""" these are systematically testing all of the args to value_counts with different size combinations. This is to ensure stability of the sorting and proper parameter handling """ from itertools import product import numpy as np import pytest from pandas import DataFrame, Grouper, MultiIndex, Series, date_range, to_datetime import pandas._testing as tm # our starting frame def seed_df(seed_nans, n, m): np.random.seed(1234) days = date_range("2015-08-24", periods=10) frame = DataFrame( { "1st": np.random.choice(list("abcd"), n), "2nd": np.random.choice(days, n), "3rd": np.random.randint(1, m + 1, n), } ) if seed_nans: frame.loc[1::11, "1st"] = np.nan frame.loc[3::17, "2nd"] = np.nan frame.loc[7::19, "3rd"] = np.nan frame.loc[8::19, "3rd"] = np.nan frame.loc[9::19, "3rd"] = np.nan return frame # create input df, keys, and the bins binned = [] ids = [] for seed_nans in [True, False]: for n, m in product((100, 1000), (5, 20)): df = seed_df(seed_nans, n, m) bins = None, np.arange(0, max(5, df["3rd"].max()) + 1, 2) keys = "1st", "2nd", ["1st", "2nd"] for k, b in product(keys, bins): binned.append((df, k, b, n, m)) ids.append(f"{k}-{n}-{m}") @pytest.mark.slow @pytest.mark.parametrize("df, keys, bins, n, m", binned, ids=ids) @pytest.mark.parametrize("isort", [True, False]) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("sort", [True, False]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("dropna", [True, False]) def test_series_groupby_value_counts( df, keys, bins, n, m, isort, normalize, sort, ascending, dropna ): def rebuild_index(df): arr = list(map(df.index.get_level_values, range(df.index.nlevels))) df.index = MultiIndex.from_arrays(arr, names=df.index.names) return df kwargs = dict( normalize=normalize, sort=sort, ascending=ascending, dropna=dropna, bins=bins ) gr = df.groupby(keys, sort=isort) left = gr["3rd"].value_counts(**kwargs) gr = df.groupby(keys, sort=isort) right = gr["3rd"].apply(Series.value_counts, **kwargs) right.index.names = right.index.names[:-1] + ["3rd"] # have to sort on index because of unstable sort on values left, right = map(rebuild_index, (left, right)) # xref GH9212 tm.assert_series_equal(left.sort_index(), right.sort_index()) def test_series_groupby_value_counts_with_grouper(): # GH28479 df = DataFrame( { "Timestamp": [ 1565083561, 1565083561 + 86400, 1565083561 + 86500, 1565083561 + 86400 * 2, 1565083561 + 86400 * 3, 1565083561 + 86500 * 3, 1565083561 + 86400 * 4, ], "Food": ["apple", "apple", "banana", "banana", "orange", "orange", "pear"], } ).drop([3]) df["Datetime"] = to_datetime(df["Timestamp"].apply(lambda t: str(t)), unit="s") dfg = df.groupby(Grouper(freq="1D", key="Datetime")) # have to sort on index because of unstable sort on values xref GH9212 result = dfg["Food"].value_counts().sort_index() expected = dfg["Food"].apply(Series.value_counts).sort_index() expected.index.names = result.index.names tm.assert_series_equal(result, expected)