""" Behavioral based tests for offsets and date_range. This file is adapted from https://github.com/pandas-dev/pandas/pull/18761 - which was more ambitious but less idiomatic in its use of Hypothesis. You may wish to consult the previous version for inspiration on further tests, or when trying to pin down the bugs exposed by the tests below. """ import warnings from hypothesis import assume, given, strategies as st from hypothesis.extra.dateutil import timezones as dateutil_timezones from hypothesis.extra.pytz import timezones as pytz_timezones import pandas as pd from pandas import Timestamp from pandas.tseries.offsets import ( BMonthBegin, BMonthEnd, BQuarterBegin, BQuarterEnd, BYearBegin, BYearEnd, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, YearBegin, YearEnd, ) # ---------------------------------------------------------------- # Helpers for generating random data with warnings.catch_warnings(): warnings.simplefilter("ignore") min_dt = Timestamp(1900, 1, 1).to_pydatetime() max_dt = Timestamp(1900, 1, 1).to_pydatetime() gen_date_range = st.builds( pd.date_range, start=st.datetimes( # TODO: Choose the min/max values more systematically min_value=Timestamp(1900, 1, 1).to_pydatetime(), max_value=Timestamp(2100, 1, 1).to_pydatetime(), ), periods=st.integers(min_value=2, max_value=100), freq=st.sampled_from("Y Q M D H T s ms us ns".split()), tz=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()), ) gen_random_datetime = st.datetimes( min_value=min_dt, max_value=max_dt, timezones=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()), ) # The strategy for each type is registered in conftest.py, as they don't carry # enough runtime information (e.g. type hints) to infer how to build them. gen_yqm_offset = st.one_of( *map( st.from_type, [ MonthBegin, MonthEnd, BMonthBegin, BMonthEnd, QuarterBegin, QuarterEnd, BQuarterBegin, BQuarterEnd, YearBegin, YearEnd, BYearBegin, BYearEnd, ], ) ) # ---------------------------------------------------------------- # Offset-specific behaviour tests @given(gen_random_datetime, gen_yqm_offset) def test_on_offset_implementations(dt, offset): assume(not offset.normalize) # check that the class-specific implementations of is_on_offset match # the general case definition: # (dt + offset) - offset == dt compare = (dt + offset) - offset assert offset.is_on_offset(dt) == (compare == dt) @given(gen_yqm_offset) def test_shift_across_dst(offset): # GH#18319 check that 1) timezone is correctly normalized and # 2) that hour is not incorrectly changed by this normalization assume(not offset.normalize) # Note that dti includes a transition across DST boundary dti = pd.date_range( start="2017-10-30 12:00:00", end="2017-11-06", freq="D", tz="US/Eastern" ) assert (dti.hour == 12).all() # we haven't screwed up yet res = dti + offset assert (res.hour == 12).all()