import decimal import numbers import random import sys from typing import Type import numpy as np from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.common import pandas_dtype import pandas as pd from pandas.api.extensions import no_default, register_extension_dtype from pandas.core.arrays import ExtensionArray, ExtensionScalarOpsMixin from pandas.core.indexers import check_array_indexer @register_extension_dtype class DecimalDtype(ExtensionDtype): type = decimal.Decimal name = "decimal" na_value = decimal.Decimal("NaN") _metadata = ("context",) def __init__(self, context=None): self.context = context or decimal.getcontext() def __repr__(self) -> str: return f"DecimalDtype(context={self.context})" @classmethod def construct_array_type(cls) -> Type["DecimalArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return DecimalArray @property def _is_numeric(self) -> bool: return True class DecimalArray(ExtensionArray, ExtensionScalarOpsMixin): __array_priority__ = 1000 def __init__(self, values, dtype=None, copy=False, context=None): for val in values: if not isinstance(val, decimal.Decimal): raise TypeError("All values must be of type " + str(decimal.Decimal)) values = np.asarray(values, dtype=object) self._data = values # Some aliases for common attribute names to ensure pandas supports # these self._items = self.data = self._data # those aliases are currently not working due to assumptions # in internal code (GH-20735) # self._values = self.values = self.data self._dtype = DecimalDtype(context) @property def dtype(self): return self._dtype @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls(scalars) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence([decimal.Decimal(x) for x in strings], dtype, copy) @classmethod def _from_factorized(cls, values, original): return cls(values) _HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray) def to_numpy( self, dtype=None, copy: bool = False, na_value=no_default, decimals=None ) -> np.ndarray: result = np.asarray(self, dtype=dtype) if decimals is not None: result = np.asarray([round(x, decimals) for x in result]) return result def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # if not all( isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs ): return NotImplemented inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) def reconstruct(x): if isinstance(x, (decimal.Decimal, numbers.Number)): return x else: return DecimalArray._from_sequence(x) if isinstance(result, tuple): return tuple(reconstruct(x) for x in result) else: return reconstruct(result) def __getitem__(self, item): if isinstance(item, numbers.Integral): return self._data[item] else: # array, slice. item = pd.api.indexers.check_array_indexer(self, item) return type(self)(self._data[item]) def take(self, indexer, allow_fill=False, fill_value=None): from pandas.api.extensions import take data = self._data if allow_fill and fill_value is None: fill_value = self.dtype.na_value result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill) return self._from_sequence(result) def copy(self): return type(self)(self._data.copy()) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if isinstance(dtype, type(self.dtype)): return type(self)(self._data, context=dtype.context) return super().astype(dtype, copy=copy) def __setitem__(self, key, value): if pd.api.types.is_list_like(value): if pd.api.types.is_scalar(key): raise ValueError("setting an array element with a sequence.") value = [decimal.Decimal(v) for v in value] else: value = decimal.Decimal(value) key = check_array_indexer(self, key) self._data[key] = value def __len__(self) -> int: return len(self._data) @property def nbytes(self) -> int: n = len(self) if n: return n * sys.getsizeof(self[0]) return 0 def isna(self): return np.array([x.is_nan() for x in self._data], dtype=bool) @property def _na_value(self): return decimal.Decimal("NaN") def _formatter(self, boxed=False): if boxed: return "Decimal: {0}".format return repr @classmethod def _concat_same_type(cls, to_concat): return cls(np.concatenate([x._data for x in to_concat])) def _reduce(self, name: str, skipna: bool = True, **kwargs): if skipna: # If we don't have any NAs, we can ignore skipna if self.isna().any(): other = self[~self.isna()] return other._reduce(name, **kwargs) if name == "sum" and len(self) == 0: # GH#29630 avoid returning int 0 or np.bool_(False) on old numpy return decimal.Decimal(0) try: op = getattr(self.data, name) except AttributeError as err: raise NotImplementedError( f"decimal does not support the {name} operation" ) from err return op(axis=0) def to_decimal(values, context=None): return DecimalArray([decimal.Decimal(x) for x in values], context=context) def make_data(): return [decimal.Decimal(random.random()) for _ in range(100)] DecimalArray._add_arithmetic_ops() DecimalArray._add_comparison_ops()