# sql/util.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """High level utilities which build upon other modules here. """ from collections import deque from itertools import chain from . import operators from . import visitors from .annotation import _deep_annotate # noqa from .annotation import _deep_deannotate # noqa from .annotation import _shallow_annotate # noqa from .base import _from_objects from .base import ColumnSet from .ddl import sort_tables # noqa from .elements import _expand_cloned from .elements import _find_columns # noqa from .elements import _label_reference from .elements import _textual_label_reference from .elements import BindParameter from .elements import ColumnClause from .elements import ColumnElement from .elements import Null from .elements import UnaryExpression from .schema import Column from .selectable import Alias from .selectable import FromClause from .selectable import FromGrouping from .selectable import Join from .selectable import ScalarSelect from .selectable import SelectBase from .selectable import TableClause from .. import exc from .. import util join_condition = util.langhelpers.public_factory( Join._join_condition, ".sql.util.join_condition" ) def find_join_source(clauses, join_to): """Given a list of FROM clauses and a selectable, return the first index and element from the list of clauses which can be joined against the selectable. returns None, None if no match is found. e.g.:: clause1 = table1.join(table2) clause2 = table4.join(table5) join_to = table2.join(table3) find_join_source([clause1, clause2], join_to) == clause1 """ selectables = list(_from_objects(join_to)) idx = [] for i, f in enumerate(clauses): for s in selectables: if f.is_derived_from(s): idx.append(i) return idx def find_left_clause_that_matches_given(clauses, join_from): """Given a list of FROM clauses and a selectable, return the indexes from the list of clauses which is derived from the selectable. """ selectables = list(_from_objects(join_from)) liberal_idx = [] for i, f in enumerate(clauses): for s in selectables: # basic check, if f is derived from s. # this can be joins containing a table, or an aliased table # or select statement matching to a table. This check # will match a table to a selectable that is adapted from # that table. With Query, this suits the case where a join # is being made to an adapted entity if f.is_derived_from(s): liberal_idx.append(i) break # in an extremely small set of use cases, a join is being made where # there are multiple FROM clauses where our target table is represented # in more than one, such as embedded or similar. in this case, do # another pass where we try to get a more exact match where we aren't # looking at adaption relationships. if len(liberal_idx) > 1: conservative_idx = [] for idx in liberal_idx: f = clauses[idx] for s in selectables: if set(surface_selectables(f)).intersection( surface_selectables(s) ): conservative_idx.append(idx) break if conservative_idx: return conservative_idx return liberal_idx def find_left_clause_to_join_from(clauses, join_to, onclause): """Given a list of FROM clauses, a selectable, and optional ON clause, return a list of integer indexes from the clauses list indicating the clauses that can be joined from. The presence of an "onclause" indicates that at least one clause can definitely be joined from; if the list of clauses is of length one and the onclause is given, returns that index. If the list of clauses is more than length one, and the onclause is given, attempts to locate which clauses contain the same columns. """ idx = [] selectables = set(_from_objects(join_to)) # if we are given more than one target clause to join # from, use the onclause to provide a more specific answer. # otherwise, don't try to limit, after all, "ON TRUE" is a valid # on clause if len(clauses) > 1 and onclause is not None: resolve_ambiguity = True cols_in_onclause = _find_columns(onclause) else: resolve_ambiguity = False cols_in_onclause = None for i, f in enumerate(clauses): for s in selectables.difference([f]): if resolve_ambiguity: if set(f.c).union(s.c).issuperset(cols_in_onclause): idx.append(i) break elif Join._can_join(f, s) or onclause is not None: idx.append(i) break if len(idx) > 1: # this is the same "hide froms" logic from # Selectable._get_display_froms toremove = set( chain(*[_expand_cloned(f._hide_froms) for f in clauses]) ) idx = [i for i in idx if clauses[i] not in toremove] # onclause was given and none of them resolved, so assume # all indexes can match if not idx and onclause is not None: return range(len(clauses)) else: return idx def visit_binary_product(fn, expr): """Produce a traversal of the given expression, delivering column comparisons to the given function. The function is of the form:: def my_fn(binary, left, right) For each binary expression located which has a comparison operator, the product of "left" and "right" will be delivered to that function, in terms of that binary. Hence an expression like:: and_( (a + b) == q + func.sum(e + f), j == r ) would have the traversal:: a q a e a f b q b e b f j r That is, every combination of "left" and "right" that doesn't further contain a binary comparison is passed as pairs. """ stack = [] def visit(element): if isinstance(element, ScalarSelect): # we don't want to dig into correlated subqueries, # those are just column elements by themselves yield element elif element.__visit_name__ == "binary" and operators.is_comparison( element.operator ): stack.insert(0, element) for l in visit(element.left): for r in visit(element.right): fn(stack[0], l, r) stack.pop(0) for elem in element.get_children(): visit(elem) else: if isinstance(element, ColumnClause): yield element for elem in element.get_children(): for e in visit(elem): yield e list(visit(expr)) visit = None # remove gc cycles def find_tables( clause, check_columns=False, include_aliases=False, include_joins=False, include_selects=False, include_crud=False, ): """locate Table objects within the given expression.""" tables = [] _visitors = {} if include_selects: _visitors["select"] = _visitors["compound_select"] = tables.append if include_joins: _visitors["join"] = tables.append if include_aliases: _visitors["alias"] = tables.append if include_crud: _visitors["insert"] = _visitors["update"] = _visitors[ "delete" ] = lambda ent: tables.append(ent.table) if check_columns: def visit_column(column): tables.append(column.table) _visitors["column"] = visit_column _visitors["table"] = tables.append visitors.traverse(clause, {"column_collections": False}, _visitors) return tables def unwrap_order_by(clause): """Break up an 'order by' expression into individual column-expressions, without DESC/ASC/NULLS FIRST/NULLS LAST""" cols = util.column_set() result = [] stack = deque([clause]) while stack: t = stack.popleft() if isinstance(t, ColumnElement) and ( not isinstance(t, UnaryExpression) or not operators.is_ordering_modifier(t.modifier) ): if isinstance(t, _label_reference): t = t.element if isinstance(t, (_textual_label_reference)): continue if t not in cols: cols.add(t) result.append(t) else: for c in t.get_children(): stack.append(c) return result def unwrap_label_reference(element): def replace(elem): if isinstance(elem, (_label_reference, _textual_label_reference)): return elem.element return visitors.replacement_traverse(element, {}, replace) def expand_column_list_from_order_by(collist, order_by): """Given the columns clause and ORDER BY of a selectable, return a list of column expressions that can be added to the collist corresponding to the ORDER BY, without repeating those already in the collist. """ cols_already_present = set( [ col.element if col._order_by_label_element is not None else col for col in collist ] ) return [ col for col in chain(*[unwrap_order_by(o) for o in order_by]) if col not in cols_already_present ] def clause_is_present(clause, search): """Given a target clause and a second to search within, return True if the target is plainly present in the search without any subqueries or aliases involved. Basically descends through Joins. """ for elem in surface_selectables(search): if clause == elem: # use == here so that Annotated's compare return True else: return False def surface_selectables(clause): stack = [clause] while stack: elem = stack.pop() yield elem if isinstance(elem, Join): stack.extend((elem.left, elem.right)) elif isinstance(elem, FromGrouping): stack.append(elem.element) def surface_selectables_only(clause): stack = [clause] while stack: elem = stack.pop() if isinstance(elem, (TableClause, Alias)): yield elem if isinstance(elem, Join): stack.extend((elem.left, elem.right)) elif isinstance(elem, FromGrouping): stack.append(elem.element) elif isinstance(elem, ColumnClause): stack.append(elem.table) def surface_column_elements(clause, include_scalar_selects=True): """traverse and yield only outer-exposed column elements, such as would be addressable in the WHERE clause of a SELECT if this element were in the columns clause.""" filter_ = (FromGrouping,) if not include_scalar_selects: filter_ += (SelectBase,) stack = deque([clause]) while stack: elem = stack.popleft() yield elem for sub in elem.get_children(): if isinstance(sub, filter_): continue stack.append(sub) def selectables_overlap(left, right): """Return True if left/right have some overlapping selectable""" return bool( set(surface_selectables(left)).intersection(surface_selectables(right)) ) def bind_values(clause): """Return an ordered list of "bound" values in the given clause. E.g.:: >>> expr = and_( ... table.c.foo==5, table.c.foo==7 ... ) >>> bind_values(expr) [5, 7] """ v = [] def visit_bindparam(bind): v.append(bind.effective_value) visitors.traverse(clause, {}, {"bindparam": visit_bindparam}) return v def _quote_ddl_expr(element): if isinstance(element, util.string_types): element = element.replace("'", "''") return "'%s'" % element else: return repr(element) class _repr_base(object): _LIST = 0 _TUPLE = 1 _DICT = 2 __slots__ = ("max_chars",) def trunc(self, value): rep = repr(value) lenrep = len(rep) if lenrep > self.max_chars: segment_length = self.max_chars // 2 rep = ( rep[0:segment_length] + ( " ... (%d characters truncated) ... " % (lenrep - self.max_chars) ) + rep[-segment_length:] ) return rep class _repr_row(_repr_base): """Provide a string view of a row.""" __slots__ = ("row",) def __init__(self, row, max_chars=300): self.row = row self.max_chars = max_chars def __repr__(self): trunc = self.trunc return "(%s%s)" % ( ", ".join(trunc(value) for value in self.row), "," if len(self.row) == 1 else "", ) class _repr_params(_repr_base): """Provide a string view of bound parameters. Truncates display to a given numnber of 'multi' parameter sets, as well as long values to a given number of characters. """ __slots__ = "params", "batches", "ismulti" def __init__(self, params, batches, max_chars=300, ismulti=None): self.params = params self.ismulti = ismulti self.batches = batches self.max_chars = max_chars def __repr__(self): if self.ismulti is None: return self.trunc(self.params) if isinstance(self.params, list): typ = self._LIST elif isinstance(self.params, tuple): typ = self._TUPLE elif isinstance(self.params, dict): typ = self._DICT else: return self.trunc(self.params) if self.ismulti and len(self.params) > self.batches: msg = " ... displaying %i of %i total bound parameter sets ... " return " ".join( ( self._repr_multi(self.params[: self.batches - 2], typ)[ 0:-1 ], msg % (self.batches, len(self.params)), self._repr_multi(self.params[-2:], typ)[1:], ) ) elif self.ismulti: return self._repr_multi(self.params, typ) else: return self._repr_params(self.params, typ) def _repr_multi(self, multi_params, typ): if multi_params: if isinstance(multi_params[0], list): elem_type = self._LIST elif isinstance(multi_params[0], tuple): elem_type = self._TUPLE elif isinstance(multi_params[0], dict): elem_type = self._DICT else: assert False, "Unknown parameter type %s" % ( type(multi_params[0]) ) elements = ", ".join( self._repr_params(params, elem_type) for params in multi_params ) else: elements = "" if typ == self._LIST: return "[%s]" % elements else: return "(%s)" % elements def _repr_params(self, params, typ): trunc = self.trunc if typ is self._DICT: return "{%s}" % ( ", ".join( "%r: %s" % (key, trunc(value)) for key, value in params.items() ) ) elif typ is self._TUPLE: return "(%s%s)" % ( ", ".join(trunc(value) for value in params), "," if len(params) == 1 else "", ) else: return "[%s]" % (", ".join(trunc(value) for value in params)) def adapt_criterion_to_null(crit, nulls): """given criterion containing bind params, convert selected elements to IS NULL. """ def visit_binary(binary): if ( isinstance(binary.left, BindParameter) and binary.left._identifying_key in nulls ): # reverse order if the NULL is on the left side binary.left = binary.right binary.right = Null() binary.operator = operators.is_ binary.negate = operators.isnot elif ( isinstance(binary.right, BindParameter) and binary.right._identifying_key in nulls ): binary.right = Null() binary.operator = operators.is_ binary.negate = operators.isnot return visitors.cloned_traverse(crit, {}, {"binary": visit_binary}) def splice_joins(left, right, stop_on=None): if left is None: return right stack = [(right, None)] adapter = ClauseAdapter(left) ret = None while stack: (right, prevright) = stack.pop() if isinstance(right, Join) and right is not stop_on: right = right._clone() right._reset_exported() right.onclause = adapter.traverse(right.onclause) stack.append((right.left, right)) else: right = adapter.traverse(right) if prevright is not None: prevright.left = right if ret is None: ret = right return ret def reduce_columns(columns, *clauses, **kw): r"""given a list of columns, return a 'reduced' set based on natural equivalents. the set is reduced to the smallest list of columns which have no natural equivalent present in the list. A "natural equivalent" means that two columns will ultimately represent the same value because they are related by a foreign key. \*clauses is an optional list of join clauses which will be traversed to further identify columns that are "equivalent". \**kw may specify 'ignore_nonexistent_tables' to ignore foreign keys whose tables are not yet configured, or columns that aren't yet present. This function is primarily used to determine the most minimal "primary key" from a selectable, by reducing the set of primary key columns present in the selectable to just those that are not repeated. """ ignore_nonexistent_tables = kw.pop("ignore_nonexistent_tables", False) only_synonyms = kw.pop("only_synonyms", False) columns = util.ordered_column_set(columns) omit = util.column_set() for col in columns: for fk in chain(*[c.foreign_keys for c in col.proxy_set]): for c in columns: if c is col: continue try: fk_col = fk.column except exc.NoReferencedColumnError: # TODO: add specific coverage here # to test/sql/test_selectable ReduceTest if ignore_nonexistent_tables: continue else: raise except exc.NoReferencedTableError: # TODO: add specific coverage here # to test/sql/test_selectable ReduceTest if ignore_nonexistent_tables: continue else: raise if fk_col.shares_lineage(c) and ( not only_synonyms or c.name == col.name ): omit.add(col) break if clauses: def visit_binary(binary): if binary.operator == operators.eq: cols = util.column_set( chain(*[c.proxy_set for c in columns.difference(omit)]) ) if binary.left in cols and binary.right in cols: for c in reversed(columns): if c.shares_lineage(binary.right) and ( not only_synonyms or c.name == binary.left.name ): omit.add(c) break for clause in clauses: if clause is not None: visitors.traverse(clause, {}, {"binary": visit_binary}) return ColumnSet(columns.difference(omit)) def criterion_as_pairs( expression, consider_as_foreign_keys=None, consider_as_referenced_keys=None, any_operator=False, ): """traverse an expression and locate binary criterion pairs.""" if consider_as_foreign_keys and consider_as_referenced_keys: raise exc.ArgumentError( "Can only specify one of " "'consider_as_foreign_keys' or " "'consider_as_referenced_keys'" ) def col_is(a, b): # return a is b return a.compare(b) def visit_binary(binary): if not any_operator and binary.operator is not operators.eq: return if not isinstance(binary.left, ColumnElement) or not isinstance( binary.right, ColumnElement ): return if consider_as_foreign_keys: if binary.left in consider_as_foreign_keys and ( col_is(binary.right, binary.left) or binary.right not in consider_as_foreign_keys ): pairs.append((binary.right, binary.left)) elif binary.right in consider_as_foreign_keys and ( col_is(binary.left, binary.right) or binary.left not in consider_as_foreign_keys ): pairs.append((binary.left, binary.right)) elif consider_as_referenced_keys: if binary.left in consider_as_referenced_keys and ( col_is(binary.right, binary.left) or binary.right not in consider_as_referenced_keys ): pairs.append((binary.left, binary.right)) elif binary.right in consider_as_referenced_keys and ( col_is(binary.left, binary.right) or binary.left not in consider_as_referenced_keys ): pairs.append((binary.right, binary.left)) else: if isinstance(binary.left, Column) and isinstance( binary.right, Column ): if binary.left.references(binary.right): pairs.append((binary.right, binary.left)) elif binary.right.references(binary.left): pairs.append((binary.left, binary.right)) pairs = [] visitors.traverse(expression, {}, {"binary": visit_binary}) return pairs class ClauseAdapter(visitors.ReplacingCloningVisitor): """Clones and modifies clauses based on column correspondence. E.g.:: table1 = Table('sometable', metadata, Column('col1', Integer), Column('col2', Integer) ) table2 = Table('someothertable', metadata, Column('col1', Integer), Column('col2', Integer) ) condition = table1.c.col1 == table2.c.col1 make an alias of table1:: s = table1.alias('foo') calling ``ClauseAdapter(s).traverse(condition)`` converts condition to read:: s.c.col1 == table2.c.col1 """ def __init__( self, selectable, equivalents=None, include_fn=None, exclude_fn=None, adapt_on_names=False, anonymize_labels=False, ): self.__traverse_options__ = { "stop_on": [selectable], "anonymize_labels": anonymize_labels, } self.selectable = selectable self.include_fn = include_fn self.exclude_fn = exclude_fn self.equivalents = util.column_dict(equivalents or {}) self.adapt_on_names = adapt_on_names def _corresponding_column( self, col, require_embedded, _seen=util.EMPTY_SET ): newcol = self.selectable.corresponding_column( col, require_embedded=require_embedded ) if newcol is None and col in self.equivalents and col not in _seen: for equiv in self.equivalents[col]: newcol = self._corresponding_column( equiv, require_embedded=require_embedded, _seen=_seen.union([col]), ) if newcol is not None: return newcol if self.adapt_on_names and newcol is None: newcol = self.selectable.c.get(col.name) return newcol def replace(self, col): if isinstance(col, FromClause) and self.selectable.is_derived_from( col ): return self.selectable elif not isinstance(col, ColumnElement): return None elif self.include_fn and not self.include_fn(col): return None elif self.exclude_fn and self.exclude_fn(col): return None else: return self._corresponding_column(col, True) class ColumnAdapter(ClauseAdapter): """Extends ClauseAdapter with extra utility functions. Key aspects of ColumnAdapter include: * Expressions that are adapted are stored in a persistent .columns collection; so that an expression E adapted into an expression E1, will return the same object E1 when adapted a second time. This is important in particular for things like Label objects that are anonymized, so that the ColumnAdapter can be used to present a consistent "adapted" view of things. * Exclusion of items from the persistent collection based on include/exclude rules, but also independent of hash identity. This because "annotated" items all have the same hash identity as their parent. * "wrapping" capability is added, so that the replacement of an expression E can proceed through a series of adapters. This differs from the visitor's "chaining" feature in that the resulting object is passed through all replacing functions unconditionally, rather than stopping at the first one that returns non-None. * An adapt_required option, used by eager loading to indicate that We don't trust a result row column that is not translated. This is to prevent a column from being interpreted as that of the child row in a self-referential scenario, see inheritance/test_basic.py->EagerTargetingTest.test_adapt_stringency """ def __init__( self, selectable, equivalents=None, adapt_required=False, include_fn=None, exclude_fn=None, adapt_on_names=False, allow_label_resolve=True, anonymize_labels=False, ): ClauseAdapter.__init__( self, selectable, equivalents, include_fn=include_fn, exclude_fn=exclude_fn, adapt_on_names=adapt_on_names, anonymize_labels=anonymize_labels, ) self.columns = util.WeakPopulateDict(self._locate_col) if self.include_fn or self.exclude_fn: self.columns = self._IncludeExcludeMapping(self, self.columns) self.adapt_required = adapt_required self.allow_label_resolve = allow_label_resolve self._wrap = None class _IncludeExcludeMapping(object): def __init__(self, parent, columns): self.parent = parent self.columns = columns def __getitem__(self, key): if ( self.parent.include_fn and not self.parent.include_fn(key) ) or (self.parent.exclude_fn and self.parent.exclude_fn(key)): if self.parent._wrap: return self.parent._wrap.columns[key] else: return key return self.columns[key] def wrap(self, adapter): ac = self.__class__.__new__(self.__class__) ac.__dict__.update(self.__dict__) ac._wrap = adapter ac.columns = util.WeakPopulateDict(ac._locate_col) if ac.include_fn or ac.exclude_fn: ac.columns = self._IncludeExcludeMapping(ac, ac.columns) return ac def traverse(self, obj): return self.columns[obj] adapt_clause = traverse adapt_list = ClauseAdapter.copy_and_process def _locate_col(self, col): c = ClauseAdapter.traverse(self, col) if self._wrap: c2 = self._wrap._locate_col(c) if c2 is not None: c = c2 if self.adapt_required and c is col: return None c._allow_label_resolve = self.allow_label_resolve return c def __getstate__(self): d = self.__dict__.copy() del d["columns"] return d def __setstate__(self, state): self.__dict__.update(state) self.columns = util.WeakPopulateDict(self._locate_col)