# -*- coding: ascii -*- # # FortunaGenerator.py : Fortuna's internal PRNG # # Written in 2008 by Dwayne C. Litzenberger # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== __revision__ = "$Id$" import sys if sys.version_info[0] is 2 and sys.version_info[1] is 1: from Crypto.Util.py21compat import * from Crypto.Util.py3compat import * import struct from Crypto.Util.number import ceil_shift, exact_log2, exact_div from Crypto.Util import Counter from Crypto.Cipher import AES import SHAd256 class AESGenerator(object): """The Fortuna "generator" This is used internally by the Fortuna PRNG to generate arbitrary amounts of pseudorandom data from a smaller amount of seed data. The output is generated by running AES-256 in counter mode and re-keying after every mebibyte (2**16 blocks) of output. """ block_size = AES.block_size # output block size in octets (128 bits) key_size = 32 # key size in octets (256 bits) # Because of the birthday paradox, we expect to find approximately one # collision for every 2**64 blocks of output from a real random source. # However, this code generates pseudorandom data by running AES in # counter mode, so there will be no collisions until the counter # (theoretically) wraps around at 2**128 blocks. Thus, in order to prevent # Fortuna's pseudorandom output from deviating perceptibly from a true # random source, Ferguson and Schneier specify a limit of 2**16 blocks # without rekeying. max_blocks_per_request = 2**16 # Allow no more than this number of blocks per _pseudo_random_data request _four_kiblocks_of_zeros = b("\0") * block_size * 4096 def __init__(self): self.counter = Counter.new(nbits=self.block_size*8, initial_value=0, little_endian=True) self.key = None # Set some helper constants self.block_size_shift = exact_log2(self.block_size) assert (1 << self.block_size_shift) == self.block_size self.blocks_per_key = exact_div(self.key_size, self.block_size) assert self.key_size == self.blocks_per_key * self.block_size self.max_bytes_per_request = self.max_blocks_per_request * self.block_size def reseed(self, seed): if self.key is None: self.key = b("\0") * self.key_size self._set_key(SHAd256.new(self.key + seed).digest()) self.counter() # increment counter assert len(self.key) == self.key_size def pseudo_random_data(self, bytes): assert bytes >= 0 num_full_blocks = bytes >> 20 remainder = bytes & ((1<<20)-1) retval = [] for i in xrange(num_full_blocks): retval.append(self._pseudo_random_data(1<<20)) retval.append(self._pseudo_random_data(remainder)) return b("").join(retval) def _set_key(self, key): self.key = key self._cipher = AES.new(key, AES.MODE_CTR, counter=self.counter) def _pseudo_random_data(self, bytes): if not (0 <= bytes <= self.max_bytes_per_request): raise AssertionError("You cannot ask for more than 1 MiB of data per request") num_blocks = ceil_shift(bytes, self.block_size_shift) # num_blocks = ceil(bytes / self.block_size) # Compute the output retval = self._generate_blocks(num_blocks)[:bytes] # Switch to a new key to avoid later compromises of this output (i.e. # state compromise extension attacks) self._set_key(self._generate_blocks(self.blocks_per_key)) assert len(retval) == bytes assert len(self.key) == self.key_size return retval def _generate_blocks(self, num_blocks): if self.key is None: raise AssertionError("generator must be seeded before use") assert 0 <= num_blocks <= self.max_blocks_per_request retval = [] for i in xrange(num_blocks >> 12): # xrange(num_blocks / 4096) retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros)) remaining_bytes = (num_blocks & 4095) << self.block_size_shift # (num_blocks % 4095) * self.block_size retval.append(self._cipher.encrypt(self._four_kiblocks_of_zeros[:remaining_bytes])) return b("").join(retval) # vim:set ts=4 sw=4 sts=4 expandtab: