""" Missing data handling for arithmetic operations. In particular, pandas conventions regarding division by zero differ from numpy in the following ways: 1) np.array([-1, 0, 1], dtype=dtype1) // np.array([0, 0, 0], dtype=dtype2) gives [nan, nan, nan] for most dtype combinations, and [0, 0, 0] for the remaining pairs (the remaining being dtype1==dtype2==intN and dtype==dtype2==uintN). pandas convention is to return [-inf, nan, inf] for all dtype combinations. Note: the numpy behavior described here is py3-specific. 2) np.array([-1, 0, 1], dtype=dtype1) % np.array([0, 0, 0], dtype=dtype2) gives precisely the same results as the // operation. pandas convention is to return [nan, nan, nan] for all dtype combinations. 3) divmod behavior consistent with 1) and 2). """ import operator import numpy as np from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype, is_scalar from pandas.core.ops.roperator import rdivmod, rfloordiv, rmod def fill_zeros(result, x, y): """ If this is a reversed op, then flip x,y If we have an integer value (or array in y) and we have 0's, fill them with np.nan, return the result. Mask the nan's from x. """ if is_float_dtype(result.dtype): return result is_variable_type = hasattr(y, "dtype") or hasattr(y, "type") is_scalar_type = is_scalar(y) if not is_variable_type and not is_scalar_type: return result if is_scalar_type: y = np.array(y) if is_integer_dtype(y.dtype): if (y == 0).any(): # GH#7325, mask and nans must be broadcastable (also: GH#9308) # Raveling and then reshaping makes np.putmask faster mask = ((y == 0) & ~np.isnan(result)).ravel() shape = result.shape result = result.astype("float64", copy=False).ravel() np.putmask(result, mask, np.nan) result = result.reshape(shape) return result def mask_zero_div_zero(x, y, result): """ Set results of 0 // 0 to np.nan, regardless of the dtypes of the numerator or the denominator. Parameters ---------- x : ndarray y : ndarray result : ndarray Returns ------- ndarray The filled result. Examples -------- >>> x = np.array([1, 0, -1], dtype=np.int64) >>> x array([ 1, 0, -1]) >>> y = 0 # int 0; numpy behavior is different with float >>> result = x // y >>> result # raw numpy result does not fill division by zero array([0, 0, 0]) >>> mask_zero_div_zero(x, y, result) array([ inf, nan, -inf]) """ if not isinstance(result, np.ndarray): # FIXME: SparseArray would raise TypeError with np.putmask return result if is_scalar(y): y = np.array(y) zmask = y == 0 if isinstance(zmask, bool): # FIXME: numpy did not evaluate pointwise, seen in docs build return result if zmask.any(): # Flip sign if necessary for -0.0 zneg_mask = zmask & np.signbit(y) zpos_mask = zmask & ~zneg_mask nan_mask = zmask & (x == 0) with np.errstate(invalid="ignore"): neginf_mask = (zpos_mask & (x < 0)) | (zneg_mask & (x > 0)) posinf_mask = (zpos_mask & (x > 0)) | (zneg_mask & (x < 0)) if nan_mask.any() or neginf_mask.any() or posinf_mask.any(): # Fill negative/0 with -inf, positive/0 with +inf, 0/0 with NaN result = result.astype("float64", copy=False) result[nan_mask] = np.nan result[posinf_mask] = np.inf result[neginf_mask] = -np.inf return result def dispatch_fill_zeros(op, left, right, result): """ Call fill_zeros with the appropriate fill value depending on the operation, with special logic for divmod and rdivmod. Parameters ---------- op : function (operator.add, operator.div, ...) left : object (np.ndarray for non-reversed ops) right : object (np.ndarray for reversed ops) result : ndarray Returns ------- result : np.ndarray Notes ----- For divmod and rdivmod, the `result` parameter and returned `result` is a 2-tuple of ndarray objects. """ if op is divmod: result = ( mask_zero_div_zero(left, right, result[0]), fill_zeros(result[1], left, right), ) elif op is rdivmod: result = ( mask_zero_div_zero(right, left, result[0]), fill_zeros(result[1], right, left), ) elif op is operator.floordiv: # Note: no need to do this for truediv; in py3 numpy behaves the way # we want. result = mask_zero_div_zero(left, right, result) elif op is rfloordiv: # Note: no need to do this for rtruediv; in py3 numpy behaves the way # we want. result = mask_zero_div_zero(right, left, result) elif op is operator.mod: result = fill_zeros(result, left, right) elif op is rmod: result = fill_zeros(result, right, left) return result