""" Extend pandas with custom array types. """ from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Type, Union import numpy as np from pandas._typing import DtypeObj from pandas.errors import AbstractMethodError from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries if TYPE_CHECKING: from pandas.core.arrays import ExtensionArray # noqa: F401 class ExtensionDtype: """ A custom data type, to be paired with an ExtensionArray. .. versionadded:: 0.23.0 See Also -------- extensions.register_extension_dtype extensions.ExtensionArray Notes ----- The interface includes the following abstract methods that must be implemented by subclasses: * type * name The following attributes and methods influence the behavior of the dtype in pandas operations * _is_numeric * _is_boolean * _get_common_dtype Optionally one can override construct_array_type for construction with the name of this dtype via the Registry. See :meth:`extensions.register_extension_dtype`. * construct_array_type The `na_value` class attribute can be used to set the default NA value for this type. :attr:`numpy.nan` is used by default. ExtensionDtypes are required to be hashable. The base class provides a default implementation, which relies on the ``_metadata`` class attribute. ``_metadata`` should be a tuple containing the strings that define your data type. For example, with ``PeriodDtype`` that's the ``freq`` attribute. **If you have a parametrized dtype you should set the ``_metadata`` class property**. Ideally, the attributes in ``_metadata`` will match the parameters to your ``ExtensionDtype.__init__`` (if any). If any of the attributes in ``_metadata`` don't implement the standard ``__eq__`` or ``__hash__``, the default implementations here will not work. .. versionchanged:: 0.24.0 Added ``_metadata``, ``__hash__``, and changed the default definition of ``__eq__``. For interaction with Apache Arrow (pyarrow), a ``__from_arrow__`` method can be implemented: this method receives a pyarrow Array or ChunkedArray as only argument and is expected to return the appropriate pandas ExtensionArray for this dtype and the passed values:: class ExtensionDtype: def __from_arrow__( self, array: Union[pyarrow.Array, pyarrow.ChunkedArray] ) -> ExtensionArray: ... This class does not inherit from 'abc.ABCMeta' for performance reasons. Methods and properties required by the interface raise ``pandas.errors.AbstractMethodError`` and no ``register`` method is provided for registering virtual subclasses. """ _metadata: Tuple[str, ...] = () def __str__(self) -> str: return self.name def __eq__(self, other: Any) -> bool: """ Check whether 'other' is equal to self. By default, 'other' is considered equal if either * it's a string matching 'self.name'. * it's an instance of this type and all of the the attributes in ``self._metadata`` are equal between `self` and `other`. Parameters ---------- other : Any Returns ------- bool """ if isinstance(other, str): try: other = self.construct_from_string(other) except TypeError: return False if isinstance(other, type(self)): return all( getattr(self, attr) == getattr(other, attr) for attr in self._metadata ) return False def __hash__(self) -> int: return hash(tuple(getattr(self, attr) for attr in self._metadata)) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) @property def na_value(self) -> object: """ Default NA value to use for this type. This is used in e.g. ExtensionArray.take. This should be the user-facing "boxed" version of the NA value, not the physical NA value for storage. e.g. for JSONArray, this is an empty dictionary. """ return np.nan @property def type(self) -> Type: """ The scalar type for the array, e.g. ``int`` It's expected ``ExtensionArray[item]`` returns an instance of ``ExtensionDtype.type`` for scalar ``item``, assuming that value is valid (not NA). NA values do not need to be instances of `type`. """ raise AbstractMethodError(self) @property def kind(self) -> str: """ A character code (one of 'biufcmMOSUV'), default 'O' This should match the NumPy dtype used when the array is converted to an ndarray, which is probably 'O' for object if the extension type cannot be represented as a built-in NumPy type. See Also -------- numpy.dtype.kind """ return "O" @property def name(self) -> str: """ A string identifying the data type. Will be used for display in, e.g. ``Series.dtype`` """ raise AbstractMethodError(self) @property def names(self) -> Optional[List[str]]: """ Ordered list of field names, or None if there are no fields. This is for compatibility with NumPy arrays, and may be removed in the future. """ return None @classmethod def construct_array_type(cls) -> Type["ExtensionArray"]: """ Return the array type associated with this dtype. Returns ------- type """ raise NotImplementedError @classmethod def construct_from_string(cls, string: str): r""" Construct this type from a string. This is useful mainly for data types that accept parameters. For example, a period dtype accepts a frequency parameter that can be set as ``period[H]`` (where H means hourly frequency). By default, in the abstract class, just the name of the type is expected. But subclasses can overwrite this method to accept parameters. Parameters ---------- string : str The name of the type, for example ``category``. Returns ------- ExtensionDtype Instance of the dtype. Raises ------ TypeError If a class cannot be constructed from this 'string'. Examples -------- For extension dtypes with arguments the following may be an adequate implementation. >>> @classmethod ... def construct_from_string(cls, string): ... pattern = re.compile(r"^my_type\[(?P.+)\]$") ... match = pattern.match(string) ... if match: ... return cls(**match.groupdict()) ... else: ... raise TypeError( ... f"Cannot construct a '{cls.__name__}' from '{string}'" ... ) """ if not isinstance(string, str): raise TypeError( f"'construct_from_string' expects a string, got {type(string)}" ) # error: Non-overlapping equality check (left operand type: "str", right # operand type: "Callable[[ExtensionDtype], str]") [comparison-overlap] assert isinstance(cls.name, str), (cls, type(cls.name)) if string != cls.name: raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'") return cls() @classmethod def is_dtype(cls, dtype: object) -> bool: """ Check if we match 'dtype'. Parameters ---------- dtype : object The object to check. Returns ------- bool Notes ----- The default implementation is True if 1. ``cls.construct_from_string(dtype)`` is an instance of ``cls``. 2. ``dtype`` is an object and is an instance of ``cls`` 3. ``dtype`` has a ``dtype`` attribute, and any of the above conditions is true for ``dtype.dtype``. """ dtype = getattr(dtype, "dtype", dtype) if isinstance(dtype, (ABCSeries, ABCIndexClass, ABCDataFrame, np.dtype)): # https://github.com/pandas-dev/pandas/issues/22960 # avoid passing data to `construct_from_string`. This could # cause a FutureWarning from numpy about failing elementwise # comparison from, e.g., comparing DataFrame == 'category'. return False elif dtype is None: return False elif isinstance(dtype, cls): return True if isinstance(dtype, str): try: return cls.construct_from_string(dtype) is not None except TypeError: return False return False @property def _is_numeric(self) -> bool: """ Whether columns with this dtype should be considered numeric. By default ExtensionDtypes are assumed to be non-numeric. They'll be excluded from operations that exclude non-numeric columns, like (groupby) reductions, plotting, etc. """ return False @property def _is_boolean(self) -> bool: """ Whether this dtype should be considered boolean. By default, ExtensionDtypes are assumed to be non-numeric. Setting this to True will affect the behavior of several places, e.g. * is_bool * boolean indexing Returns ------- bool """ return False def _get_common_dtype(self, dtypes: List[DtypeObj]) -> Optional[DtypeObj]: """ Return the common dtype, if one exists. Used in `find_common_type` implementation. This is for example used to determine the resulting dtype in a concat operation. If no common dtype exists, return None (which gives the other dtypes the chance to determine a common dtype). If all dtypes in the list return None, then the common dtype will be "object" dtype (this means it is never needed to return "object" dtype from this method itself). Parameters ---------- dtypes : list of dtypes The dtypes for which to determine a common dtype. This is a list of np.dtype or ExtensionDtype instances. Returns ------- Common dtype (np.dtype or ExtensionDtype) or None """ if len(set(dtypes)) == 1: # only itself return self else: return None def register_extension_dtype(cls: Type[ExtensionDtype]) -> Type[ExtensionDtype]: """ Register an ExtensionType with pandas as class decorator. .. versionadded:: 0.24.0 This enables operations like ``.astype(name)`` for the name of the ExtensionDtype. Returns ------- callable A class decorator. Examples -------- >>> from pandas.api.extensions import register_extension_dtype >>> from pandas.api.extensions import ExtensionDtype >>> @register_extension_dtype ... class MyExtensionDtype(ExtensionDtype): ... name = "myextension" """ registry.register(cls) return cls class Registry: """ Registry for dtype inference. The registry allows one to map a string repr of a extension dtype to an extension dtype. The string alias can be used in several places, including * Series and Index constructors * :meth:`pandas.array` * :meth:`pandas.Series.astype` Multiple extension types can be registered. These are tried in order. """ def __init__(self): self.dtypes: List[Type[ExtensionDtype]] = [] def register(self, dtype: Type[ExtensionDtype]) -> None: """ Parameters ---------- dtype : ExtensionDtype class """ if not issubclass(dtype, ExtensionDtype): raise ValueError("can only register pandas extension dtypes") self.dtypes.append(dtype) def find( self, dtype: Union[Type[ExtensionDtype], str] ) -> Optional[Type[ExtensionDtype]]: """ Parameters ---------- dtype : Type[ExtensionDtype] or str Returns ------- return the first matching dtype, otherwise return None """ if not isinstance(dtype, str): dtype_type = dtype if not isinstance(dtype, type): dtype_type = type(dtype) if issubclass(dtype_type, ExtensionDtype): return dtype return None for dtype_type in self.dtypes: try: return dtype_type.construct_from_string(dtype) except TypeError: pass return None registry = Registry()