Other Ways To Sort a Collection
	6.8. Garbage Collection
	6.9. Bidirectional Associations
	6.10. Ternary Associations
	6.11. Heterogeneous Associations
	6.12. Collection Example
	6.13. <idbag>

	Chapter 7. Components
	7.1. As Dependent Objects
	7.2. In Collections
	7.3. As a Map Index
	7.4. As Composite Identifiers
	7.5. Dynamic components

	Chapter 8. Manipulating Persistent Data
	8.1. Creating a persistent object
	8.2. Loading an object
	8.3. Querying
	8.3.1. Scalar queries
	8.3.2. The Query interface
	8.3.3. Scrollable iteration
	8.3.4. Filtering collections
	8.3.5. Criteria queries
	8.3.6. Queries in native SQL

	8.4. Updating objects saved or loaded in the current session
	8.5. Updating objects saved or loaded in a previous session
	8.6. Reassociating objects saved or loaded in a previous session
	8.7. Deleting persistent objects
	8.8. Graphs of objects
	8.8.1. Lifecycle objects
	8.8.2. Persistence by Reachability

	8.9. Flushing
	8.10. Ending a Session
	8.10.1. Flushing the session
	8.10.2. Committing the transaction
	8.10.3. Closing the session
	8.10.4. Exception handling

	8.11. Interceptors
	8.12. Metadata API

	Chapter 9. Parent/Child Relationships
	9.1. A note about collections
	9.2. Bidirectional one to many
	9.3. Cascades
	9.4. Using cascading update()
	9.5. Conclusion

	Chapter 10. Hibernate Query Language
	10.1. Case Sensitivity
	10.2. The from clause
	10.3. Associations and joins
	10.4. The select clause
	10.5. Aggregate functions
	10.6. polymorphism
	10.7. The where clause
	10.8. Expressions
	10.9. The order by clause
	10.10. The group by clause
	10.11. Subqueries
	10.12. Examples
	10.13. Tips & Tricks

	Chapter 11. A Worked Example
	11.1. Persistent Classes
	11.2. Hibernate Mappings
	11.3. Hibernate Code

	Chapter 12. Improving Performance
	12.1. Proxies for Lazy Initialization
	12.2. The Second Level Cache
	12.2.1. Mapping
	12.2.2. read only
	12.2.3. read / write
	12.2.4. nonstrict read / write
	12.2.5. transactional

	12.3. Managing the Session Cache
	12.4. The Query Cache

	Chapter 13. Understanding Collection Performance
	13.1. Taxonomy
	13.2. Lists, maps and sets are the most efficient collections to update
	13.3. Bags and lists are the most efficient inverse collections
	13.4. One shot delete

	Chapter 14. Criteria Queries
	14.1. Creating a Criteria instance
	14.2. Narrowing the result set
	14.3. Ordering the results
	14.4. Associations
	14.5. Dynamic association fetching
	14.6. Example queries

	Chapter 15. SQL Queries
	15.1. Creating a SQL based Query
	15.2. Alias and property references
	15.3. Named SQL queries

	Chapter 16. Inheritance Mappings
	16.1. The Three Strategies
	16.2. Limitations

	Chapter 17. Transactions And Concurrency
	17.1. Configurations, Sessions and Factories
	17.2. Threads and connections
	17.3. Optimistic Locking / Versioning
	17.3.1. Long session with automatic versioning
	17.3.2. Many sessions with automatic versioning
	17.3.3. Application version checking

	17.4. Session disconnection
	17.5. Pessimistic Locking

	Chapter 18. Mapping Examples
	18.1. Employer/Employee
	18.2. Author/Work
	18.3. Customer/Order/Product

	Chapter 19. Toolset Guide
	19.1. Schema Generation
	19.1.1. Customizing the schema
	19.1.2. Running the tool
	19.1.3. Properties
	19.1.4. Using Ant
	19.1.5. Incremental schema updates
	19.1.6. Using Ant for incremental schema updates

	19.2. Code Generation
	19.2.1. The config file (optional)
	19.2.2. The meta attribute
	19.2.3. Basic finder generator
	19.2.4. Velocity based renderer/generator

	19.3. Mapping File Generation
	19.3.1. Running the tool

	Chapter 20. Best Practices

