""" miscellaneous sorting / groupby utilities """ from typing import Callable, Optional import numpy as np from pandas._libs import algos, hashtable, lib from pandas._libs.hashtable import unique_label_indices from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_extension_array_dtype, ) from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algorithms from pandas.core.construction import extract_array _INT64_MAX = np.iinfo(np.int64).max def get_group_index(labels, shape, sort: bool, xnull: bool): """ For the particular label_list, gets the offsets into the hypothetical list representing the totally ordered cartesian product of all possible label combinations, *as long as* this space fits within int64 bounds; otherwise, though group indices identify unique combinations of labels, they cannot be deconstructed. - If `sort`, rank of returned ids preserve lexical ranks of labels. i.e. returned id's can be used to do lexical sort on labels; - If `xnull` nulls (-1 labels) are passed through. Parameters ---------- labels : sequence of arrays Integers identifying levels at each location shape : sequence of ints Number of unique levels at each location sort : bool If the ranks of returned ids should match lexical ranks of labels xnull : bool If true nulls are excluded. i.e. -1 values in the labels are passed through. Returns ------- An array of type int64 where two elements are equal if their corresponding labels are equal at all location. Notes ----- The length of `labels` and `shape` must be identical. """ def _int64_cut_off(shape) -> int: acc = 1 for i, mul in enumerate(shape): acc *= int(mul) if not acc < _INT64_MAX: return i return len(shape) def maybe_lift(lab, size): # promote nan values (assigned -1 label in lab array) # so that all output values are non-negative return (lab + 1, size + 1) if (lab == -1).any() else (lab, size) labels = map(ensure_int64, labels) if not xnull: labels, shape = map(list, zip(*map(maybe_lift, labels, shape))) labels = list(labels) shape = list(shape) # Iteratively process all the labels in chunks sized so less # than _INT64_MAX unique int ids will be required for each chunk while True: # how many levels can be done without overflow: nlev = _int64_cut_off(shape) # compute flat ids for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype="i8") out = stride * labels[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): if shape[i] == 0: stride = 0 else: stride //= shape[i] out += labels[i] * stride if xnull: # exclude nulls mask = labels[0] == -1 for lab in labels[1:nlev]: mask |= lab == -1 out[mask] = -1 if nlev == len(shape): # all levels done! break # compress what has been done so far in order to avoid overflow # to retain lexical ranks, obs_ids should be sorted comp_ids, obs_ids = compress_group_index(out, sort=sort) labels = [comp_ids] + labels[nlev:] shape = [len(obs_ids)] + shape[nlev:] return out def get_compressed_ids(labels, sizes): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). Parameters ---------- labels : list of label arrays sizes : list of size of the levels Returns ------- tuple of (comp_ids, obs_group_ids) """ ids = get_group_index(labels, sizes, sort=True, xnull=False) return compress_group_index(ids, sort=True) def is_int64_overflow_possible(shape) -> bool: the_prod = 1 for x in shape: the_prod *= int(x) return the_prod >= _INT64_MAX def decons_group_index(comp_labels, shape): # reconstruct labels if is_int64_overflow_possible(shape): # at some point group indices are factorized, # and may not be deconstructed here! wrong path! raise ValueError("cannot deconstruct factorized group indices!") label_list = [] factor = 1 y = 0 x = comp_labels for i in reversed(range(len(shape))): labels = (x - y) % (factor * shape[i]) // factor np.putmask(labels, comp_labels < 0, -1) label_list.append(labels) y = labels * factor factor *= shape[i] return label_list[::-1] def decons_obs_group_ids(comp_ids, obs_ids, shape, labels, xnull: bool): """ Reconstruct labels from observed group ids. Parameters ---------- xnull : bool If nulls are excluded; i.e. -1 labels are passed through. """ if not xnull: lift = np.fromiter(((a == -1).any() for a in labels), dtype="i8") shape = np.asarray(shape, dtype="i8") + lift if not is_int64_overflow_possible(shape): # obs ids are deconstructable! take the fast route! out = decons_group_index(obs_ids, shape) return out if xnull or not lift.any() else [x - y for x, y in zip(out, lift)] i = unique_label_indices(comp_ids) i8copy = lambda a: a.astype("i8", subok=False, copy=True) return [i8copy(lab[i]) for lab in labels] def indexer_from_factorized(labels, shape, compress: bool = True): ids = get_group_index(labels, shape, sort=True, xnull=False) if not compress: ngroups = (ids.size and ids.max()) + 1 else: ids, obs = compress_group_index(ids, sort=True) ngroups = len(obs) return get_group_index_sorter(ids, ngroups) def lexsort_indexer( keys, orders=None, na_position: str = "last", key: Optional[Callable] = None ): """ Performs lexical sorting on a set of keys Parameters ---------- keys : sequence of arrays Sequence of ndarrays to be sorted by the indexer orders : boolean or list of booleans, optional Determines the sorting order for each element in keys. If a list, it must be the same length as keys. This determines whether the corresponding element in keys should be sorted in ascending (True) or descending (False) order. if bool, applied to all elements as above. if None, defaults to True. na_position : {'first', 'last'}, default 'last' Determines placement of NA elements in the sorted list ("last" or "first") key : Callable, optional Callable key function applied to every element in keys before sorting .. versionadded:: 1.0.0 """ from pandas.core.arrays import Categorical labels = [] shape = [] if isinstance(orders, bool): orders = [orders] * len(keys) elif orders is None: orders = [True] * len(keys) keys = [ensure_key_mapped(k, key) for k in keys] for k, order in zip(keys, orders): cat = Categorical(k, ordered=True) if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {na_position}") n = len(cat.categories) codes = cat.codes.copy() mask = cat.codes == -1 if order: # ascending if na_position == "last": codes = np.where(mask, n, codes) elif na_position == "first": codes += 1 else: # not order means descending if na_position == "last": codes = np.where(mask, n, n - codes - 1) elif na_position == "first": codes = np.where(mask, 0, n - codes) if mask.any(): n += 1 shape.append(n) labels.append(codes) return indexer_from_factorized(labels, shape) def nargsort( items, kind: str = "quicksort", ascending: bool = True, na_position: str = "last", key: Optional[Callable] = None, ): """ Intended to be a drop-in replacement for np.argsort which handles NaNs. Adds ascending, na_position, and key parameters. (GH #6399, #5231, #27237) Parameters ---------- kind : str, default 'quicksort' ascending : bool, default True na_position : {'first', 'last'}, default 'last' key : Optional[Callable], default None """ if key is not None: items = ensure_key_mapped(items, key) return nargsort( items, kind=kind, ascending=ascending, na_position=na_position, key=None ) items = extract_array(items) mask = np.asarray(isna(items)) if is_extension_array_dtype(items): items = items._values_for_argsort() else: items = np.asanyarray(items) idx = np.arange(len(items)) non_nans = items[~mask] non_nan_idx = idx[~mask] nan_idx = np.nonzero(mask)[0] if not ascending: non_nans = non_nans[::-1] non_nan_idx = non_nan_idx[::-1] indexer = non_nan_idx[non_nans.argsort(kind=kind)] if not ascending: indexer = indexer[::-1] # Finally, place the NaNs at the end or the beginning according to # na_position if na_position == "last": indexer = np.concatenate([indexer, nan_idx]) elif na_position == "first": indexer = np.concatenate([nan_idx, indexer]) else: raise ValueError(f"invalid na_position: {na_position}") return indexer def nargminmax(values, method: str): """ Implementation of np.argmin/argmax but for ExtensionArray and which handles missing values. Parameters ---------- values : ExtensionArray method : {"argmax", "argmin"} Returns ------- int """ assert method in {"argmax", "argmin"} func = np.argmax if method == "argmax" else np.argmin mask = np.asarray(isna(values)) values = values._values_for_argsort() idx = np.arange(len(values)) non_nans = values[~mask] non_nan_idx = idx[~mask] return non_nan_idx[func(non_nans)] def ensure_key_mapped_multiindex(index, key: Callable, level=None): """ Returns a new MultiIndex in which key has been applied to all levels specified in level (or all levels if level is None). Used for key sorting for MultiIndex. Parameters ---------- index : MultiIndex Index to which to apply the key function on the specified levels. key : Callable Function that takes an Index and returns an Index of the same shape. This key is applied to each level separately. The name of the level can be used to distinguish different levels for application. level : list-like, int or str, default None Level or list of levels to apply the key function to. If None, key function is applied to all levels. Other levels are left unchanged. Returns ------- labels : MultiIndex Resulting MultiIndex with modified levels. """ from pandas.core.indexes.api import MultiIndex if level is not None: if isinstance(level, (str, int)): sort_levels = [level] else: sort_levels = level sort_levels = [index._get_level_number(lev) for lev in sort_levels] else: sort_levels = list(range(index.nlevels)) # satisfies mypy mapped = [ ensure_key_mapped(index._get_level_values(level), key) if level in sort_levels else index._get_level_values(level) for level in range(index.nlevels) ] labels = MultiIndex.from_arrays(mapped) return labels def ensure_key_mapped(values, key: Optional[Callable], levels=None): """ Applies a callable key function to the values function and checks that the resulting value has the same shape. Can be called on Index subclasses, Series, DataFrames, or ndarrays. Parameters ---------- values : Series, DataFrame, Index subclass, or ndarray key : Optional[Callable], key to be called on the values array levels : Optional[List], if values is a MultiIndex, list of levels to apply the key to. """ from pandas.core.indexes.api import Index if not key: return values if isinstance(values, ABCMultiIndex): return ensure_key_mapped_multiindex(values, key, level=levels) result = key(values.copy()) if len(result) != len(values): raise ValueError( "User-provided `key` function must not change the shape of the array." ) try: if isinstance( values, Index ): # convert to a new Index subclass, not necessarily the same result = Index(result) else: type_of_values = type(values) result = type_of_values(result) # try to revert to original type otherwise except TypeError: raise TypeError( f"User-provided `key` function returned an invalid type {type(result)} \ which could not be converted to {type(values)}." ) return result class _KeyMapper: """ Map compressed group id -> key tuple. """ def __init__(self, comp_ids, ngroups: int, levels, labels): self.levels = levels self.labels = labels self.comp_ids = comp_ids.astype(np.int64) self.k = len(labels) self.tables = [hashtable.Int64HashTable(ngroups) for _ in range(self.k)] self._populate_tables() def _populate_tables(self): for labs, table in zip(self.labels, self.tables): table.map(self.comp_ids, labs.astype(np.int64)) def get_key(self, comp_id): return tuple( level[table.get_item(comp_id)] for table, level in zip(self.tables, self.levels) ) def get_flattened_iterator(comp_ids, ngroups, levels, labels): # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, levels, labels) return [mapper.get_key(i) for i in range(ngroups)] def get_indexer_dict(label_list, keys): """ Returns ------- dict Labels mapped to indexers. """ shape = [len(x) for x in keys] group_index = get_group_index(label_list, shape, sort=True, xnull=True) ngroups = ( ((group_index.size and group_index.max()) + 1) if is_int64_overflow_possible(shape) else np.prod(shape, dtype="i8") ) sorter = get_group_index_sorter(group_index, ngroups) sorted_labels = [lab.take(sorter) for lab in label_list] group_index = group_index.take(sorter) return lib.indices_fast(sorter, group_index, keys, sorted_labels) # ---------------------------------------------------------------------- # sorting levels...cleverly? def get_group_index_sorter(group_index, ngroups: int): """ algos.groupsort_indexer implements `counting sort` and it is at least O(ngroups), where ngroups = prod(shape) shape = map(len, keys) that is, linear in the number of combinations (cartesian product) of unique values of groupby keys. This can be huge when doing multi-key groupby. np.argsort(kind='mergesort') is O(count x log(count)) where count is the length of the data-frame; Both algorithms are `stable` sort and that is necessary for correctness of groupby operations. e.g. consider: df.groupby(key)[col].transform('first') """ count = len(group_index) alpha = 0.0 # taking complexities literally; there may be beta = 1.0 # some room for fine-tuning these parameters do_groupsort = count > 0 and ((alpha + beta * ngroups) < (count * np.log(count))) if do_groupsort: sorter, _ = algos.groupsort_indexer(ensure_int64(group_index), ngroups) return ensure_platform_int(sorter) else: return group_index.argsort(kind="mergesort") def compress_group_index(group_index, sort: bool = True): """ Group_index is offsets into cartesian product of all possible labels. This space can be huge, so this function compresses it, by computing offsets (comp_ids) into the list of unique labels (obs_group_ids). """ size_hint = min(len(group_index), hashtable._SIZE_HINT_LIMIT) table = hashtable.Int64HashTable(size_hint) group_index = ensure_int64(group_index) # note, group labels come out ascending (ie, 1,2,3 etc) comp_ids, obs_group_ids = table.get_labels_groupby(group_index) if sort and len(obs_group_ids) > 0: obs_group_ids, comp_ids = _reorder_by_uniques(obs_group_ids, comp_ids) return comp_ids, obs_group_ids def _reorder_by_uniques(uniques, labels): # sorter is index where elements ought to go sorter = uniques.argsort() # reverse_indexer is where elements came from reverse_indexer = np.empty(len(sorter), dtype=np.int64) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 # move labels to right locations (ie, unsort ascending labels) labels = algorithms.take_nd(reverse_indexer, labels, allow_fill=False) np.putmask(labels, mask, -1) # sort observed ids uniques = algorithms.take_nd(uniques, sorter, allow_fill=False) return uniques, labels