""" A place for code to be called from the implementation of np.dtype String handling is much easier to do correctly in python. """ import numpy as np _kind_to_stem = { 'u': 'uint', 'i': 'int', 'c': 'complex', 'f': 'float', 'b': 'bool', 'V': 'void', 'O': 'object', 'M': 'datetime', 'm': 'timedelta', 'S': 'bytes', 'U': 'str', } def _kind_name(dtype): try: return _kind_to_stem[dtype.kind] except KeyError: raise RuntimeError( "internal dtype error, unknown kind {!r}" .format(dtype.kind) ) def __str__(dtype): if dtype.fields is not None: return _struct_str(dtype, include_align=True) elif dtype.subdtype: return _subarray_str(dtype) elif issubclass(dtype.type, np.flexible) or not dtype.isnative: return dtype.str else: return dtype.name def __repr__(dtype): arg_str = _construction_repr(dtype, include_align=False) if dtype.isalignedstruct: arg_str = arg_str + ", align=True" return "dtype({})".format(arg_str) def _unpack_field(dtype, offset, title=None): """ Helper function to normalize the items in dtype.fields. Call as: dtype, offset, title = _unpack_field(*dtype.fields[name]) """ return dtype, offset, title def _isunsized(dtype): # PyDataType_ISUNSIZED return dtype.itemsize == 0 def _construction_repr(dtype, include_align=False, short=False): """ Creates a string repr of the dtype, excluding the 'dtype()' part surrounding the object. This object may be a string, a list, or a dict depending on the nature of the dtype. This is the object passed as the first parameter to the dtype constructor, and if no additional constructor parameters are given, will reproduce the exact memory layout. Parameters ---------- short : bool If true, this creates a shorter repr using 'kind' and 'itemsize', instead of the longer type name. include_align : bool If true, this includes the 'align=True' parameter inside the struct dtype construction dict when needed. Use this flag if you want a proper repr string without the 'dtype()' part around it. If false, this does not preserve the 'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for struct arrays like the regular repr does, because the 'align' flag is not part of first dtype constructor parameter. This mode is intended for a full 'repr', where the 'align=True' is provided as the second parameter. """ if dtype.fields is not None: return _struct_str(dtype, include_align=include_align) elif dtype.subdtype: return _subarray_str(dtype) else: return _scalar_str(dtype, short=short) def _scalar_str(dtype, short): byteorder = _byte_order_str(dtype) if dtype.type == np.bool_: if short: return "'?'" else: return "'bool'" elif dtype.type == np.object_: # The object reference may be different sizes on different # platforms, so it should never include the itemsize here. return "'O'" elif dtype.type == np.string_: if _isunsized(dtype): return "'S'" else: return "'S%d'" % dtype.itemsize elif dtype.type == np.unicode_: if _isunsized(dtype): return "'%sU'" % byteorder else: return "'%sU%d'" % (byteorder, dtype.itemsize / 4) # unlike the other types, subclasses of void are preserved - but # historically the repr does not actually reveal the subclass elif issubclass(dtype.type, np.void): if _isunsized(dtype): return "'V'" else: return "'V%d'" % dtype.itemsize elif dtype.type == np.datetime64: return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype)) elif dtype.type == np.timedelta64: return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype)) elif np.issubdtype(dtype, np.number): # Short repr with endianness, like '' """ # hack to obtain the native and swapped byte order characters swapped = np.dtype(int).newbyteorder('s') native = swapped.newbyteorder('s') byteorder = dtype.byteorder if byteorder == '=': return native.byteorder if byteorder == 's': # TODO: this path can never be reached return swapped.byteorder elif byteorder == '|': return '' else: return byteorder def _datetime_metadata_str(dtype): # TODO: this duplicates the C append_metastr_to_string unit, count = np.datetime_data(dtype) if unit == 'generic': return '' elif count == 1: return '[{}]'.format(unit) else: return '[{}{}]'.format(count, unit) def _struct_dict_str(dtype, includealignedflag): # unpack the fields dictionary into ls names = dtype.names fld_dtypes = [] offsets = [] titles = [] for name in names: fld_dtype, offset, title = _unpack_field(*dtype.fields[name]) fld_dtypes.append(fld_dtype) offsets.append(offset) titles.append(title) # Build up a string to make the dictionary # First, the names ret = "{'names':[" ret += ",".join(repr(name) for name in names) # Second, the formats ret += "], 'formats':[" ret += ",".join( _construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes) # Third, the offsets ret += "], 'offsets':[" ret += ",".join("%d" % offset for offset in offsets) # Fourth, the titles if any(title is not None for title in titles): ret += "], 'titles':[" ret += ",".join(repr(title) for title in titles) # Fifth, the itemsize ret += "], 'itemsize':%d" % dtype.itemsize if (includealignedflag and dtype.isalignedstruct): # Finally, the aligned flag ret += ", 'aligned':True}" else: ret += "}" return ret def _is_packed(dtype): """ Checks whether the structured data type in 'dtype' has a simple layout, where all the fields are in order, and follow each other with no alignment padding. When this returns true, the dtype can be reconstructed from a list of the field names and dtypes with no additional dtype parameters. Duplicates the C `is_dtype_struct_simple_unaligned_layout` function. """ total_offset = 0 for name in dtype.names: fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name]) if fld_offset != total_offset: return False total_offset += fld_dtype.itemsize if total_offset != dtype.itemsize: return False return True def _struct_list_str(dtype): items = [] for name in dtype.names: fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name]) item = "(" if title is not None: item += "({!r}, {!r}), ".format(title, name) else: item += "{!r}, ".format(name) # Special case subarray handling here if fld_dtype.subdtype is not None: base, shape = fld_dtype.subdtype item += "{}, {}".format( _construction_repr(base, short=True), shape ) else: item += _construction_repr(fld_dtype, short=True) item += ")" items.append(item) return "[" + ", ".join(items) + "]" def _struct_str(dtype, include_align): # The list str representation can't include the 'align=' flag, # so if it is requested and the struct has the aligned flag set, # we must use the dict str instead. if not (include_align and dtype.isalignedstruct) and _is_packed(dtype): sub = _struct_list_str(dtype) else: sub = _struct_dict_str(dtype, include_align) # If the data type isn't the default, void, show it if dtype.type != np.void: return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub) else: return sub def _subarray_str(dtype): base, shape = dtype.subdtype return "({}, {})".format( _construction_repr(base, short=True), shape ) def _name_includes_bit_suffix(dtype): if dtype.type == np.object_: # pointer size varies by system, best to omit it return False elif dtype.type == np.bool_: # implied return False elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype): # unspecified return False else: return True def _name_get(dtype): # provides dtype.name.__get__, documented as returning a "bit name" if dtype.isbuiltin == 2: # user dtypes don't promise to do anything special return dtype.type.__name__ if issubclass(dtype.type, np.void): # historically, void subclasses preserve their name, eg `record64` name = dtype.type.__name__ else: name = _kind_name(dtype) # append bit counts if _name_includes_bit_suffix(dtype): name += "{}".format(dtype.itemsize * 8) # append metadata to datetimes if dtype.type in (np.datetime64, np.timedelta64): name += _datetime_metadata_str(dtype) return name