""" Table Schema builders https://specs.frictionlessdata.io/json-table-schema/ """ from typing import TYPE_CHECKING, Any, Dict, Optional, cast import warnings import pandas._libs.json as json from pandas._typing import DtypeObj, FrameOrSeries, JSONSerializable from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_integer_dtype, is_numeric_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas import DataFrame import pandas.core.common as com if TYPE_CHECKING: from pandas.core.indexes.multi import MultiIndex # noqa: F401 loads = json.loads def as_json_table_type(x: DtypeObj) -> str: """ Convert a NumPy / pandas type to its corresponding json_table. Parameters ---------- x : np.dtype or ExtensionDtype Returns ------- str the Table Schema data types Notes ----- This table shows the relationship between NumPy / pandas dtypes, and Table Schema dtypes. ============== ================= Pandas type Table Schema type ============== ================= int64 integer float64 number bool boolean datetime64[ns] datetime timedelta64[ns] duration object str categorical any =============== ================= """ if is_integer_dtype(x): return "integer" elif is_bool_dtype(x): return "boolean" elif is_numeric_dtype(x): return "number" elif is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or is_period_dtype(x): return "datetime" elif is_timedelta64_dtype(x): return "duration" elif is_categorical_dtype(x): return "any" elif is_string_dtype(x): return "string" else: return "any" def set_default_names(data): """Sets index names to 'index' for regular, or 'level_x' for Multi""" if com.all_not_none(*data.index.names): nms = data.index.names if len(nms) == 1 and data.index.name == "index": warnings.warn("Index name of 'index' is not round-trippable") elif len(nms) > 1 and any(x.startswith("level_") for x in nms): warnings.warn("Index names beginning with 'level_' are not round-trippable") return data data = data.copy() if data.index.nlevels > 1: names = [ name if name is not None else f"level_{i}" for i, name in enumerate(data.index.names) ] data.index.names = names else: data.index.name = data.index.name or "index" return data def convert_pandas_type_to_json_field(arr): dtype = arr.dtype if arr.name is None: name = "values" else: name = arr.name field: Dict[str, JSONSerializable] = { "name": name, "type": as_json_table_type(dtype), } if is_categorical_dtype(dtype): cats = dtype.categories ordered = dtype.ordered field["constraints"] = {"enum": list(cats)} field["ordered"] = ordered elif is_period_dtype(dtype): field["freq"] = dtype.freq.freqstr elif is_datetime64tz_dtype(dtype): field["tz"] = dtype.tz.zone return field def convert_json_field_to_pandas_type(field): """ Converts a JSON field descriptor into its corresponding NumPy / pandas type Parameters ---------- field A JSON field descriptor Returns ------- dtype Raises ------ ValueError If the type of the provided field is unknown or currently unsupported Examples -------- >>> convert_json_field_to_pandas_type({'name': 'an_int', 'type': 'integer'}) 'int64' >>> convert_json_field_to_pandas_type({'name': 'a_categorical', 'type': 'any', 'constraints': {'enum': [ 'a', 'b', 'c']}, 'ordered': True}) 'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)' >>> convert_json_field_to_pandas_type({'name': 'a_datetime', 'type': 'datetime'}) 'datetime64[ns]' >>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz', 'type': 'datetime', 'tz': 'US/Central'}) 'datetime64[ns, US/Central]' """ typ = field["type"] if typ == "string": return "object" elif typ == "integer": return "int64" elif typ == "number": return "float64" elif typ == "boolean": return "bool" elif typ == "duration": return "timedelta64" elif typ == "datetime": if field.get("tz"): return f"datetime64[ns, {field['tz']}]" else: return "datetime64[ns]" elif typ == "any": if "constraints" in field and "ordered" in field: return CategoricalDtype( categories=field["constraints"]["enum"], ordered=field["ordered"] ) else: return "object" raise ValueError(f"Unsupported or invalid field type: {typ}") def build_table_schema( data: FrameOrSeries, index: bool = True, primary_key: Optional[bool] = None, version: bool = True, ) -> Dict[str, JSONSerializable]: """ Create a Table schema from ``data``. Parameters ---------- data : Series, DataFrame index : bool, default True Whether to include ``data.index`` in the schema. primary_key : bool or None, default True Column names to designate as the primary key. The default `None` will set `'primaryKey'` to the index level or levels if the index is unique. version : bool, default True Whether to include a field `pandas_version` with the version of pandas that generated the schema. Returns ------- schema : dict Notes ----- See `Table Schema `__ for conversion types. Timedeltas as converted to ISO8601 duration format with 9 decimal places after the seconds field for nanosecond precision. Categoricals are converted to the `any` dtype, and use the `enum` field constraint to list the allowed values. The `ordered` attribute is included in an `ordered` field. Examples -------- >>> df = pd.DataFrame( ... {'A': [1, 2, 3], ... 'B': ['a', 'b', 'c'], ... 'C': pd.date_range('2016-01-01', freq='d', periods=3), ... }, index=pd.Index(range(3), name='idx')) >>> build_table_schema(df) {'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}], 'pandas_version': '0.20.0', 'primaryKey': ['idx']} """ if index is True: data = set_default_names(data) schema: Dict[str, Any] = {} fields = [] if index: if data.index.nlevels > 1: data.index = cast("MultiIndex", data.index) for level, name in zip(data.index.levels, data.index.names): new_field = convert_pandas_type_to_json_field(level) new_field["name"] = name fields.append(new_field) else: fields.append(convert_pandas_type_to_json_field(data.index)) if data.ndim > 1: for column, s in data.items(): fields.append(convert_pandas_type_to_json_field(s)) else: fields.append(convert_pandas_type_to_json_field(data)) schema["fields"] = fields if index and data.index.is_unique and primary_key is None: if data.index.nlevels == 1: schema["primaryKey"] = [data.index.name] else: schema["primaryKey"] = data.index.names elif primary_key is not None: schema["primaryKey"] = primary_key if version: schema["pandas_version"] = "0.20.0" return schema def parse_table_schema(json, precise_float): """ Builds a DataFrame from a given schema Parameters ---------- json : A JSON table schema precise_float : boolean Flag controlling precision when decoding string to double values, as dictated by ``read_json`` Returns ------- df : DataFrame Raises ------ NotImplementedError If the JSON table schema contains either timezone or timedelta data Notes ----- Because :func:`DataFrame.to_json` uses the string 'index' to denote a name-less :class:`Index`, this function sets the name of the returned :class:`DataFrame` to ``None`` when said string is encountered with a normal :class:`Index`. For a :class:`MultiIndex`, the same limitation applies to any strings beginning with 'level_'. Therefore, an :class:`Index` name of 'index' and :class:`MultiIndex` names starting with 'level_' are not supported. See Also -------- build_table_schema : Inverse function. pandas.read_json """ table = loads(json, precise_float=precise_float) col_order = [field["name"] for field in table["schema"]["fields"]] df = DataFrame(table["data"], columns=col_order)[col_order] dtypes = { field["name"]: convert_json_field_to_pandas_type(field) for field in table["schema"]["fields"] } # Cannot directly use as_type with timezone data on object; raise for now if any(str(x).startswith("datetime64[ns, ") for x in dtypes.values()): raise NotImplementedError('table="orient" can not yet read timezone data') # No ISO constructor for Timedelta as of yet, so need to raise if "timedelta64" in dtypes.values(): raise NotImplementedError( 'table="orient" can not yet read ISO-formatted Timedelta data' ) df = df.astype(dtypes) if "primaryKey" in table["schema"]: df = df.set_index(table["schema"]["primaryKey"]) if len(df.index.names) == 1: if df.index.name == "index": df.index.name = None else: df.index.names = [ None if x.startswith("level_") else x for x in df.index.names ] return df