import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, option_context import pandas._testing as tm import pandas.core.common as com class TestCaching: def test_slice_consolidate_invalidate_item_cache(self): # this is chained assignment, but will 'work' with option_context("chained_assignment", None): # #3970 df = DataFrame({"aa": np.arange(5), "bb": [2.2] * 5}) # Creates a second float block df["cc"] = 0.0 # caches a reference to the 'bb' series df["bb"] # repr machinery triggers consolidation repr(df) # Assignment to wrong series df["bb"].iloc[0] = 0.17 df._clear_item_cache() tm.assert_almost_equal(df["bb"][0], 0.17) def test_setitem_cache_updating(self): # GH 5424 cont = ["one", "two", "three", "four", "five", "six", "seven"] for do_ref in [False, False]: df = DataFrame({"a": cont, "b": cont[3:] + cont[:3], "c": np.arange(7)}) # ref the cache if do_ref: df.loc[0, "c"] # set it df.loc[7, "c"] = 1 assert df.loc[0, "c"] == 0.0 assert df.loc[7, "c"] == 1.0 # GH 7084 # not updating cache on series setting with slices expected = DataFrame( {"A": [600, 600, 600]}, index=date_range("5/7/2014", "5/9/2014") ) out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014")) df = DataFrame({"C": ["A", "A", "A"], "D": [100, 200, 300]}) # loop through df to update out six = Timestamp("5/7/2014") eix = Timestamp("5/9/2014") for ix, row in df.iterrows(): out.loc[six:eix, row["C"]] = out.loc[six:eix, row["C"]] + row["D"] tm.assert_frame_equal(out, expected) tm.assert_series_equal(out["A"], expected["A"]) # try via a chain indexing # this actually works out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014")) for ix, row in df.iterrows(): v = out[row["C"]][six:eix] + row["D"] out[row["C"]][six:eix] = v tm.assert_frame_equal(out, expected) tm.assert_series_equal(out["A"], expected["A"]) out = DataFrame({"A": [0, 0, 0]}, index=date_range("5/7/2014", "5/9/2014")) for ix, row in df.iterrows(): out.loc[six:eix, row["C"]] += row["D"] tm.assert_frame_equal(out, expected) tm.assert_series_equal(out["A"], expected["A"]) def test_altering_series_clears_parent_cache(self): # GH #33675 df = pd.DataFrame([[1, 2], [3, 4]], index=["a", "b"], columns=["A", "B"]) ser = df["A"] assert "A" in df._item_cache # Adding a new entry to ser swaps in a new array, so "A" needs to # be removed from df._item_cache ser["c"] = 5 assert len(ser) == 3 assert "A" not in df._item_cache assert df["A"] is not ser assert len(df["A"]) == 2 class TestChaining: def test_setitem_chained_setfault(self): # GH6026 data = ["right", "left", "left", "left", "right", "left", "timeout"] mdata = ["right", "left", "left", "left", "right", "left", "none"] df = DataFrame({"response": np.array(data)}) mask = df.response == "timeout" df.response[mask] = "none" tm.assert_frame_equal(df, DataFrame({"response": mdata})) recarray = np.rec.fromarrays([data], names=["response"]) df = DataFrame(recarray) mask = df.response == "timeout" df.response[mask] = "none" tm.assert_frame_equal(df, DataFrame({"response": mdata})) df = DataFrame({"response": data, "response1": data}) mask = df.response == "timeout" df.response[mask] = "none" tm.assert_frame_equal(df, DataFrame({"response": mdata, "response1": data})) # GH 6056 expected = DataFrame(dict(A=[np.nan, "bar", "bah", "foo", "bar"])) df = DataFrame(dict(A=np.array(["foo", "bar", "bah", "foo", "bar"]))) df["A"].iloc[0] = np.nan result = df.head() tm.assert_frame_equal(result, expected) df = DataFrame(dict(A=np.array(["foo", "bar", "bah", "foo", "bar"]))) df.A.iloc[0] = np.nan result = df.head() tm.assert_frame_equal(result, expected) def test_detect_chained_assignment(self): pd.set_option("chained_assignment", "raise") # work with the chain expected = DataFrame([[-5, 1], [-6, 3]], columns=list("AB")) df = DataFrame(np.arange(4).reshape(2, 2), columns=list("AB"), dtype="int64") assert df._is_copy is None df["A"][0] = -5 df["A"][1] = -6 tm.assert_frame_equal(df, expected) # test with the chaining df = DataFrame( { "A": Series(range(2), dtype="int64"), "B": np.array(np.arange(2, 4), dtype=np.float64), } ) assert df._is_copy is None with pytest.raises(com.SettingWithCopyError): df["A"][0] = -5 with pytest.raises(com.SettingWithCopyError): df["A"][1] = np.nan assert df["A"]._is_copy is None # Using a copy (the chain), fails df = DataFrame( { "A": Series(range(2), dtype="int64"), "B": np.array(np.arange(2, 4), dtype=np.float64), } ) with pytest.raises(com.SettingWithCopyError): df.loc[0]["A"] = -5 # Doc example df = DataFrame( { "a": ["one", "one", "two", "three", "two", "one", "six"], "c": Series(range(7), dtype="int64"), } ) assert df._is_copy is None with pytest.raises(com.SettingWithCopyError): indexer = df.a.str.startswith("o") df[indexer]["c"] = 42 expected = DataFrame({"A": [111, "bbb", "ccc"], "B": [1, 2, 3]}) df = DataFrame({"A": ["aaa", "bbb", "ccc"], "B": [1, 2, 3]}) with pytest.raises(com.SettingWithCopyError): df["A"][0] = 111 with pytest.raises(com.SettingWithCopyError): df.loc[0]["A"] = 111 df.loc[0, "A"] = 111 tm.assert_frame_equal(df, expected) # gh-5475: Make sure that is_copy is picked up reconstruction df = DataFrame({"A": [1, 2]}) assert df._is_copy is None with tm.ensure_clean("__tmp__pickle") as path: df.to_pickle(path) df2 = pd.read_pickle(path) df2["B"] = df2["A"] df2["B"] = df2["A"] # gh-5597: a spurious raise as we are setting the entire column here from string import ascii_letters as letters def random_text(nobs=100): df = [] for i in range(nobs): idx = np.random.randint(len(letters), size=2) idx.sort() df.append([letters[idx[0] : idx[1]]]) return DataFrame(df, columns=["letters"]) df = random_text(100000) # Always a copy x = df.iloc[[0, 1, 2]] assert x._is_copy is not None x = df.iloc[[0, 1, 2, 4]] assert x._is_copy is not None # Explicitly copy indexer = df.letters.apply(lambda x: len(x) > 10) df = df.loc[indexer].copy() assert df._is_copy is None df["letters"] = df["letters"].apply(str.lower) # Implicitly take df = random_text(100000) indexer = df.letters.apply(lambda x: len(x) > 10) df = df.loc[indexer] assert df._is_copy is not None df["letters"] = df["letters"].apply(str.lower) # Implicitly take 2 df = random_text(100000) indexer = df.letters.apply(lambda x: len(x) > 10) df = df.loc[indexer] assert df._is_copy is not None df.loc[:, "letters"] = df["letters"].apply(str.lower) # Should be ok even though it's a copy! assert df._is_copy is None df["letters"] = df["letters"].apply(str.lower) assert df._is_copy is None df = random_text(100000) indexer = df.letters.apply(lambda x: len(x) > 10) df.loc[indexer, "letters"] = df.loc[indexer, "letters"].apply(str.lower) # an identical take, so no copy df = DataFrame({"a": [1]}).dropna() assert df._is_copy is None df["a"] += 1 df = DataFrame(np.random.randn(10, 4)) s = df.iloc[:, 0].sort_values() tm.assert_series_equal(s, df.iloc[:, 0].sort_values()) tm.assert_series_equal(s, df[0].sort_values()) # see gh-6025: false positives df = DataFrame({"column1": ["a", "a", "a"], "column2": [4, 8, 9]}) str(df) df["column1"] = df["column1"] + "b" str(df) df = df[df["column2"] != 8] str(df) df["column1"] = df["column1"] + "c" str(df) # from SO: # https://stackoverflow.com/questions/24054495/potential-bug-setting-value-for-undefined-column-using-iloc df = DataFrame(np.arange(0, 9), columns=["count"]) df["group"] = "b" with pytest.raises(com.SettingWithCopyError): df.iloc[0:5]["group"] = "a" # Mixed type setting but same dtype & changing dtype df = DataFrame( dict( A=date_range("20130101", periods=5), B=np.random.randn(5), C=np.arange(5, dtype="int64"), D=list("abcde"), ) ) with pytest.raises(com.SettingWithCopyError): df.loc[2]["D"] = "foo" with pytest.raises(com.SettingWithCopyError): df.loc[2]["C"] = "foo" with pytest.raises(com.SettingWithCopyError): df["C"][2] = "foo" def test_setting_with_copy_bug(self): # operating on a copy df = DataFrame( {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]} ) mask = pd.isna(df.c) msg = "A value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): df[["c"]][mask] = df[["b"]][mask] # invalid warning as we are returning a new object # GH 8730 df1 = DataFrame({"x": Series(["a", "b", "c"]), "y": Series(["d", "e", "f"])}) df2 = df1[["x"]] # this should not raise df2["y"] = ["g", "h", "i"] def test_detect_chained_assignment_warnings(self): with option_context("chained_assignment", "warn"): df = DataFrame({"A": ["aaa", "bbb", "ccc"], "B": [1, 2, 3]}) with tm.assert_produces_warning(com.SettingWithCopyWarning): df.loc[0]["A"] = 111 def test_detect_chained_assignment_warnings_filter_and_dupe_cols(self): # xref gh-13017. with option_context("chained_assignment", "warn"): df = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, -9]], columns=["a", "a", "c"] ) with tm.assert_produces_warning(com.SettingWithCopyWarning): df.c.loc[df.c > 0] = None expected = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, -9]], columns=["a", "a", "c"] ) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 df = DataFrame({"A": 5 * [np.zeros(3)], "B": 5 * [np.ones(3)]}) expected = df["A"].iloc[2] result = df.loc[2, "A"] tm.assert_numpy_array_equal(result, expected) result2 = df.iloc[2]["A"] tm.assert_numpy_array_equal(result2, expected) result3 = df["A"].loc[2] tm.assert_numpy_array_equal(result3, expected) result4 = df["A"].iloc[2] tm.assert_numpy_array_equal(result4, expected) def test_cache_updating(self): # GH 4939, make sure to update the cache on setitem df = tm.makeDataFrame() df["A"] # cache series df.loc["Hello Friend"] = df.iloc[0] assert "Hello Friend" in df["A"].index assert "Hello Friend" in df["B"].index # 10264 df = DataFrame( np.zeros((5, 5), dtype="int64"), columns=["a", "b", "c", "d", "e"], index=range(5), ) df["f"] = 0 df.f.values[3] = 1 df.f.values[3] = 2 expected = DataFrame( np.zeros((5, 6), dtype="int64"), columns=["a", "b", "c", "d", "e", "f"], index=range(5), ) expected.at[3, "f"] = 2 tm.assert_frame_equal(df, expected) expected = Series([0, 0, 0, 2, 0], name="f") tm.assert_series_equal(df.f, expected)