/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package transport import ( "context" "fmt" "io" "math" "net" "net/http" "path/filepath" "strconv" "strings" "sync" "sync/atomic" "time" "golang.org/x/net/http2" "golang.org/x/net/http2/hpack" "google.golang.org/grpc/codes" "google.golang.org/grpc/credentials" "google.golang.org/grpc/internal/channelz" icredentials "google.golang.org/grpc/internal/credentials" "google.golang.org/grpc/internal/grpcutil" imetadata "google.golang.org/grpc/internal/metadata" "google.golang.org/grpc/internal/syscall" "google.golang.org/grpc/internal/transport/networktype" "google.golang.org/grpc/keepalive" "google.golang.org/grpc/metadata" "google.golang.org/grpc/peer" "google.golang.org/grpc/resolver" "google.golang.org/grpc/stats" "google.golang.org/grpc/status" ) // clientConnectionCounter counts the number of connections a client has // initiated (equal to the number of http2Clients created). Must be accessed // atomically. var clientConnectionCounter uint64 // http2Client implements the ClientTransport interface with HTTP2. type http2Client struct { lastRead int64 // Keep this field 64-bit aligned. Accessed atomically. ctx context.Context cancel context.CancelFunc ctxDone <-chan struct{} // Cache the ctx.Done() chan. userAgent string md metadata.MD conn net.Conn // underlying communication channel loopy *loopyWriter remoteAddr net.Addr localAddr net.Addr authInfo credentials.AuthInfo // auth info about the connection readerDone chan struct{} // sync point to enable testing. writerDone chan struct{} // sync point to enable testing. // goAway is closed to notify the upper layer (i.e., addrConn.transportMonitor) // that the server sent GoAway on this transport. goAway chan struct{} framer *framer // controlBuf delivers all the control related tasks (e.g., window // updates, reset streams, and various settings) to the controller. controlBuf *controlBuffer fc *trInFlow // The scheme used: https if TLS is on, http otherwise. scheme string isSecure bool perRPCCreds []credentials.PerRPCCredentials kp keepalive.ClientParameters keepaliveEnabled bool statsHandler stats.Handler initialWindowSize int32 // configured by peer through SETTINGS_MAX_HEADER_LIST_SIZE maxSendHeaderListSize *uint32 bdpEst *bdpEstimator // onPrefaceReceipt is a callback that client transport calls upon // receiving server preface to signal that a succefull HTTP2 // connection was established. onPrefaceReceipt func() maxConcurrentStreams uint32 streamQuota int64 streamsQuotaAvailable chan struct{} waitingStreams uint32 nextID uint32 mu sync.Mutex // guard the following variables state transportState activeStreams map[uint32]*Stream // prevGoAway ID records the Last-Stream-ID in the previous GOAway frame. prevGoAwayID uint32 // goAwayReason records the http2.ErrCode and debug data received with the // GoAway frame. goAwayReason GoAwayReason // goAwayDebugMessage contains a detailed human readable string about a // GoAway frame, useful for error messages. goAwayDebugMessage string // A condition variable used to signal when the keepalive goroutine should // go dormant. The condition for dormancy is based on the number of active // streams and the `PermitWithoutStream` keepalive client parameter. And // since the number of active streams is guarded by the above mutex, we use // the same for this condition variable as well. kpDormancyCond *sync.Cond // A boolean to track whether the keepalive goroutine is dormant or not. // This is checked before attempting to signal the above condition // variable. kpDormant bool // Fields below are for channelz metric collection. channelzID int64 // channelz unique identification number czData *channelzData onGoAway func(GoAwayReason) onClose func() bufferPool *bufferPool connectionID uint64 } func dial(ctx context.Context, fn func(context.Context, string) (net.Conn, error), addr resolver.Address, useProxy bool, grpcUA string) (net.Conn, error) { address := addr.Addr networkType, ok := networktype.Get(addr) if fn != nil { // Special handling for unix scheme with custom dialer. Back in the day, // we did not have a unix resolver and therefore targets with a unix // scheme would end up using the passthrough resolver. So, user's used a // custom dialer in this case and expected the original dial target to // be passed to the custom dialer. Now, we have a unix resolver. But if // a custom dialer is specified, we want to retain the old behavior in // terms of the address being passed to the custom dialer. if networkType == "unix" && !strings.HasPrefix(address, "\x00") { // Supported unix targets are either "unix://absolute-path" or // "unix:relative-path". if filepath.IsAbs(address) { return fn(ctx, "unix://"+address) } return fn(ctx, "unix:"+address) } return fn(ctx, address) } if !ok { networkType, address = parseDialTarget(address) } if networkType == "tcp" && useProxy { return proxyDial(ctx, address, grpcUA) } return (&net.Dialer{}).DialContext(ctx, networkType, address) } func isTemporary(err error) bool { switch err := err.(type) { case interface { Temporary() bool }: return err.Temporary() case interface { Timeout() bool }: // Timeouts may be resolved upon retry, and are thus treated as // temporary. return err.Timeout() } return true } // newHTTP2Client constructs a connected ClientTransport to addr based on HTTP2 // and starts to receive messages on it. Non-nil error returns if construction // fails. func newHTTP2Client(connectCtx, ctx context.Context, addr resolver.Address, opts ConnectOptions, onPrefaceReceipt func(), onGoAway func(GoAwayReason), onClose func()) (_ *http2Client, err error) { scheme := "http" ctx, cancel := context.WithCancel(ctx) defer func() { if err != nil { cancel() } }() // gRPC, resolver, balancer etc. can specify arbitrary data in the // Attributes field of resolver.Address, which is shoved into connectCtx // and passed to the dialer and credential handshaker. This makes it possible for // address specific arbitrary data to reach custom dialers and credential handshakers. connectCtx = icredentials.NewClientHandshakeInfoContext(connectCtx, credentials.ClientHandshakeInfo{Attributes: addr.Attributes}) conn, err := dial(connectCtx, opts.Dialer, addr, opts.UseProxy, opts.UserAgent) if err != nil { if opts.FailOnNonTempDialError { return nil, connectionErrorf(isTemporary(err), err, "transport: error while dialing: %v", err) } return nil, connectionErrorf(true, err, "transport: Error while dialing %v", err) } // Any further errors will close the underlying connection defer func(conn net.Conn) { if err != nil { conn.Close() } }(conn) kp := opts.KeepaliveParams // Validate keepalive parameters. if kp.Time == 0 { kp.Time = defaultClientKeepaliveTime } if kp.Timeout == 0 { kp.Timeout = defaultClientKeepaliveTimeout } keepaliveEnabled := false if kp.Time != infinity { if err = syscall.SetTCPUserTimeout(conn, kp.Timeout); err != nil { return nil, connectionErrorf(false, err, "transport: failed to set TCP_USER_TIMEOUT: %v", err) } keepaliveEnabled = true } var ( isSecure bool authInfo credentials.AuthInfo ) transportCreds := opts.TransportCredentials perRPCCreds := opts.PerRPCCredentials if b := opts.CredsBundle; b != nil { if t := b.TransportCredentials(); t != nil { transportCreds = t } if t := b.PerRPCCredentials(); t != nil { perRPCCreds = append(perRPCCreds, t) } } if transportCreds != nil { rawConn := conn // Pull the deadline from the connectCtx, which will be used for // timeouts in the authentication protocol handshake. Can ignore the // boolean as the deadline will return the zero value, which will make // the conn not timeout on I/O operations. deadline, _ := connectCtx.Deadline() rawConn.SetDeadline(deadline) conn, authInfo, err = transportCreds.ClientHandshake(connectCtx, addr.ServerName, rawConn) rawConn.SetDeadline(time.Time{}) if err != nil { return nil, connectionErrorf(isTemporary(err), err, "transport: authentication handshake failed: %v", err) } for _, cd := range perRPCCreds { if cd.RequireTransportSecurity() { if ci, ok := authInfo.(interface { GetCommonAuthInfo() credentials.CommonAuthInfo }); ok { secLevel := ci.GetCommonAuthInfo().SecurityLevel if secLevel != credentials.InvalidSecurityLevel && secLevel < credentials.PrivacyAndIntegrity { return nil, connectionErrorf(true, nil, "transport: cannot send secure credentials on an insecure connection") } } } } isSecure = true if transportCreds.Info().SecurityProtocol == "tls" { scheme = "https" } } dynamicWindow := true icwz := int32(initialWindowSize) if opts.InitialConnWindowSize >= defaultWindowSize { icwz = opts.InitialConnWindowSize dynamicWindow = false } writeBufSize := opts.WriteBufferSize readBufSize := opts.ReadBufferSize maxHeaderListSize := defaultClientMaxHeaderListSize if opts.MaxHeaderListSize != nil { maxHeaderListSize = *opts.MaxHeaderListSize } t := &http2Client{ ctx: ctx, ctxDone: ctx.Done(), // Cache Done chan. cancel: cancel, userAgent: opts.UserAgent, conn: conn, remoteAddr: conn.RemoteAddr(), localAddr: conn.LocalAddr(), authInfo: authInfo, readerDone: make(chan struct{}), writerDone: make(chan struct{}), goAway: make(chan struct{}), framer: newFramer(conn, writeBufSize, readBufSize, maxHeaderListSize), fc: &trInFlow{limit: uint32(icwz)}, scheme: scheme, activeStreams: make(map[uint32]*Stream), isSecure: isSecure, perRPCCreds: perRPCCreds, kp: kp, statsHandler: opts.StatsHandler, initialWindowSize: initialWindowSize, onPrefaceReceipt: onPrefaceReceipt, nextID: 1, maxConcurrentStreams: defaultMaxStreamsClient, streamQuota: defaultMaxStreamsClient, streamsQuotaAvailable: make(chan struct{}, 1), czData: new(channelzData), onGoAway: onGoAway, onClose: onClose, keepaliveEnabled: keepaliveEnabled, bufferPool: newBufferPool(), } if md, ok := addr.Metadata.(*metadata.MD); ok { t.md = *md } else if md := imetadata.Get(addr); md != nil { t.md = md } t.controlBuf = newControlBuffer(t.ctxDone) if opts.InitialWindowSize >= defaultWindowSize { t.initialWindowSize = opts.InitialWindowSize dynamicWindow = false } if dynamicWindow { t.bdpEst = &bdpEstimator{ bdp: initialWindowSize, updateFlowControl: t.updateFlowControl, } } if t.statsHandler != nil { t.ctx = t.statsHandler.TagConn(t.ctx, &stats.ConnTagInfo{ RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, }) connBegin := &stats.ConnBegin{ Client: true, } t.statsHandler.HandleConn(t.ctx, connBegin) } if channelz.IsOn() { t.channelzID = channelz.RegisterNormalSocket(t, opts.ChannelzParentID, fmt.Sprintf("%s -> %s", t.localAddr, t.remoteAddr)) } if t.keepaliveEnabled { t.kpDormancyCond = sync.NewCond(&t.mu) go t.keepalive() } // Start the reader goroutine for incoming message. Each transport has // a dedicated goroutine which reads HTTP2 frame from network. Then it // dispatches the frame to the corresponding stream entity. go t.reader() // Send connection preface to server. n, err := t.conn.Write(clientPreface) if err != nil { err = connectionErrorf(true, err, "transport: failed to write client preface: %v", err) t.Close(err) return nil, err } if n != len(clientPreface) { err = connectionErrorf(true, nil, "transport: preface mismatch, wrote %d bytes; want %d", n, len(clientPreface)) t.Close(err) return nil, err } var ss []http2.Setting if t.initialWindowSize != defaultWindowSize { ss = append(ss, http2.Setting{ ID: http2.SettingInitialWindowSize, Val: uint32(t.initialWindowSize), }) } if opts.MaxHeaderListSize != nil { ss = append(ss, http2.Setting{ ID: http2.SettingMaxHeaderListSize, Val: *opts.MaxHeaderListSize, }) } err = t.framer.fr.WriteSettings(ss...) if err != nil { err = connectionErrorf(true, err, "transport: failed to write initial settings frame: %v", err) t.Close(err) return nil, err } // Adjust the connection flow control window if needed. if delta := uint32(icwz - defaultWindowSize); delta > 0 { if err := t.framer.fr.WriteWindowUpdate(0, delta); err != nil { err = connectionErrorf(true, err, "transport: failed to write window update: %v", err) t.Close(err) return nil, err } } t.connectionID = atomic.AddUint64(&clientConnectionCounter, 1) if err := t.framer.writer.Flush(); err != nil { return nil, err } go func() { t.loopy = newLoopyWriter(clientSide, t.framer, t.controlBuf, t.bdpEst) err := t.loopy.run() if err != nil { if logger.V(logLevel) { logger.Errorf("transport: loopyWriter.run returning. Err: %v", err) } } // Do not close the transport. Let reader goroutine handle it since // there might be data in the buffers. t.conn.Close() t.controlBuf.finish() close(t.writerDone) }() return t, nil } func (t *http2Client) newStream(ctx context.Context, callHdr *CallHdr) *Stream { // TODO(zhaoq): Handle uint32 overflow of Stream.id. s := &Stream{ ct: t, done: make(chan struct{}), method: callHdr.Method, sendCompress: callHdr.SendCompress, buf: newRecvBuffer(), headerChan: make(chan struct{}), contentSubtype: callHdr.ContentSubtype, doneFunc: callHdr.DoneFunc, } s.wq = newWriteQuota(defaultWriteQuota, s.done) s.requestRead = func(n int) { t.adjustWindow(s, uint32(n)) } // The client side stream context should have exactly the same life cycle with the user provided context. // That means, s.ctx should be read-only. And s.ctx is done iff ctx is done. // So we use the original context here instead of creating a copy. s.ctx = ctx s.trReader = &transportReader{ reader: &recvBufferReader{ ctx: s.ctx, ctxDone: s.ctx.Done(), recv: s.buf, closeStream: func(err error) { t.CloseStream(s, err) }, freeBuffer: t.bufferPool.put, }, windowHandler: func(n int) { t.updateWindow(s, uint32(n)) }, } return s } func (t *http2Client) getPeer() *peer.Peer { return &peer.Peer{ Addr: t.remoteAddr, AuthInfo: t.authInfo, } } func (t *http2Client) createHeaderFields(ctx context.Context, callHdr *CallHdr) ([]hpack.HeaderField, error) { aud := t.createAudience(callHdr) ri := credentials.RequestInfo{ Method: callHdr.Method, AuthInfo: t.authInfo, } ctxWithRequestInfo := icredentials.NewRequestInfoContext(ctx, ri) authData, err := t.getTrAuthData(ctxWithRequestInfo, aud) if err != nil { return nil, err } callAuthData, err := t.getCallAuthData(ctxWithRequestInfo, aud, callHdr) if err != nil { return nil, err } // TODO(mmukhi): Benchmark if the performance gets better if count the metadata and other header fields // first and create a slice of that exact size. // Make the slice of certain predictable size to reduce allocations made by append. hfLen := 7 // :method, :scheme, :path, :authority, content-type, user-agent, te hfLen += len(authData) + len(callAuthData) headerFields := make([]hpack.HeaderField, 0, hfLen) headerFields = append(headerFields, hpack.HeaderField{Name: ":method", Value: "POST"}) headerFields = append(headerFields, hpack.HeaderField{Name: ":scheme", Value: t.scheme}) headerFields = append(headerFields, hpack.HeaderField{Name: ":path", Value: callHdr.Method}) headerFields = append(headerFields, hpack.HeaderField{Name: ":authority", Value: callHdr.Host}) headerFields = append(headerFields, hpack.HeaderField{Name: "content-type", Value: grpcutil.ContentType(callHdr.ContentSubtype)}) headerFields = append(headerFields, hpack.HeaderField{Name: "user-agent", Value: t.userAgent}) headerFields = append(headerFields, hpack.HeaderField{Name: "te", Value: "trailers"}) if callHdr.PreviousAttempts > 0 { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-previous-rpc-attempts", Value: strconv.Itoa(callHdr.PreviousAttempts)}) } if callHdr.SendCompress != "" { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-encoding", Value: callHdr.SendCompress}) headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-accept-encoding", Value: callHdr.SendCompress}) } if dl, ok := ctx.Deadline(); ok { // Send out timeout regardless its value. The server can detect timeout context by itself. // TODO(mmukhi): Perhaps this field should be updated when actually writing out to the wire. timeout := time.Until(dl) headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-timeout", Value: grpcutil.EncodeDuration(timeout)}) } for k, v := range authData { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } for k, v := range callAuthData { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } if b := stats.OutgoingTags(ctx); b != nil { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-tags-bin", Value: encodeBinHeader(b)}) } if b := stats.OutgoingTrace(ctx); b != nil { headerFields = append(headerFields, hpack.HeaderField{Name: "grpc-trace-bin", Value: encodeBinHeader(b)}) } if md, added, ok := metadata.FromOutgoingContextRaw(ctx); ok { var k string for k, vv := range md { // HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set. if isReservedHeader(k) { continue } for _, v := range vv { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } for _, vv := range added { for i, v := range vv { if i%2 == 0 { k = strings.ToLower(v) continue } // HTTP doesn't allow you to set pseudoheaders after non pseudoheaders were set. if isReservedHeader(k) { continue } headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } } for k, vv := range t.md { if isReservedHeader(k) { continue } for _, v := range vv { headerFields = append(headerFields, hpack.HeaderField{Name: k, Value: encodeMetadataHeader(k, v)}) } } return headerFields, nil } func (t *http2Client) createAudience(callHdr *CallHdr) string { // Create an audience string only if needed. if len(t.perRPCCreds) == 0 && callHdr.Creds == nil { return "" } // Construct URI required to get auth request metadata. // Omit port if it is the default one. host := strings.TrimSuffix(callHdr.Host, ":443") pos := strings.LastIndex(callHdr.Method, "/") if pos == -1 { pos = len(callHdr.Method) } return "https://" + host + callHdr.Method[:pos] } func (t *http2Client) getTrAuthData(ctx context.Context, audience string) (map[string]string, error) { if len(t.perRPCCreds) == 0 { return nil, nil } authData := map[string]string{} for _, c := range t.perRPCCreds { data, err := c.GetRequestMetadata(ctx, audience) if err != nil { if _, ok := status.FromError(err); ok { return nil, err } return nil, status.Errorf(codes.Unauthenticated, "transport: per-RPC creds failed due to error: %v", err) } for k, v := range data { // Capital header names are illegal in HTTP/2. k = strings.ToLower(k) authData[k] = v } } return authData, nil } func (t *http2Client) getCallAuthData(ctx context.Context, audience string, callHdr *CallHdr) (map[string]string, error) { var callAuthData map[string]string // Check if credentials.PerRPCCredentials were provided via call options. // Note: if these credentials are provided both via dial options and call // options, then both sets of credentials will be applied. if callCreds := callHdr.Creds; callCreds != nil { if callCreds.RequireTransportSecurity() { ri, _ := credentials.RequestInfoFromContext(ctx) if !t.isSecure || credentials.CheckSecurityLevel(ri.AuthInfo, credentials.PrivacyAndIntegrity) != nil { return nil, status.Error(codes.Unauthenticated, "transport: cannot send secure credentials on an insecure connection") } } data, err := callCreds.GetRequestMetadata(ctx, audience) if err != nil { return nil, status.Errorf(codes.Internal, "transport: %v", err) } callAuthData = make(map[string]string, len(data)) for k, v := range data { // Capital header names are illegal in HTTP/2 k = strings.ToLower(k) callAuthData[k] = v } } return callAuthData, nil } // NewStreamError wraps an error and reports additional information. Typically // NewStream errors result in transparent retry, as they mean nothing went onto // the wire. However, there are two notable exceptions: // // 1. If the stream headers violate the max header list size allowed by the // server. In this case there is no reason to retry at all, as it is // assumed the RPC would continue to fail on subsequent attempts. // 2. If the credentials errored when requesting their headers. In this case, // it's possible a retry can fix the problem, but indefinitely transparently // retrying is not appropriate as it is likely the credentials, if they can // eventually succeed, would need I/O to do so. type NewStreamError struct { Err error DoNotRetry bool DoNotTransparentRetry bool } func (e NewStreamError) Error() string { return e.Err.Error() } // NewStream creates a stream and registers it into the transport as "active" // streams. All non-nil errors returned will be *NewStreamError. func (t *http2Client) NewStream(ctx context.Context, callHdr *CallHdr) (_ *Stream, err error) { ctx = peer.NewContext(ctx, t.getPeer()) headerFields, err := t.createHeaderFields(ctx, callHdr) if err != nil { return nil, &NewStreamError{Err: err, DoNotTransparentRetry: true} } s := t.newStream(ctx, callHdr) cleanup := func(err error) { if s.swapState(streamDone) == streamDone { // If it was already done, return. return } // The stream was unprocessed by the server. atomic.StoreUint32(&s.unprocessed, 1) s.write(recvMsg{err: err}) close(s.done) // If headerChan isn't closed, then close it. if atomic.CompareAndSwapUint32(&s.headerChanClosed, 0, 1) { close(s.headerChan) } } hdr := &headerFrame{ hf: headerFields, endStream: false, initStream: func(id uint32) error { t.mu.Lock() if state := t.state; state != reachable { t.mu.Unlock() // Do a quick cleanup. err := error(errStreamDrain) if state == closing { err = ErrConnClosing } cleanup(err) return err } t.activeStreams[id] = s if channelz.IsOn() { atomic.AddInt64(&t.czData.streamsStarted, 1) atomic.StoreInt64(&t.czData.lastStreamCreatedTime, time.Now().UnixNano()) } // If the keepalive goroutine has gone dormant, wake it up. if t.kpDormant { t.kpDormancyCond.Signal() } t.mu.Unlock() return nil }, onOrphaned: cleanup, wq: s.wq, } firstTry := true var ch chan struct{} checkForStreamQuota := func(it interface{}) bool { if t.streamQuota <= 0 { // Can go negative if server decreases it. if firstTry { t.waitingStreams++ } ch = t.streamsQuotaAvailable return false } if !firstTry { t.waitingStreams-- } t.streamQuota-- h := it.(*headerFrame) h.streamID = t.nextID t.nextID += 2 s.id = h.streamID s.fc = &inFlow{limit: uint32(t.initialWindowSize)} if t.streamQuota > 0 && t.waitingStreams > 0 { select { case t.streamsQuotaAvailable <- struct{}{}: default: } } return true } var hdrListSizeErr error checkForHeaderListSize := func(it interface{}) bool { if t.maxSendHeaderListSize == nil { return true } hdrFrame := it.(*headerFrame) var sz int64 for _, f := range hdrFrame.hf { if sz += int64(f.Size()); sz > int64(*t.maxSendHeaderListSize) { hdrListSizeErr = status.Errorf(codes.Internal, "header list size to send violates the maximum size (%d bytes) set by server", *t.maxSendHeaderListSize) return false } } return true } for { success, err := t.controlBuf.executeAndPut(func(it interface{}) bool { if !checkForStreamQuota(it) { return false } if !checkForHeaderListSize(it) { return false } return true }, hdr) if err != nil { return nil, &NewStreamError{Err: err} } if success { break } if hdrListSizeErr != nil { return nil, &NewStreamError{Err: hdrListSizeErr, DoNotRetry: true} } firstTry = false select { case <-ch: case <-ctx.Done(): return nil, &NewStreamError{Err: ContextErr(ctx.Err())} case <-t.goAway: return nil, &NewStreamError{Err: errStreamDrain} case <-t.ctx.Done(): return nil, &NewStreamError{Err: ErrConnClosing} } } if t.statsHandler != nil { header, ok := metadata.FromOutgoingContext(ctx) if ok { header.Set("user-agent", t.userAgent) } else { header = metadata.Pairs("user-agent", t.userAgent) } // Note: The header fields are compressed with hpack after this call returns. // No WireLength field is set here. outHeader := &stats.OutHeader{ Client: true, FullMethod: callHdr.Method, RemoteAddr: t.remoteAddr, LocalAddr: t.localAddr, Compression: callHdr.SendCompress, Header: header, } t.statsHandler.HandleRPC(s.ctx, outHeader) } return s, nil } // CloseStream clears the footprint of a stream when the stream is not needed any more. // This must not be executed in reader's goroutine. func (t *http2Client) CloseStream(s *Stream, err error) { var ( rst bool rstCode http2.ErrCode ) if err != nil { rst = true rstCode = http2.ErrCodeCancel } t.closeStream(s, err, rst, rstCode, status.Convert(err), nil, false) } func (t *http2Client) closeStream(s *Stream, err error, rst bool, rstCode http2.ErrCode, st *status.Status, mdata map[string][]string, eosReceived bool) { // Set stream status to done. if s.swapState(streamDone) == streamDone { // If it was already done, return. If multiple closeStream calls // happen simultaneously, wait for the first to finish. <-s.done return } // status and trailers can be updated here without any synchronization because the stream goroutine will // only read it after it sees an io.EOF error from read or write and we'll write those errors // only after updating this. s.status = st if len(mdata) > 0 { s.trailer = mdata } if err != nil { // This will unblock reads eventually. s.write(recvMsg{err: err}) } // If headerChan isn't closed, then close it. if atomic.CompareAndSwapUint32(&s.headerChanClosed, 0, 1) { s.noHeaders = true close(s.headerChan) } cleanup := &cleanupStream{ streamID: s.id, onWrite: func() { t.mu.Lock() if t.activeStreams != nil { delete(t.activeStreams, s.id) } t.mu.Unlock() if channelz.IsOn() { if eosReceived { atomic.AddInt64(&t.czData.streamsSucceeded, 1) } else { atomic.AddInt64(&t.czData.streamsFailed, 1) } } }, rst: rst, rstCode: rstCode, } addBackStreamQuota := func(interface{}) bool { t.streamQuota++ if t.streamQuota > 0 && t.waitingStreams > 0 { select { case t.streamsQuotaAvailable <- struct{}{}: default: } } return true } t.controlBuf.executeAndPut(addBackStreamQuota, cleanup) // This will unblock write. close(s.done) if s.doneFunc != nil { s.doneFunc() } } // Close kicks off the shutdown process of the transport. This should be called // only once on a transport. Once it is called, the transport should not be // accessed any more. // // This method blocks until the addrConn that initiated this transport is // re-connected. This happens because t.onClose() begins reconnect logic at the // addrConn level and blocks until the addrConn is successfully connected. func (t *http2Client) Close(err error) { t.mu.Lock() // Make sure we only Close once. if t.state == closing { t.mu.Unlock() return } // Call t.onClose before setting the state to closing to prevent the client // from attempting to create new streams ASAP. t.onClose() t.state = closing streams := t.activeStreams t.activeStreams = nil if t.kpDormant { // If the keepalive goroutine is blocked on this condition variable, we // should unblock it so that the goroutine eventually exits. t.kpDormancyCond.Signal() } t.mu.Unlock() t.controlBuf.finish() t.cancel() t.conn.Close() if channelz.IsOn() { channelz.RemoveEntry(t.channelzID) } // Append info about previous goaways if there were any, since this may be important // for understanding the root cause for this connection to be closed. _, goAwayDebugMessage := t.GetGoAwayReason() var st *status.Status if len(goAwayDebugMessage) > 0 { st = status.Newf(codes.Unavailable, "closing transport due to: %v, received prior goaway: %v", err, goAwayDebugMessage) err = st.Err() } else { st = status.New(codes.Unavailable, err.Error()) } // Notify all active streams. for _, s := range streams { t.closeStream(s, err, false, http2.ErrCodeNo, st, nil, false) } if t.statsHandler != nil { connEnd := &stats.ConnEnd{ Client: true, } t.statsHandler.HandleConn(t.ctx, connEnd) } } // GracefulClose sets the state to draining, which prevents new streams from // being created and causes the transport to be closed when the last active // stream is closed. If there are no active streams, the transport is closed // immediately. This does nothing if the transport is already draining or // closing. func (t *http2Client) GracefulClose() { t.mu.Lock() // Make sure we move to draining only from active. if t.state == draining || t.state == closing { t.mu.Unlock() return } t.state = draining active := len(t.activeStreams) t.mu.Unlock() if active == 0 { t.Close(ErrConnClosing) return } t.controlBuf.put(&incomingGoAway{}) } // Write formats the data into HTTP2 data frame(s) and sends it out. The caller // should proceed only if Write returns nil. func (t *http2Client) Write(s *Stream, hdr []byte, data []byte, opts *Options) error { if opts.Last { // If it's the last message, update stream state. if !s.compareAndSwapState(streamActive, streamWriteDone) { return errStreamDone } } else if s.getState() != streamActive { return errStreamDone } df := &dataFrame{ streamID: s.id, endStream: opts.Last, h: hdr, d: data, } if hdr != nil || data != nil { // If it's not an empty data frame, check quota. if err := s.wq.get(int32(len(hdr) + len(data))); err != nil { return err } } return t.controlBuf.put(df) } func (t *http2Client) getStream(f http2.Frame) *Stream { t.mu.Lock() s := t.activeStreams[f.Header().StreamID] t.mu.Unlock() return s } // adjustWindow sends out extra window update over the initial window size // of stream if the application is requesting data larger in size than // the window. func (t *http2Client) adjustWindow(s *Stream, n uint32) { if w := s.fc.maybeAdjust(n); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w}) } } // updateWindow adjusts the inbound quota for the stream. // Window updates will be sent out when the cumulative quota // exceeds the corresponding threshold. func (t *http2Client) updateWindow(s *Stream, n uint32) { if w := s.fc.onRead(n); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{streamID: s.id, increment: w}) } } // updateFlowControl updates the incoming flow control windows // for the transport and the stream based on the current bdp // estimation. func (t *http2Client) updateFlowControl(n uint32) { t.mu.Lock() for _, s := range t.activeStreams { s.fc.newLimit(n) } t.mu.Unlock() updateIWS := func(interface{}) bool { t.initialWindowSize = int32(n) return true } t.controlBuf.executeAndPut(updateIWS, &outgoingWindowUpdate{streamID: 0, increment: t.fc.newLimit(n)}) t.controlBuf.put(&outgoingSettings{ ss: []http2.Setting{ { ID: http2.SettingInitialWindowSize, Val: n, }, }, }) } func (t *http2Client) handleData(f *http2.DataFrame) { size := f.Header().Length var sendBDPPing bool if t.bdpEst != nil { sendBDPPing = t.bdpEst.add(size) } // Decouple connection's flow control from application's read. // An update on connection's flow control should not depend on // whether user application has read the data or not. Such a // restriction is already imposed on the stream's flow control, // and therefore the sender will be blocked anyways. // Decoupling the connection flow control will prevent other // active(fast) streams from starving in presence of slow or // inactive streams. // if w := t.fc.onData(size); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{ streamID: 0, increment: w, }) } if sendBDPPing { // Avoid excessive ping detection (e.g. in an L7 proxy) // by sending a window update prior to the BDP ping. if w := t.fc.reset(); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{ streamID: 0, increment: w, }) } t.controlBuf.put(bdpPing) } // Select the right stream to dispatch. s := t.getStream(f) if s == nil { return } if size > 0 { if err := s.fc.onData(size); err != nil { t.closeStream(s, io.EOF, true, http2.ErrCodeFlowControl, status.New(codes.Internal, err.Error()), nil, false) return } if f.Header().Flags.Has(http2.FlagDataPadded) { if w := s.fc.onRead(size - uint32(len(f.Data()))); w > 0 { t.controlBuf.put(&outgoingWindowUpdate{s.id, w}) } } // TODO(bradfitz, zhaoq): A copy is required here because there is no // guarantee f.Data() is consumed before the arrival of next frame. // Can this copy be eliminated? if len(f.Data()) > 0 { buffer := t.bufferPool.get() buffer.Reset() buffer.Write(f.Data()) s.write(recvMsg{buffer: buffer}) } } // The server has closed the stream without sending trailers. Record that // the read direction is closed, and set the status appropriately. if f.StreamEnded() { t.closeStream(s, io.EOF, false, http2.ErrCodeNo, status.New(codes.Internal, "server closed the stream without sending trailers"), nil, true) } } func (t *http2Client) handleRSTStream(f *http2.RSTStreamFrame) { s := t.getStream(f) if s == nil { return } if f.ErrCode == http2.ErrCodeRefusedStream { // The stream was unprocessed by the server. atomic.StoreUint32(&s.unprocessed, 1) } statusCode, ok := http2ErrConvTab[f.ErrCode] if !ok { if logger.V(logLevel) { logger.Warningf("transport: http2Client.handleRSTStream found no mapped gRPC status for the received http2 error %v", f.ErrCode) } statusCode = codes.Unknown } if statusCode == codes.Canceled { if d, ok := s.ctx.Deadline(); ok && !d.After(time.Now()) { // Our deadline was already exceeded, and that was likely the cause // of this cancelation. Alter the status code accordingly. statusCode = codes.DeadlineExceeded } } t.closeStream(s, io.EOF, false, http2.ErrCodeNo, status.Newf(statusCode, "stream terminated by RST_STREAM with error code: %v", f.ErrCode), nil, false) } func (t *http2Client) handleSettings(f *http2.SettingsFrame, isFirst bool) { if f.IsAck() { return } var maxStreams *uint32 var ss []http2.Setting var updateFuncs []func() f.ForeachSetting(func(s http2.Setting) error { switch s.ID { case http2.SettingMaxConcurrentStreams: maxStreams = new(uint32) *maxStreams = s.Val case http2.SettingMaxHeaderListSize: updateFuncs = append(updateFuncs, func() { t.maxSendHeaderListSize = new(uint32) *t.maxSendHeaderListSize = s.Val }) default: ss = append(ss, s) } return nil }) if isFirst && maxStreams == nil { maxStreams = new(uint32) *maxStreams = math.MaxUint32 } sf := &incomingSettings{ ss: ss, } if maxStreams != nil { updateStreamQuota := func() { delta := int64(*maxStreams) - int64(t.maxConcurrentStreams) t.maxConcurrentStreams = *maxStreams t.streamQuota += delta if delta > 0 && t.waitingStreams > 0 { close(t.streamsQuotaAvailable) // wake all of them up. t.streamsQuotaAvailable = make(chan struct{}, 1) } } updateFuncs = append(updateFuncs, updateStreamQuota) } t.controlBuf.executeAndPut(func(interface{}) bool { for _, f := range updateFuncs { f() } return true }, sf) } func (t *http2Client) handlePing(f *http2.PingFrame) { if f.IsAck() { // Maybe it's a BDP ping. if t.bdpEst != nil { t.bdpEst.calculate(f.Data) } return } pingAck := &ping{ack: true} copy(pingAck.data[:], f.Data[:]) t.controlBuf.put(pingAck) } func (t *http2Client) handleGoAway(f *http2.GoAwayFrame) { t.mu.Lock() if t.state == closing { t.mu.Unlock() return } if f.ErrCode == http2.ErrCodeEnhanceYourCalm { if logger.V(logLevel) { logger.Infof("Client received GoAway with http2.ErrCodeEnhanceYourCalm.") } } id := f.LastStreamID if id > 0 && id%2 == 0 { t.mu.Unlock() t.Close(connectionErrorf(true, nil, "received goaway with non-zero even-numbered numbered stream id: %v", id)) return } // A client can receive multiple GoAways from the server (see // https://github.com/grpc/grpc-go/issues/1387). The idea is that the first // GoAway will be sent with an ID of MaxInt32 and the second GoAway will be // sent after an RTT delay with the ID of the last stream the server will // process. // // Therefore, when we get the first GoAway we don't necessarily close any // streams. While in case of second GoAway we close all streams created after // the GoAwayId. This way streams that were in-flight while the GoAway from // server was being sent don't get killed. select { case <-t.goAway: // t.goAway has been closed (i.e.,multiple GoAways). // If there are multiple GoAways the first one should always have an ID greater than the following ones. if id > t.prevGoAwayID { t.mu.Unlock() t.Close(connectionErrorf(true, nil, "received goaway with stream id: %v, which exceeds stream id of previous goaway: %v", id, t.prevGoAwayID)) return } default: t.setGoAwayReason(f) close(t.goAway) t.controlBuf.put(&incomingGoAway{}) // Notify the clientconn about the GOAWAY before we set the state to // draining, to allow the client to stop attempting to create streams // before disallowing new streams on this connection. t.onGoAway(t.goAwayReason) t.state = draining } // All streams with IDs greater than the GoAwayId // and smaller than the previous GoAway ID should be killed. upperLimit := t.prevGoAwayID if upperLimit == 0 { // This is the first GoAway Frame. upperLimit = math.MaxUint32 // Kill all streams after the GoAway ID. } for streamID, stream := range t.activeStreams { if streamID > id && streamID <= upperLimit { // The stream was unprocessed by the server. atomic.StoreUint32(&stream.unprocessed, 1) t.closeStream(stream, errStreamDrain, false, http2.ErrCodeNo, statusGoAway, nil, false) } } t.prevGoAwayID = id active := len(t.activeStreams) t.mu.Unlock() if active == 0 { t.Close(connectionErrorf(true, nil, "received goaway and there are no active streams")) } } // setGoAwayReason sets the value of t.goAwayReason based // on the GoAway frame received. // It expects a lock on transport's mutext to be held by // the caller. func (t *http2Client) setGoAwayReason(f *http2.GoAwayFrame) { t.goAwayReason = GoAwayNoReason switch f.ErrCode { case http2.ErrCodeEnhanceYourCalm: if string(f.DebugData()) == "too_many_pings" { t.goAwayReason = GoAwayTooManyPings } } if len(f.DebugData()) == 0 { t.goAwayDebugMessage = fmt.Sprintf("code: %s", f.ErrCode) } else { t.goAwayDebugMessage = fmt.Sprintf("code: %s, debug data: %q", f.ErrCode, string(f.DebugData())) } } func (t *http2Client) GetGoAwayReason() (GoAwayReason, string) { t.mu.Lock() defer t.mu.Unlock() return t.goAwayReason, t.goAwayDebugMessage } func (t *http2Client) handleWindowUpdate(f *http2.WindowUpdateFrame) { t.controlBuf.put(&incomingWindowUpdate{ streamID: f.Header().StreamID, increment: f.Increment, }) } // operateHeaders takes action on the decoded headers. func (t *http2Client) operateHeaders(frame *http2.MetaHeadersFrame) { s := t.getStream(frame) if s == nil { return } endStream := frame.StreamEnded() atomic.StoreUint32(&s.bytesReceived, 1) initialHeader := atomic.LoadUint32(&s.headerChanClosed) == 0 if !initialHeader && !endStream { // As specified by gRPC over HTTP2, a HEADERS frame (and associated CONTINUATION frames) can only appear at the start or end of a stream. Therefore, second HEADERS frame must have EOS bit set. st := status.New(codes.Internal, "a HEADERS frame cannot appear in the middle of a stream") t.closeStream(s, st.Err(), true, http2.ErrCodeProtocol, st, nil, false) return } // frame.Truncated is set to true when framer detects that the current header // list size hits MaxHeaderListSize limit. if frame.Truncated { se := status.New(codes.Internal, "peer header list size exceeded limit") t.closeStream(s, se.Err(), true, http2.ErrCodeFrameSize, se, nil, endStream) return } var ( // If a gRPC Response-Headers has already been received, then it means // that the peer is speaking gRPC and we are in gRPC mode. isGRPC = !initialHeader mdata = make(map[string][]string) contentTypeErr = "malformed header: missing HTTP content-type" grpcMessage string statusGen *status.Status recvCompress string httpStatusCode *int httpStatusErr string rawStatusCode = codes.Unknown // headerError is set if an error is encountered while parsing the headers headerError string ) if initialHeader { httpStatusErr = "malformed header: missing HTTP status" } for _, hf := range frame.Fields { switch hf.Name { case "content-type": if _, validContentType := grpcutil.ContentSubtype(hf.Value); !validContentType { contentTypeErr = fmt.Sprintf("transport: received unexpected content-type %q", hf.Value) break } contentTypeErr = "" mdata[hf.Name] = append(mdata[hf.Name], hf.Value) isGRPC = true case "grpc-encoding": recvCompress = hf.Value case "grpc-status": code, err := strconv.ParseInt(hf.Value, 10, 32) if err != nil { se := status.New(codes.Internal, fmt.Sprintf("transport: malformed grpc-status: %v", err)) t.closeStream(s, se.Err(), true, http2.ErrCodeProtocol, se, nil, endStream) return } rawStatusCode = codes.Code(uint32(code)) case "grpc-message": grpcMessage = decodeGrpcMessage(hf.Value) case "grpc-status-details-bin": var err error statusGen, err = decodeGRPCStatusDetails(hf.Value) if err != nil { headerError = fmt.Sprintf("transport: malformed grpc-status-details-bin: %v", err) } case ":status": if hf.Value == "200" { httpStatusErr = "" statusCode := 200 httpStatusCode = &statusCode break } c, err := strconv.ParseInt(hf.Value, 10, 32) if err != nil { se := status.New(codes.Internal, fmt.Sprintf("transport: malformed http-status: %v", err)) t.closeStream(s, se.Err(), true, http2.ErrCodeProtocol, se, nil, endStream) return } statusCode := int(c) httpStatusCode = &statusCode httpStatusErr = fmt.Sprintf( "unexpected HTTP status code received from server: %d (%s)", statusCode, http.StatusText(statusCode), ) default: if isReservedHeader(hf.Name) && !isWhitelistedHeader(hf.Name) { break } v, err := decodeMetadataHeader(hf.Name, hf.Value) if err != nil { headerError = fmt.Sprintf("transport: malformed %s: %v", hf.Name, err) logger.Warningf("Failed to decode metadata header (%q, %q): %v", hf.Name, hf.Value, err) break } mdata[hf.Name] = append(mdata[hf.Name], v) } } if !isGRPC || httpStatusErr != "" { var code = codes.Internal // when header does not include HTTP status, return INTERNAL if httpStatusCode != nil { var ok bool code, ok = HTTPStatusConvTab[*httpStatusCode] if !ok { code = codes.Unknown } } var errs []string if httpStatusErr != "" { errs = append(errs, httpStatusErr) } if contentTypeErr != "" { errs = append(errs, contentTypeErr) } // Verify the HTTP response is a 200. se := status.New(code, strings.Join(errs, "; ")) t.closeStream(s, se.Err(), true, http2.ErrCodeProtocol, se, nil, endStream) return } if headerError != "" { se := status.New(codes.Internal, headerError) t.closeStream(s, se.Err(), true, http2.ErrCodeProtocol, se, nil, endStream) return } isHeader := false // If headerChan hasn't been closed yet if atomic.CompareAndSwapUint32(&s.headerChanClosed, 0, 1) { s.headerValid = true if !endStream { // HEADERS frame block carries a Response-Headers. isHeader = true // These values can be set without any synchronization because // stream goroutine will read it only after seeing a closed // headerChan which we'll close after setting this. s.recvCompress = recvCompress if len(mdata) > 0 { s.header = mdata } } else { // HEADERS frame block carries a Trailers-Only. s.noHeaders = true } close(s.headerChan) } if t.statsHandler != nil { if isHeader { inHeader := &stats.InHeader{ Client: true, WireLength: int(frame.Header().Length), Header: metadata.MD(mdata).Copy(), Compression: s.recvCompress, } t.statsHandler.HandleRPC(s.ctx, inHeader) } else { inTrailer := &stats.InTrailer{ Client: true, WireLength: int(frame.Header().Length), Trailer: metadata.MD(mdata).Copy(), } t.statsHandler.HandleRPC(s.ctx, inTrailer) } } if !endStream { return } if statusGen == nil { statusGen = status.New(rawStatusCode, grpcMessage) } // if client received END_STREAM from server while stream was still active, send RST_STREAM rst := s.getState() == streamActive t.closeStream(s, io.EOF, rst, http2.ErrCodeNo, statusGen, mdata, true) } // reader runs as a separate goroutine in charge of reading data from network // connection. // // TODO(zhaoq): currently one reader per transport. Investigate whether this is // optimal. // TODO(zhaoq): Check the validity of the incoming frame sequence. func (t *http2Client) reader() { defer close(t.readerDone) // Check the validity of server preface. frame, err := t.framer.fr.ReadFrame() if err != nil { err = connectionErrorf(true, err, "error reading server preface: %v", err) t.Close(err) // this kicks off resetTransport, so must be last before return return } t.conn.SetReadDeadline(time.Time{}) // reset deadline once we get the settings frame (we didn't time out, yay!) if t.keepaliveEnabled { atomic.StoreInt64(&t.lastRead, time.Now().UnixNano()) } sf, ok := frame.(*http2.SettingsFrame) if !ok { // this kicks off resetTransport, so must be last before return t.Close(connectionErrorf(true, nil, "initial http2 frame from server is not a settings frame: %T", frame)) return } t.onPrefaceReceipt() t.handleSettings(sf, true) // loop to keep reading incoming messages on this transport. for { t.controlBuf.throttle() frame, err := t.framer.fr.ReadFrame() if t.keepaliveEnabled { atomic.StoreInt64(&t.lastRead, time.Now().UnixNano()) } if err != nil { // Abort an active stream if the http2.Framer returns a // http2.StreamError. This can happen only if the server's response // is malformed http2. if se, ok := err.(http2.StreamError); ok { t.mu.Lock() s := t.activeStreams[se.StreamID] t.mu.Unlock() if s != nil { // use error detail to provide better err message code := http2ErrConvTab[se.Code] errorDetail := t.framer.fr.ErrorDetail() var msg string if errorDetail != nil { msg = errorDetail.Error() } else { msg = "received invalid frame" } t.closeStream(s, status.Error(code, msg), true, http2.ErrCodeProtocol, status.New(code, msg), nil, false) } continue } else { // Transport error. t.Close(connectionErrorf(true, err, "error reading from server: %v", err)) return } } switch frame := frame.(type) { case *http2.MetaHeadersFrame: t.operateHeaders(frame) case *http2.DataFrame: t.handleData(frame) case *http2.RSTStreamFrame: t.handleRSTStream(frame) case *http2.SettingsFrame: t.handleSettings(frame, false) case *http2.PingFrame: t.handlePing(frame) case *http2.GoAwayFrame: t.handleGoAway(frame) case *http2.WindowUpdateFrame: t.handleWindowUpdate(frame) default: if logger.V(logLevel) { logger.Errorf("transport: http2Client.reader got unhandled frame type %v.", frame) } } } } func minTime(a, b time.Duration) time.Duration { if a < b { return a } return b } // keepalive running in a separate goroutine makes sure the connection is alive by sending pings. func (t *http2Client) keepalive() { p := &ping{data: [8]byte{}} // True iff a ping has been sent, and no data has been received since then. outstandingPing := false // Amount of time remaining before which we should receive an ACK for the // last sent ping. timeoutLeft := time.Duration(0) // Records the last value of t.lastRead before we go block on the timer. // This is required to check for read activity since then. prevNano := time.Now().UnixNano() timer := time.NewTimer(t.kp.Time) for { select { case <-timer.C: lastRead := atomic.LoadInt64(&t.lastRead) if lastRead > prevNano { // There has been read activity since the last time we were here. outstandingPing = false // Next timer should fire at kp.Time seconds from lastRead time. timer.Reset(time.Duration(lastRead) + t.kp.Time - time.Duration(time.Now().UnixNano())) prevNano = lastRead continue } if outstandingPing && timeoutLeft <= 0 { t.Close(connectionErrorf(true, nil, "keepalive ping failed to receive ACK within timeout")) return } t.mu.Lock() if t.state == closing { // If the transport is closing, we should exit from the // keepalive goroutine here. If not, we could have a race // between the call to Signal() from Close() and the call to // Wait() here, whereby the keepalive goroutine ends up // blocking on the condition variable which will never be // signalled again. t.mu.Unlock() return } if len(t.activeStreams) < 1 && !t.kp.PermitWithoutStream { // If a ping was sent out previously (because there were active // streams at that point) which wasn't acked and its timeout // hadn't fired, but we got here and are about to go dormant, // we should make sure that we unconditionally send a ping once // we awaken. outstandingPing = false t.kpDormant = true t.kpDormancyCond.Wait() } t.kpDormant = false t.mu.Unlock() // We get here either because we were dormant and a new stream was // created which unblocked the Wait() call, or because the // keepalive timer expired. In both cases, we need to send a ping. if !outstandingPing { if channelz.IsOn() { atomic.AddInt64(&t.czData.kpCount, 1) } t.controlBuf.put(p) timeoutLeft = t.kp.Timeout outstandingPing = true } // The amount of time to sleep here is the minimum of kp.Time and // timeoutLeft. This will ensure that we wait only for kp.Time // before sending out the next ping (for cases where the ping is // acked). sleepDuration := minTime(t.kp.Time, timeoutLeft) timeoutLeft -= sleepDuration timer.Reset(sleepDuration) case <-t.ctx.Done(): if !timer.Stop() { <-timer.C } return } } } func (t *http2Client) Error() <-chan struct{} { return t.ctx.Done() } func (t *http2Client) GoAway() <-chan struct{} { return t.goAway } func (t *http2Client) ChannelzMetric() *channelz.SocketInternalMetric { s := channelz.SocketInternalMetric{ StreamsStarted: atomic.LoadInt64(&t.czData.streamsStarted), StreamsSucceeded: atomic.LoadInt64(&t.czData.streamsSucceeded), StreamsFailed: atomic.LoadInt64(&t.czData.streamsFailed), MessagesSent: atomic.LoadInt64(&t.czData.msgSent), MessagesReceived: atomic.LoadInt64(&t.czData.msgRecv), KeepAlivesSent: atomic.LoadInt64(&t.czData.kpCount), LastLocalStreamCreatedTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastStreamCreatedTime)), LastMessageSentTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastMsgSentTime)), LastMessageReceivedTimestamp: time.Unix(0, atomic.LoadInt64(&t.czData.lastMsgRecvTime)), LocalFlowControlWindow: int64(t.fc.getSize()), SocketOptions: channelz.GetSocketOption(t.conn), LocalAddr: t.localAddr, RemoteAddr: t.remoteAddr, // RemoteName : } if au, ok := t.authInfo.(credentials.ChannelzSecurityInfo); ok { s.Security = au.GetSecurityValue() } s.RemoteFlowControlWindow = t.getOutFlowWindow() return &s } func (t *http2Client) RemoteAddr() net.Addr { return t.remoteAddr } func (t *http2Client) IncrMsgSent() { atomic.AddInt64(&t.czData.msgSent, 1) atomic.StoreInt64(&t.czData.lastMsgSentTime, time.Now().UnixNano()) } func (t *http2Client) IncrMsgRecv() { atomic.AddInt64(&t.czData.msgRecv, 1) atomic.StoreInt64(&t.czData.lastMsgRecvTime, time.Now().UnixNano()) } func (t *http2Client) getOutFlowWindow() int64 { resp := make(chan uint32, 1) timer := time.NewTimer(time.Second) defer timer.Stop() t.controlBuf.put(&outFlowControlSizeRequest{resp}) select { case sz := <-resp: return int64(sz) case <-t.ctxDone: return -1 case <-timer.C: return -2 } }