import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.fixture def data(): return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.fixture def left_array(): return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean") @pytest.fixture def right_array(): return pd.array([True, False, None] * 3, dtype="boolean") # Basic test for the arithmetic array ops # ----------------------------------------------------------------------------- @pytest.mark.parametrize( "opname, exp", [ ("add", [True, True, None, True, False, None, None, None, None]), ("mul", [True, False, None, False, False, None, None, None, None]), ], ids=["add", "mul"], ) def test_add_mul(left_array, right_array, opname, exp): op = getattr(operator, opname) result = op(left_array, right_array) expected = pd.array(exp, dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_sub(left_array, right_array): with pytest.raises(TypeError): # numpy points to ^ operator or logical_xor function instead left_array - right_array def test_div(left_array, right_array): # for now division gives a float numpy array result = left_array / right_array expected = np.array( [1.0, np.inf, np.nan, 0.0, np.nan, np.nan, np.nan, np.nan, np.nan], dtype="float64", ) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "opname", [ "floordiv", "mod", pytest.param( "pow", marks=pytest.mark.xfail(reason="TODO follow int8 behaviour? GH34686") ), ], ) def test_op_int8(left_array, right_array, opname): op = getattr(operator, opname) result = op(left_array, right_array) expected = op(left_array.astype("Int8"), right_array.astype("Int8")) tm.assert_extension_array_equal(result, expected) # Test generic characteristics / errors # ----------------------------------------------------------------------------- def test_error_invalid_values(data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) # invalid scalars with pytest.raises(TypeError): ops("foo") with pytest.raises(TypeError): ops(pd.Timestamp("20180101")) # invalid array-likes if op not in ("__mul__", "__rmul__"): # TODO(extension) numpy's mul with object array sees booleans as numbers with pytest.raises(TypeError): ops(pd.Series("foo", index=s.index))